Abstract
Gram-negative bacteria translocate various proteins including virulence factors across their outer membrane via type 2 secretion systems (T2SSs). T2SSs are thought to contain a pseudopilus, a subcomplex formed by one major and several minor pseudopilins. We report the crystal structure of the complex formed by three minor pseudopilins from enterotoxigenic Escherichia coli. The GspKâGspIâGspJ complex has quasihelical characteristics and an architecture consistent with a localization at the pseudopilus tip. The α-domain of GspK has a previously unobserved fold with an unexpected dinuclear metal binding site. The area surrounding its disulfide bridge is conserved and might interact with other T2SS components or with secreted proteins.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Sandkvist, M. Type II secretion and pathogenesis. Infect. Immun. 69, 3523â3535 (2001).
Tauschek, M., Gorrell, R.J., Strugnell, R.A. & Robins-Browne, R.M. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 7066â7071 (2002).
Turner, S.M., Scott-Tucker, A., Cooper, L.M. & Henderson, I.R. Weapons of mass destruction: virulence factors of the global killer enterotoxigenic Escherichia coli. FEMS Microbiol. Lett. 263, 10â20 (2006).
Sandkvist, M. et al. General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J. Bacteriol. 179, 6994â7003 (1997).
Filloux, A. The underlying mechanisms of type II protein secretion. Biochim. Biophys. Acta 1694, 163â179 (2004).
Johnson, T.L., Abendroth, J., Hol, W.G. & Sandkvist, M. Type II secretion: from structure to function. FEMS Microbiol. Lett. 255, 175â186 (2006).
Hobbs, M. & Mattick, J.S. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol. Microbiol. 10, 233â243 (1993).
Peabody, C.R. et al. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149, 3051â3072 (2003).
Mattick, J.S. & Alm, R.A. Response from Mattick and Alm: common architecture of type 4 fimbriae and complexes involved in macromolecular traffic. Trends Microbiol. 3, 411â413 (1995).
Filloux, A., Michel, G. & Bally, M. GSP-dependent protein secretion in Gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol. Rev. 22, 177â198 (1998).
Nunn, D.N. & Lory, S. Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc. Natl. Acad. Sci. USA 88, 3281â3285 (1991).
Nunn, D.N. & Lory, S. Cleavage, methylation, and localization of the Pseudomonas aeruginosa export proteins XcpT, -U, -V, and -W. J. Bacteriol. 175, 4375â4382 (1993).
Parge, H.E. et al. Structure of the fibre-forming protein pilin at 2.6 Ã resolution. Nature 378, 32â38 (1995).
Sauvonnet, N., Vignon, G., Pugsley, A.P. & Gounon, P. Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J. 19, 2221â2228 (2000).
Bleves, S. et al. The secretion apparatus of Pseudomonas aeruginosa: identification of a fifth pseudopilin, XcpX (GspK family). Mol. Microbiol. 27, 31â40 (1998).
Wolfgang, M., van Putten, J.P., Hayes, S.F. & Koomey, M. The comP locus of Neisseria gonorrhoeae encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation. Mol. Microbiol. 31, 1345â1357 (1999).
Toma, C., Kuroki, H., Nakasone, N., Ehara, M. & Iwanaga, M. Minor pilin subunits are conserved in Vibrio cholerae type IV pili. FEMS Immunol. Med. Microbiol. 33, 35â40 (2002).
Winther-Larsen, H.C. et al. A conserved set of pilin-like molecules controls type IV pilus dynamics and organelle-associated functions in Neisseria gonorrhoeae. Mol. Microbiol. 56, 903â917 (2005).
Lu, H.M., Motley, S.T. & Lory, S. Interactions of the components of the general secretion pathway: role of Pseudomonas aeruginosa type IV pilin subunits in complex formation and extracellular protein secretion. Mol. Microbiol. 25, 247â259 (1997).
Douet, V., Loiseau, L., Barras, F. & Py, B. Systematic analysis, by the yeast two-hybrid, of protein interaction between components of the type II secretory machinery of Erwinia chrysanthemi. Res. Microbiol. 155, 71â75 (2004).
Kuo, W.W., Kuo, H.W., Cheng, C.C., Lai, H.L. & Chen, L.Y. Roles of the minor pseudopilins, XpsH, XpsI and XpsJ, in the formation of XpsG-containing pseudopilus in Xanthomonas campestris pv. campestris. J. Biomed. Sci. 12, 587â599 (2005).
Hazes, B., Sastry, P.A., Hayakawa, K., Read, R.J. & Irvin, R.T. Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J. Mol. Biol. 299, 1005â1017 (2000).
Keizer, D.W. et al. Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili. J. Biol. Chem. 276, 24186â24193 (2001).
Craig, L., Pique, M.E. & Tainer, J.A. Type IV pilus structure and bacterial pathogenicity. Nat. Rev. Microbiol. 2, 363â378 (2004).
Köhler, R. et al. Structure and assembly of the pseudopilin PulG. Mol. Microbiol. 54, 647â664 (2004).
Craig, L. et al. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol. Cell 23, 651â662 (2006).
Robien, M.A., Krumm, B.E., Sandkvist, M. & Hol, W.G. Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J. Mol. Biol. 333, 657â674 (2003).
Abendroth, J., Bagdasarian, M., Sandkvist, M. & Hol, W.G. The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae: an unusual member of the actin-like ATPase superfamily. J. Mol. Biol. 344, 619â633 (2004).
Abendroth, J., Rice, A.E., McLuskey, K., Bagdasarian, M. & Hol, W.G. The crystal structure of the periplasmic domain of the type II secretion system protein EpsM from Vibrio cholerae: the simplest version of the ferredoxin fold. J. Mol. Biol. 338, 585â596 (2004).
Abendroth, J., Murphy, P., Sandkvist, M., Bagdasarian, M. & Hol, W.G. The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J. Mol. Biol. 348, 845â855 (2005).
Korotkov, K.V., Krumm, B., Bagdasarian, M. & Hol, W.G. Structural and functional studies of EpsC, a crucial component of the type 2 secretion system from Vibrio cholerae. J. Mol. Biol. 363, 311â321 (2006).
Yanez, M.E., Korotkov, K.V., Abendroth, J. & Hol, W.G. Structure of the minor pseudopilin EpsH from the type 2 Secretion system of Vibrio cholerae. J. Mol. Biol. 375, 471â486 (2008).
Yanez, M.E., Korotkov, K.V., Abendroth, J. & Hol, W.G. The crystal structure of a binary complex of two pseudopilins: EpsI and EpsJ from the type 2 secretion system of Vibrio vulnificus. J. Mol. Biol. 375, 471â486 (2008).
Pugsley, A.P., Bayan, N. & Sauvonnet, N. Disulfide bond formation in secreton component PulK provides a possible explanation for the role of DsbA in pullulanase secretion. J. Bacteriol. 183, 1312â1319 (2001).
Durand, E. et al. XcpX controls biogenesis of the Pseudomonas aeruginosa XcpT-containing pseudopilus. J. Biol. Chem. 280, 31378â31389 (2005).
Reyss, I. & Pugsley, A.P. Five additional genes in the pulC-O operon of the Gram-negative bacterium Klebsiella oxytoca UNF5023 which are required for pullulanase secretion. Mol. Gen. Genet. 222, 176â184 (1990).
Helaine, S., Dyer, D.H., Nassif, X., Pelicic, V. & Forest, K.T. 3D structure/function analysis of PilX reveals how minor pilins can modulate the virulence properties of type IV pili. Proc. Natl. Acad. Sci. USA 104, 15888â15893 (2007).
Holm, L. & Sander, C. Mapping the protein universe. Science 273, 595â603 (1996).
Hansen, J.K. & Forest, K.T. Type IV pilin structures: insights on shared architecture, fiber assembly, receptor binding and type II secretion. J. Mol. Microbiol. Biotechnol. 11, 192â207 (2006).
Jones, S. & Thornton, J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93, 13â20 (1996).
Jones, S. & Thornton, J.M. Protein-protein interactions: a review of protein dimer structures. Prog. Biophys. Mol. Biol. 63, 31â65 (1995).
Nunn, D. Bacterial type II protein export and pilus biogenesis: more than just homologies? Trends Cell Biol. 9, 402â408 (1999).
Vignon, G. et al. Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol. 185, 3416â3428 (2003).
Alm, R.A. & Mattick, J.S. Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. Gene 192, 89â98 (1997).
Hu, N.T. et al. XpsG, the major pseudopilin in Xanthomonas campestris pv. campestris, forms a pilus-like structure between cytoplasmic and outer membranes. Biochem. J. 365, 205â211 (2002).
Durand, E. et al. Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J. Bacteriol. 185, 2749â2758 (2003).
van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105â124 (1993).
Luft, J.R. et al. A deliberate approach to screening for initial crystallization conditions of biological macromolecules. J. Struct. Biol. 142, 170â179 (2003).
Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat. 11, 49â52 (2004).
Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr. 59, 2023â2030 (2003).
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126â2132 (2004).
McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658â674 (2007).
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240â255 (1997).
Painter, J. & Merritt, E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62, 439â450 (2006).
Acknowledgements
We thank M. Yanez, S. Turley, J. Bosch and J. Abendroth for help and valuable discussions; S. Moseley from the Department of Microbiology, University of Washington, for providing the ETEC genomic DNA; the Hauptman-Woodward Institute in Buffalo for crystal screening; and the support staff of beamline 9-2 of the Stanford Synchrotron Radiation Laboratory (SSRL) for assistance during data collection. Portions of this research were carried out at the SSRL, supported by the Department of Energy and by the US National Institutes of Health (NIH). This work was supported by grant AI34501 from the NIH and by the Howard Hughes Medical Institute (HHMI).
Author information
Authors and Affiliations
Contributions
K.V.K. cloned, purified, crystallized and determined the GspKâGspIâGspJ structure, and K.V.K. and W.G.J.H. designed the research and wrote the manuscript.
Corresponding author
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1â6, Supplementary Table 1 and Supplementary Methods (PDF 2763 kb)
Rights and permissions
About this article
Cite this article
Korotkov, K., Hol, W. Structure of the GspKâGspIâGspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system. Nat Struct Mol Biol 15, 462â468 (2008). https://doi.org/10.1038/nsmb.1426
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nsmb.1426
This article is cited by
-
Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system
Nature Communications (2021)
-
PilY1 and minor pilins form a complex priming the type IVa pilus in Myxococcus xanthus
Nature Communications (2020)
-
Structure and function of minor pilins of type IV pili
Medical Microbiology and Immunology (2020)
-
In vivo structure of the Legionella type II secretion system by electron cryotomography
Nature Microbiology (2019)
-
Structure of the calcium-dependent type 2 secretion pseudopilus
Nature Microbiology (2017)


