Nobel Prize winning work
The discovery of X-ray diffraction by wet protein crystals inspired a generation of scientists to look for ways of translating that information to protein structure. However, the interpretation of X-ray diffraction patterns requires knowing not only the intensities and direction of the diffracted rays, which could be directly measured, but also their phases, which remained the stumbling block. The phase problem was unsolved until Perutz, after nearly two decades of effort (punctuated by World War II) introduced the procedure of isomorphous replacement in 1954. It then required some five more years of intense effort to solve the structures of myoglobin, by colleague John Kendrew, and hemoglobin, by Max. It was an accomplishment for which they shared the Nobel Prize in 1962. Soon afterwards, David Phillips and colleagues solved the structure of lysozyme. Then came α-chymotrypsin, carboxypeptidase B and ribonuclease A, opening the floodgates of three-dimensional protein structures. Had Max stopped being a scientist at that point, his place in history would have been secure as the founding father of one of the most successful and important fields in science and arguably the most important in biology. But, he viewed structure as just the springboard to understanding function.