Nature Structural & Molecular Biology Nature Structural and Molecular Biology reflects the growing integration of structural and molecular studies. The journal places a strong emphasis on understanding the molecular mechanisms underlying biological processes. Specific areas include (but are not limited to) DNA replication, repair and recombination; chromatin structure and remodeling; transcription; translation; folding, processing, transport and degradation of proteins and RNA; signal transduction and membrane processes. http://feeds.nature.com/nsmb/rss/current Nature Publishing Group en © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Structural & Molecular Biology © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. [email protected]
  • Nature Structural & Molecular Biology https://www.nature.com/uploads/product/nsmb/rss.gif http://feeds.nature.com/nsmb/rss/current <![CDATA[New York City’s structural biology mosaic]]> https://www.nature.com/articles/s41594-025-01698-z <![CDATA[

    Nature Structural & Molecular Biology, Published online: 28 October 2025; doi:10.1038/s41594-025-01698-z

    The structural biology community in New York City combines expertise and access to cutting-edge instrumentation that fosters cooperation. Working collaboratively is indispensable because developing interdisciplinary tools can enable discoveries in cell, structural and molecular biology.]]> <![CDATA[New York City’s structural biology mosaic]]> Francesca Vallese doi:10.1038/s41594-025-01698-z Nature Structural & Molecular Biology, Published online: 2025-10-28; | doi:10.1038/s41594-025-01698-z 2025-10-28 Nature Structural & Molecular Biology 10.1038/s41594-025-01698-z https://www.nature.com/articles/s41594-025-01698-z <![CDATA[Structural basis for agonist and heat activation of nociceptor TRPM3]]> https://www.nature.com/articles/s41594-025-01692-5 <![CDATA[

    Nature Structural & Molecular Biology, Published online: 24 October 2025; doi:10.1038/s41594-025-01692-5

    TRPM3 is an ion channel that helps the body sense heat and contributes to pain. The authors show that both heat and small chemical molecules switch it on through similar changes inside the protein.]]>
    <![CDATA[Structural basis for agonist and heat activation of nociceptor TRPM3]]> Sushant KumarFei JinSung Jin ParkWooyoung ChoiSarah I. KeuningRichard P. MassiminoSimon VuWei LüJuan Du doi:10.1038/s41594-025-01692-5 Nature Structural & Molecular Biology, Published online: 2025-10-24; | doi:10.1038/s41594-025-01692-5 2025-10-24 Nature Structural & Molecular Biology 10.1038/s41594-025-01692-5 https://www.nature.com/articles/s41594-025-01692-5
    <![CDATA[RNase MRP subunit composition and role in 40S ribosome biogenesis]]> https://www.nature.com/articles/s41594-025-01690-7 <![CDATA[

    Nature Structural & Molecular Biology, Published online: 24 October 2025; doi:10.1038/s41594-025-01690-7

    The authors identify the human RNase MRP-specific proteins, RMP24 (C18orf21) and RMP64 (Nepro), define their role in 40S ribosome biogenesis, and reveal how disease-linked RMP64 mutations disrupt complex assembly.]]>
    <![CDATA[RNase MRP subunit composition and role in 40S ribosome biogenesis]]> Eric M. SmithJimmy LySofia HaugIain M. Cheeseman doi:10.1038/s41594-025-01690-7 Nature Structural & Molecular Biology, Published online: 2025-10-24; | doi:10.1038/s41594-025-01690-7 2025-10-24 Nature Structural & Molecular Biology 10.1038/s41594-025-01690-7 https://www.nature.com/articles/s41594-025-01690-7
    <![CDATA[Epigenetic priming promotes tyrosine kinase inhibitor resistance and oncogene amplification]]> https://www.nature.com/articles/s41594-025-01685-4 <![CDATA[

    Nature Structural & Molecular Biology, Published online: 23 October 2025; doi:10.1038/s41594-025-01685-4

    Starble, Sun, and colleagues identify an epigenetic priming mechanism that promotes oncogene amplification in acquired resistance to tyrosine kinase inhibitors and establishes a role of METTL7A in this process.]]>
    <![CDATA[Epigenetic priming promotes tyrosine kinase inhibitor resistance and oncogene amplification]]> Rebecca M. StarbleEric G. SunRana GbyliJonathan RaddaJiuwei LuTyler B. JensenNing SunNelli KhudaverdyanTing ZhaoBomiao HuMary Ann MelnickShuai ZhaoNitin RoperGang Greg WangAlan J. TackettYinsheng WangJikui SongKaterina PolitiSiyuan WangAndrew Z. Xiao doi:10.1038/s41594-025-01685-4 Nature Structural & Molecular Biology, Published online: 2025-10-23; | doi:10.1038/s41594-025-01685-4 2025-10-23 Nature Structural & Molecular Biology 10.1038/s41594-025-01685-4 https://www.nature.com/articles/s41594-025-01685-4
    <![CDATA[Global analysis of translocon remodeling during protein synthesis at the ER]]> https://www.nature.com/articles/s41594-025-01691-6 <![CDATA[

    Nature Structural & Molecular Biology, Published online: 20 October 2025; doi:10.1038/s41594-025-01691-6

    The authors use selective ribosome profiling to define how and when factors for N-glycosylation and membrane insertion engage and disengage from the core Sec61 translocation channel during biogenesis of secretory and membrane proteins at the endoplasmic reticulum.]]>
    <![CDATA[Global analysis of translocon remodeling during protein synthesis at the ER]]> Arunkumar SundaramQianru LiYu WanJosephine TangHaoxi WuLuka SmalinskaitÄ—Ramanujan S. HegdeZhe JiRobert J. Keenan doi:10.1038/s41594-025-01691-6 Nature Structural & Molecular Biology, Published online: 2025-10-20; | doi:10.1038/s41594-025-01691-6 2025-10-20 Nature Structural & Molecular Biology 10.1038/s41594-025-01691-6 https://www.nature.com/articles/s41594-025-01691-6
    <![CDATA[Dynamics of microcompartment formation at the mitosis-to-G1 transition]]> https://www.nature.com/articles/s41594-025-01687-2 <![CDATA[

    Nature Structural & Molecular Biology, Published online: 17 October 2025; doi:10.1038/s41594-025-01687-2

    Goel et al. produce high-resolution three-dimensional genome structure mapping from mitosis to G1 phase to show unseen interactions between enhancers and promoters in prometaphase. Polymer modeling indicates the interactions are facilitated by chromosome compaction.]]>
    <![CDATA[Dynamics of microcompartment formation at the mitosis-to-G1 transition]]> Viraat Y. GoelNicholas G. AboredenJames M. JusufHaoyue ZhangLuisa P. MoriLeonid A. MirnyGerd A. BlobelEdward J. BaniganAnders S. Hansen doi:10.1038/s41594-025-01687-2 Nature Structural & Molecular Biology, Published online: 2025-10-17; | doi:10.1038/s41594-025-01687-2 2025-10-17 Nature Structural & Molecular Biology 10.1038/s41594-025-01687-2 https://www.nature.com/articles/s41594-025-01687-2
    <![CDATA[Returning home: building a scientific future in Chile]]> https://www.nature.com/articles/s41594-025-01648-9 <![CDATA[

    Nature Structural & Molecular Biology, Published online: 15 October 2025; doi:10.1038/s41594-025-01648-9

    Doing science in Latin America can be as exciting as it is challenging. Starting my laboratory for transcription and epigenetics in Chile after working in the USA has required deep conviction and constant effort. It is a long-term project aimed at creating new opportunities for the next generation of Chilean scientists, offering Latin American perspectives to contribute to science.]]>
    <![CDATA[Returning home: building a scientific future in Chile]]> Hugo Sepulveda doi:10.1038/s41594-025-01648-9 Nature Structural & Molecular Biology, Published online: 2025-10-15; | doi:10.1038/s41594-025-01648-9 2025-10-15 Nature Structural & Molecular Biology 10.1038/s41594-025-01648-9 https://www.nature.com/articles/s41594-025-01648-9
    <![CDATA[Voices of <i>NSMB</i>]]> https://www.nature.com/articles/s41594-025-01694-3 <![CDATA[

    Nature Structural & Molecular Biology, Published online: 15 October 2025; doi:10.1038/s41594-025-01694-3

    We are delighted to introduce additional content types at Nature Structural & Molecular Biology, which allow us to offer more discussion of societal and scientific issues, better represent the unique perspectives of our readers, showcase their stories, and amplify their voices.]]>
    <![CDATA[Voices of <i>NSMB</i>]]> doi:10.1038/s41594-025-01694-3 Nature Structural & Molecular Biology, Published online: 2025-10-15; | doi:10.1038/s41594-025-01694-3 2025-10-15 Nature Structural & Molecular Biology 10.1038/s41594-025-01694-3 https://www.nature.com/articles/s41594-025-01694-3