Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antimicrobial-resistant bacteria in the community setting

Abstract

Over the past decade, antimicrobial resistance has emerged as a major public-health crisis. Common bacterial pathogens in the community such as Streptococcus pneumoniae have become progressively more resistant to traditional antibiotics. Salmonella strains are beginning to show resistance to crucial fluoroquinolone drugs. Community outbreaks caused by a resistant form of Staphylococcus aureus, known as community-associated meticillin (formerly methicillin)-resistant Staphylococcus aureus, have caused serious morbidity and even deaths in previously healthy children and adults. To decrease the spread of such antimicrobial-resistant pathogens in the community, a greater understanding of their means of emergence and survival is needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rates of prescriptions for the 'common cold', upper-respiratory-tract infections (URIs) and bronchitis in children and adolescents.
Figure 2: Horizontal gene transfer between bacteria.
Figure 3: Correlation between penicillin use and prevalence of penicillin-non-susceptible Streptococcus pneumoniae.
Figure 4: Factors that contribute to the spread of antimicrobial resistance in the community.

Similar content being viewed by others

References

  1. Rammelkamp, C. H. & Maxon, T. Resistance of Staphylococcus aureus to the action of penicillin. Proc. Royal Soc. Experim. Biol. Med. 51, 386–389 (1942).

    Article  CAS  Google Scholar 

  2. Goossens, H., Ferech, M., Vander Stichele, R. & Elseviers, M. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 365, 579–587 (2005). This article describes an important study that traces a strong epidemiological link between antibiotic use and resistance in various countries in Europe.

    Article  PubMed  Google Scholar 

  3. Mellon, M., Benbrook, C. & Benbrook, K. Hogging It: Estimates of Antimicrobial Abuse in Livestock (UCS Publications, Cambridge, 2001).

    Google Scholar 

  4. Gonzales, R., Steiner, J. F. & Sande, M. A. Antibiotic prescribing for adults with colds, upper respiratory tract infections, and bronchitis by ambulatory care physicians. JAMA 278, 901–904 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Nyquist, A. C., Gonzales, R., Steiner, J. F. & Sande, M. A. Antibiotic prescribing for children with colds, upper respiratory tract infections, and bronchitis. JAMA 279, 875–857 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Watanabe, T. Infective heredity of multiple drug resistance in bacteria. Bacteriol. Rev. 27, 87–115 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown, D. F. & Reynolds, P. E. Intrinsic resistance to β-lactam antibiotics in Staphylococcus aureus. FEBS Lett. 122, 275–278 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Stokes, H. W. & Hall, R. M. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol. Microbiol. 3, 1669–1683 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Griggs, D. J., Gensberg, K. & Piddock, L. J. Mutations in gyrA gene of quinolone-resistant Salmonella serotypes isolated from humans and animals. Antimicrob. Agents Chemother. 40, 1009–1013 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jorgensen, J. H., Weigel, L. M., Ferraro, M. J., Swenson, J. M. & Tenover, F. C. Activities of newer fluoroquinolones against Streptococcus pneumoniae clinical isolates including those with mutations in the gyrA, parC, and parE loci. Antimicrob. Agents Chemother. 43, 329–334 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kruse, H., Sorum, H., Tenover, F. C. & Olsvik, O. A transferable multiple drug resistance plasmid from Vibrio cholerae O1. Microb. Drug Resist. 1, 203–210 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Sadowski, P., Peterson, B. C., Gerding, D. L. & Cleary, P. P. Physical characterization of ten R plasmids obtained from an outbreak of nosocomial Klebsiella pneumoniae infections. Antimicrob. Agents Chemother. 15, 616–624 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barza, M. & Travers, K. Excess infections due to antimicrobial resistance: the “Attributable Fraction”. Clin. Infect. Dis. 34, S126–S130 (2002). This review outlines an interesting way of thinking about the impact of antimicrobial resistance on the number of infections.

    Article  PubMed  Google Scholar 

  14. Daum, R. S., Gupta, S., Sabbagh, R. & Milewski, W. M. Characterization of Staphylococcus aureus isolates with decreased susceptibility to vancomycin and teicoplanin: isolation and purification of a constitutively produced protein associated with decreased susceptibility. J. Infect. Dis. 166, 1066–1072 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Sieradzki, K. & Tomasz, A. Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin-resistant mutant of Staphylococcus aureus. J. Bacteriol. 179, 2557–2566 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith, T. L. et al. Emergence of vancomycin resistance in Staphylococcus aureus. Glycopeptide-Intermediate Staphylococcus aureus Working Group. N. Engl. J. Med. 340, 493–501 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Cui, L., Murakami, H., Kuwahara-Arai, K., Hanaki, H. & Hiramatsu, K. Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrob. Agents Chemother. 44, 2276–2285 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonzalez-Zorn, B. & Courvalin, P. VanA-mediated high level glycopeptide resistance in MRSA. Lancet Infect. Dis. 3, 67–68 (2003).

    Article  PubMed  Google Scholar 

  19. Martinez, J. L. & Baquero, F. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin. Microbiol. Rev. 15, 647–679 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Russell, A. D., Hammond, S. A. & Morgan, J. R. Bacterial resistance to antiseptics and disinfectants. J. Hosp. Infect. 7, 213–225 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Anwar, H., Strap, J. L., Chen, K. & Costerton, J. W. Dynamic interactions of biofilms of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. Antimicrob. Agents Chemother. 36, 1208–1214 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Donlan, R. M. Biofilms and device-associated infections. Emerg. Infect. Dis. 7, 277–281 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O'Brien, L. M., Walsh, E. J., Massey, R. C., Peacock, S. J. & Foster, T. J. Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell. Microbiol. 4, 759–770 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Weidenmaier, C. et al. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nature Med. 10, 243–245 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Bell, D. C., Montoya, I. D., Atkinson, J. S. & Yang, S. J. Social networks and forecasting the spread of HIV infection. J. Acquir. Immune Defic. Syndr. 31, 218–229 (2002).

    Article  PubMed  Google Scholar 

  26. Klovdahl, A. S. et al. Networks and tuberculosis: an undetected community outbreak involving public places. Soc. Sci. Med. 52, 681–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Lowy, F. D. & Miller, M. New methods to investigate infectious disease transmission and pathogenesis — Staphylococcus aureus disease in drug users. Lancet Infect. Dis. 2, 605–612 (2002).

    Article  PubMed  Google Scholar 

  28. Ward, H. et al. A prospective social and molecular investigation of gonococcal transmission. Lancet 356, 1812–1817 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Burman, L. A., Norrby, R. & Trollfors, B. Invasive pneumococcal infections: incidence, predisposing factors, and prognosis. Rev. Infect. Dis. 7, 133–142 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Hansman, D. & Bullen, M. M. A resistant pneumococcus. Lancet 290, 264 (1967).

    Article  Google Scholar 

  31. Zighelboim, S. & Tomasz, A. Penicillin-binding proteins of multiply antibiotic-resistant South African strains of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 17, 434–442 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dowson, C. G., Coffey, T. J. & Spratt, B. G. Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to β-lactam antibiotics. Trends Microbiol. 2, 361–366 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Doern, G. V. Antimicrobial use and the emergence of antimicrobial resistance with Streptococcus pneumoniae in the United States. Clin. Infect. Dis. 33, S187–S192 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Doern, G. V. & Brown, S. D. Antimicrobial susceptibility among community-acquired respiratory tract pathogens in the USA: data from PROTEKT US 2000–01. J. Infect. 48, 56–65 (2004).

    Article  PubMed  Google Scholar 

  35. Clavo-Sanchez, A. J. et al. Multivariate analysis of risk factors for infection due to penicillin-resistant and multidrug-resistant Streptococcus pneumoniae: a multicenter study. Clin. Infect. Dis. 24, 1052–1059 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Pallares, R. et al. Risk factors and response to antibiotic therapy in adults with bacteremic pneumonia caused by penicillin-resistant pneumococci. N. Engl. J. Med. 317, 18–22 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. Albrich, W. C., Monnet, D. L. & Harbarth, S. Antibiotic selection pressure and resistance in Streptococcus pneumoniae and Streptococcus pyogenes. Emerg. Infect. Dis. 10, 514–517 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bronzwaer, S. L. et al. A European study on the relationship between antimicrobial use and antimicrobial resistance. Emerg. Infect. Dis. 8, 278–282 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Corso, A., Severina, E. P., Petruk, V. F., Mauriz, Y. R. & Tomasz, A. Molecular characterization of penicillin-resistant Streptococcus pneumoniae isolates causing respiratory disease in the United States. Microb. Drug Resist. 4, 325–337 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Soares, S., Kristinsson, K. G., Musser, J. M. & Tomasz, A. Evidence for the introduction of a multiresistant clone of serotype 6B Streptococcus pneumoniae from Spain to Iceland in the late 1980s. J. Infect. Dis. 168, 158–163 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Duchin, J. S. et al. High prevalence of multidrug-resistant Streptococcus pneumoniae among children in a rural Kentucky community. Pediatr. Infect. Dis. J. 14, 745–750 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Neto, A. S. et al. Risk factors for the nasopharyngeal carriage of respiratory pathogens by Portuguese children: phenotype and antimicrobial susceptibility of Haemophilus influenzae and Streptococcus pneumoniae. Microb. Drug Resist. 9, 99–108 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. Dudley, S., Ashe, K., Winther, B. & Hendley, J. O. Bacterial pathogens of otitis media and sinusitis: detection in the nasopharynx with selective agar media. J. Lab. Clin. Med. 138, 338–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. McCormick, A. W. et al. Geographic diversity and temporal trends of antimicrobial resistance in Streptococcus pneumoniae in the United States. Nature Med. 9, 424–430 (2003). These authors used mathematical modelling to weigh the relative impact of antibiotic selective pressure and clonal dissemination on antimicrobial resistance in S. pneumoniae in the United States.

    Article  CAS  PubMed  Google Scholar 

  45. McEwen, S. A. & Fedorka-Cray, P. J. Antimicrobial use and resistance in animals. Clin. Infect. Dis. 34, S93–S106 (2002). This review article presents a general overview of antimicrobial use in animals.

    Article  CAS  PubMed  Google Scholar 

  46. Levy, S. B., FitzGerald, G. B. & Macone, A. B. Changes in intestinal flora of farm personnel after introduction of a tetracycline-supplemented feed on a farm. N. Engl. J. Med. 295, 583–588 (1976). This landmark study shows a link between antibiotic use in farm animals and antibiotic resistance in humans who live on the farm.

    Article  CAS  PubMed  Google Scholar 

  47. Uttley, A. H., Collins, C. H., Naidoo, J. & George, R. C. Vancomycin-resistant enterococci. Lancet 1, 57–58 (1988).

    Article  CAS  PubMed  Google Scholar 

  48. Aarestrup, F. M. et al. Glycopeptide susceptibility among Danish Enterococcus faecium and Enterococcus faecalis isolates of animal and human origin and PCR identification of genes within the VanA cluster. Antimicrob. Agents Chemother. 40, 1938–1940 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Klare, I., Heier, H., Claus, H., Reissbrodt, R. & Witte, W. vanA-mediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol. Lett. 125, 165–171 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Bates, J., Jordens, J. & Griffiths, D. Farm animals as a putative reservoir for vancomycin-resistant enterococcal infection in man. J. Antimicrob. Chemother. 34, 507–514 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. van den Bogaard, A. E., Jensen, L. B. & Stobberingh, E. E. Vancomycin-resistant enterococci in turkeys and farmers. N. Engl. J. Med. 337, 1558–1559 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Coque, T., Tomayko, J., Ricke, S., Okhyusen, P. & Murray, B. Vancomycin-resistant enterococci from nosocomial, community, and animal sources in the United States. Antimicrob. Agents Chemother. 40, 2605–2609 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jordens, J. Z., Bates, J. & Griffiths, D. T. Faecal carriage and nosocomial spread of vancomycin-resistant Enterococcus faecium. J. Antimicrob. Chemother. 34, 515–528 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Klare, I., Heier, H., Claus, H. & Witte, W. Environmental strains of Enterococcus faecium with inducible high-level resistance to glycopeptides. FEMS Microbiol. Lett. 106, 23–29 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Mead, P. S., Slutsker, L., Griffin, P. M. & Tauxe, R. V. Food-related illness and death in the United States reply to Dr Hedberg. Emerg. Infect. Dis. 5, 841–842 (1999).

    Article  PubMed Central  Google Scholar 

  56. White, D. G. et al. The isolation of antibiotic-resistant salmonella from retail ground meats. N. Engl. J. Med. 345, 1147–1154 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Blaser, M. J. & Newman, L. S. A review of human salmonellosis: I. Infective dose. Rev. Infect. Dis. 4, 1096–1106 (1982).

    Article  CAS  PubMed  Google Scholar 

  58. Woodward, D. L., Khakhria, R. & Johnson, W. M. Human salmonellosis associated with exotic pets. J. Clin. Microbiol. 35, 2786–2790 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. CDC. Outbreak of multidrug-resistant Salmonella typhimurium associated with rodents purchased at retail pet stores — United States, December 2003–October 2004. MMWR Morb. Mortal. Wkly Rep. 54, 429–433 (2005).

  60. Threlfall, E. J. et al. Antimicrobial drug resistance in isolates of Salmonella enterica from cases of salmonellosis in humans in Europe in 2000: results of international multi-centre surveillance. Euro Surveill. 8, 41–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Casin, I. et al. Multidrug-resistant human and animal Salmonella typhimurium isolates in France belong predominantly to a DT104 clone with the chromosome- and integron-encoded β-lactamase PSE-1. J. Infect. Dis. 179, 1173–1182 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Ridley, A. & Threlfall, E. J. Molecular epidemiology of antibiotic resistance genes in multiresistant epidemic Salmonella typhimurium DT 104. Microb. Drug Resist. 4, 113–118 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Threlfall, E. J., Frost, J. A., Ward, L. R. & Rowe, B. Epidemic in cattle and humans of Salmonella typhimurium DT 104 with chromosomally integrated multiple drug resistance. Vet. Rec. 134, 577 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Hakanen, A., Kotilainen, P., Huovinen, P., Helenius, H. & Siitonen, A. Reduced fluoroquinolone susceptibility in Salmonella enterica serotypes in travelers returning from Southeast Asia. Emerg. Infect. Dis. 7, 996–1003 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Isenbarger, D. W. et al. Comparative antibiotic resistance of diarrheal pathogens from Vietnam and Thailand, 1996–1999. Emerg. Infect. Dis. 8, 175–180 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Molbak, K., Gerner-Smidt, P. & Wegener, H. C. Increasing quinolone resistance in Salmonella enterica serotype Enteritidis. Emerg. Infect. Dis. 8, 514–515 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chiu, C. H. et al. The emergence in Taiwan of fluoroquinolone resistance in Salmonella enterica serotype choleraesuis. N. Engl. J. Med. 346, 413–419 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. National Antimicrobial Resistance Monitoring System for Enteric Bacteria: Annual Report, 2001 (Centers for Disease Control and Prevention, Atlanta, 2001).

  69. Threlfall, E. J., Graham, A., Cheasty, T., Ward, L. R. & Rowe, B. Resistance to ciprofloxacin in pathogenic Enterobacteriaceae in England and Wales in 1996. J. Clin. Pathol. 50, 1027–1028 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cody, S. H. et al. Two outbreaks of multidrug-resistant Salmonella serotype typhimurium DT104 infections linked to raw-milk cheese in Northern California. JAMA 281, 1805–1810 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Villar, R. G. et al. Investigation of multidrug-resistant Salmonella serotype typhimurium DT104 infections linked to raw-milk cheese in Washington State. JAMA 281, 1811–1816 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Threlfall, E. J. Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections. FEMS Microbiol. Rev. 26, 141–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Piddock, L. J. Fluoroquinolone resistance in Salmonella serovars isolated from humans and food animals. FEMS Microbiol. Rev. 26, 3–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Threlfall, E. J., Ward, L. R., Skinner, J. A. & Rowe, B. Increase in multiple antibiotic resistance in nontyphoidal salmonellas from humans in England and Wales: a comparison of data for 1994 and 1996. Microb. Drug Resist. 3, 263–266 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Olsen, S. J. et al. A nosocomial outbreak of fluoroquinolone-resistant salmonella infection. N. Engl. J. Med. 344, 1572–1579 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Aarestrup, F. M. et al. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob. Agents Chemother. 45, 2054–2059 (2001). This study shows a decrease in VRE in food animals in Denmark after a ban on the use of virginiamycin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wierup, M. The Swedish experience of the 1986 year ban of antimicrobial growth promoters, with special reference to animal health, disease prevention, productivity, and usage of antimicrobials. Microb. Drug Resist. 7, 183–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Casewell, M. W. & Hill, R. L. The carrier state: methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 18 (Suppl. A), 1–12 (1986).

    Article  PubMed  Google Scholar 

  79. Noble, W. C., Valkenburg, H. A. & Wolters, C. H. Carriage of Staphylococcus aureus in random samples of a normal population. J. Hyg. (Lond.) 65, 567–573 (1967).

    CAS  Google Scholar 

  80. Wenzel, R. P. & Perl, T. M. The significance of nasal carriage of Staphylococcus aureus and the incidence of postoperative wound infection. J. Hosp. Infect. 31, 13–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Tuazon, C. U., Perez, A., Kishaba, T. & Sheagren, J. N. Staphylococcus aureus among insulin-injecting diabetic patients. An increased carrier rate. JAMA 231, 1272 (1975).

    Article  CAS  PubMed  Google Scholar 

  82. Tuazon, C. U. & Sheagren, J. N. Increased rate of carriage of Staphylococcus aureus among narcotic addicts. J. Infect. Dis. 129, 725–727 (1974).

    Article  CAS  PubMed  Google Scholar 

  83. Yu, V. L. et al. Staphylococcus aureus nasal carriage and infection in patients on hemodialysis. Efficacy of antibiotic prophylaxis. N. Engl. J. Med. 315, 91–96 (1986).

    Article  CAS  PubMed  Google Scholar 

  84. Weinstein, H. J. The relation between the nasal-staphylococcal-carrier state and the incidence of postoperative complications. N. Engl. J. Med. 260, 1303–1308 (1959).

    Article  CAS  PubMed  Google Scholar 

  85. Weinke, T., Schiller, R., Fehrenbach, F. J. & Pohle, H. D. Association between Staphylococcus aureus nasopharyngeal colonization and septicemia in patients infected with the human immunodeficiency virus. Eur. J. Clin. Microbiol. Infect. Dis. 11, 985–989 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. Jevons, M. P., Coe, A. W. & Parker, M. T. Methicillin resistance in staphylococci. Lancet 1, 904–907 (1963).

    Article  CAS  PubMed  Google Scholar 

  87. National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am. J. Infect. Control 32, 470–485 (2004).

  88. Tiemersma, E. W. et al. Methicillin-resistant Staphylococcus aureus in Europe, 1999–2002. Emerg. Infect. Dis. 10, 1627–1634 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Crisostomo, M. I. et al. The evolution of methicillin resistance in Staphylococcus aureus: similarity of genetic backgrounds in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones. Proc. Natl Acad. Sci. USA 98, 9865–9870 (2001). These authors used molecular techniques to trace the evolution of meticillin resistance in S. aureus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Enright, M. C. et al. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl Acad. Sci. USA 99, 7687–7692 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Udo, E. E., Pearman, J. W. & Grubb, W. B. Genetic analysis of community isolates of methicillin-resistant Staphylococcus aureus in Western Australia. J. Hosp. Infect. 25, 97–108 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Fridkin, S. K. et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N. Engl. J. Med. 352, 1436–1444 (2005). This study is a population-based analysis of MRSA in different communities in the United States.

    Article  CAS  PubMed  Google Scholar 

  93. CDC. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus — Minnesota and North Dakota, 1997–1999. MMWR Morbid. Mortal. Wkly Rep. 48, 707–710 (1999).

  94. Lina, G. et al. Involvement of Panton–Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 29, 1128–1132 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Miller, L. G. et al. Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N. Engl. J. Med. 352, 1445–1453 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Daum, R. S. et al. A novel methicillin-resistance cassette in community-acquired methicillin-resistant Staphylococcus aureus isolates of diverse genetic backgrounds. J. Infect. Dis. 186, 1344–1347 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Hiramatsu, K., Katayama, Y., Yuzawa, H. & Ito, T. Molecular genetics of methicillin-resistant Staphylococcus aureus. Int. J. Med. Microbiol. 292, 67–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Ma, X. X. et al. Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob. Agents Chemother. 46, 1147–1152 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Okuma, K. et al. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J. Clin. Microbiol. 40, 4289–4294 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Calfee, D. P. et al. Spread of methicillin-resistant Staphylococcus aureus (MRSA) among household contacts of individuals with nosocomially acquired MRSA. Infect. Control Hosp. Epidemiol. 24, 422–426 (2003).

    Article  PubMed  Google Scholar 

  101. Saiman, L. et al. Hospital transmission of community-acquired methicillin-resistant Staphylococcus aureus among postpartum women. Clin. Infect. Dis. 37, 1313–1319 (2003).

    Article  PubMed  Google Scholar 

  102. Archer, G. L. & Niemeyer, D. M. Origin and evolution of DNA associated with resistance to methicillin in staphylococci. Trends Microbiol. 2, 343–347 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Baba, T. et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359, 1819–1827 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Robinson, D. A. et al. Re-emergence of early pandemic Staphylococcus aureus as a community-acquired meticillin-resistant clone. Lancet 365, 1256–1258 (2005). This study used multilocus sequence analysis to show that one of the important CA-MRSA clones might be descended from an early penicillin-resistant meticillin-sensitive Staphylococcus aureus clone.

    Article  PubMed  Google Scholar 

  105. CDC. Methicillin-resistant Staphylococcus aureus skin or soft tissue infections in a state prison — Mississippi, 2000. MMWR Morb. Mortal. Wkly Rep. 50, 919–922 (2001).

  106. Charlebois, E. D. et al. Origins of community strains of methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 39, 47–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Herold, B. C. et al. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 279, 593–598 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Nguyen, D. M., Mascola, L. & Brancoft, E. Recurring methicillin-resistant Staphylococcus aureus infections in a football team. Emerg. Infect. Dis. 11, 526–532 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zinderman, C. E. et al. Community-acquired methicillin-resistant Staphylococcus aureus among military recruits. Emerg. Infect. Dis. 10, 941–944 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Enne, V. I., Livermore, D. M., Stephens, P. & Hall, L. M. Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357, 1325–1328 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Seppala, H. et al. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish Study Group for Antimicrobial Resistance. N. Engl. J. Med. 337, 441–446 (1997). These authors describe the positive effects of a national guideline to limit macrolide use in Finland on macrolide resistance in group A streptococci.

    Article  CAS  PubMed  Google Scholar 

  112. Guillemot, D. et al. Low dosage and long treatment duration of β-lactam: risk factors for carriage of penicillin-resistant Streptococcus pneumoniae. JAMA 279, 365–370 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Schrag, S. J. et al. Effect of short-course, high-dose amoxicillin therapy on resistant pneumococcal carriage: a randomized trial. JAMA 286, 49–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Day, S., Ward, H., Ison, C., Bell, G. & Weber, J. Sexual networks: the integration of social and genetic data. Soc. Sci. Med. 47, 1981–1992 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Hoberman, A. et al. Penicillin susceptibility of pneumococcal isolates causing acute otitis media in children: seasonal variation. Pediatr. Infect. Dis. J. 24, 115–120 (2005).

    Article  PubMed  Google Scholar 

  116. Karlowsky, J. A. et al. Factors associated with relative rates of antimicrobial resistance among Streptococcus pneumoniae in the United States: results from the TRUST Surveillance Program (1998–2002). Clin. Infect. Dis. 36, 963–970 (2003).

    Article  PubMed  Google Scholar 

  117. Mera, R. M., Miller, L. A., Daniels, J. J., Weil, J. G. & White, A. R. Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States over a 10-year period: Alexander Project. Diagn. Microbiol. Infect. Dis. 51, 195–200 (2005).

    Article  PubMed  Google Scholar 

  118. Temime, L., Guillemot, D. & Boelle, P. Y. Short- and long-term effects of pneumococcal conjugate vaccination of children on penicillin resistance. Antimicrob. Agents Chemother. 48, 2206–2213 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kaplan, S. L. et al. Decrease of invasive pneumococcal infections in children among 8 children's hospitals in the United States after the introduction of the 7-valent pneumococcal conjugate vaccine. Pediatrics 113, 443–449 (2004).

    Article  PubMed  Google Scholar 

  120. Whitney, C. G. et al. Decline in invasive pneumococcal disease after the introduction of protein–polysaccharide conjugate vaccine. N. Engl. J. Med. 348, 1737–1746 (2003). This study shows a decrease in pneumococcal disease in both children and adults after the introduction of the pneumococcal conjugate vaccine.

    Article  PubMed  Google Scholar 

  121. Jacobs, M. R. et al. Susceptibilities of Streptococcus pneumoniae and Haemophilus influenzae to 10 oral antimicrobial agents based on pharmacodynamic parameters: 1997 U. S. Surveillance study. Antimicrob. Agents Chemother. 43, 1901–1908 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Espinosa de los Monteros, L. E., Bustos, I. M., Flores, L. V. & Avila-Figueroa, C. Outbreak of scarlet fever caused by an erythromycin-resistant Streptococcus pyogenes emm22 genotype strain in a day-care center. Pediatr. Infect. Dis. J. 20, 807–809 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Holmstrom, L., Nyman, B., Rosengren, M., Wallander, S. & Ripa, T. Outbreaks of infections with erythromycin-resistant group A streptococci in child day care centres. Scand. J. Infect. Dis. 22, 179–185 (1990).

    Article  CAS  PubMed  Google Scholar 

  124. Critchley, I. A. et al. Antimicrobial susceptibilities of Streptococcus pyogenes isolated from respiratory and skin and soft tissue infections: United States LIBRA surveillance data from 1999. Diagn. Microbiol. Infect. Dis. 42, 129–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Tanz, R. R. et al. Community-based surveillance in the United States of macrolide-resistant pediatric pharyngeal group A streptococci during 3 respiratory disease seasons. Clin. Infect. Dis. 39, 1794–1801 (2004).

    Article  PubMed  Google Scholar 

  126. Martin, J. M., Green, M., Barbadora, K. A. & Wald, E. R. Erythromycin-resistant group A streptococci in schoolchildren in Pittsburgh. N. Engl. J. Med. 346, 1200–1206 (2002).

    Article  PubMed  Google Scholar 

  127. Groom, A. V. et al. Community-acquired methicillin-resistant Staphylococcus aureus in a rural American Indian community. JAMA 286, 1201–1205 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Charlebois, E. D. et al. Population-based community prevalence of methicillin-resistant Staphylococcus aureus in the urban poor of San Francisco. Clin. Infect. Dis. 34, 425–433 (2002).

    Article  PubMed  Google Scholar 

  129. Hisata, K. et al. Dissemination of methicillin-resistant staphylococci among healthy Japanese children. J. Clin. Microbiol. 43, 3364–3372 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pan, E. S. et al. Population dynamics of nasal strains of methicillin-resistant Staphylococcus aureus — and their relation to community-associated disease activity. J. Infect. Dis. 192, 811–818 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Muder, R. R. et al. Methicillin-resistant staphylococcal colonization and infection in a long-term care facility. Ann. Intern. Med. 114, 107–112 (1991).

    Article  CAS  PubMed  Google Scholar 

  132. Morris, J. G. Jr et al. Enterococci resistant to multiple antimicrobial agents, including vancomycin. Establishment of endemicity in a university medical center. Ann. Intern. Med. 123, 250–259 (1995).

    Article  CAS  PubMed  Google Scholar 

  133. Bates, J., Jordens, J. Z. & Griffiths, D. T. Farm animals as a putative reservoir for vancomycin-resistant enterococcal infection in man. J. Antimicrob. Chemother. 34, 507–514 (1994).

    Article  CAS  PubMed  Google Scholar 

  134. Bhuiyan, B. U. et al. Antimicrobial susceptibilities and plasmid contents of Neisseria gonorrhoeae isolates from commercial sex workers in Dhaka, Bangladesh: emergence of high-level resistance to ciprofloxacin. J. Clin. Microbiol. 37, 1130–1136 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fornasini, M., Reves, R. R., Murray, B. E., Morrow, A. L. & Pickering, L. K. Trimethoprim-resistant Escherichia coli in households of children attending day care centers. J. Infect. Dis. 166, 326–30 (1992).

    Article  CAS  PubMed  Google Scholar 

  136. Smith, K. E. et al. Quinolone-resistant Campylobacter jejuni infections in Minnesota, 1992–1998. Investigation Team. N. Engl. J. Med. 340, 1525–1532 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.Y.F. is supported by a National Institutes of Health (NIH) training grant. F.D.L. is supported by grants from the Center for Disease Control and Prevention, NIH Grants and by a grant from the National Center for Research Resources, NIH, that supports the Center for Interdisciplinary Research on Antimicrobial Resistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yoko Furuya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Clostridium difficile

Pseudomonas aeruginosa

Salmonella Typhimurium DT104

Staphylococcus aureus

Staphylococcus epidermidis

Streptococcus pneumoniae

FURTHER INFORMATION

Alliance for the Prudent Use of Antibiotics

FDA bans enrofloxacin use in poultry

NARMS

Glossary

Minimum inhibitory concentration

The lowest concentration of an antibiotic that inhibits growth of the organism.

Clonal dissemination

The spread of one or several clones of an organism throughout a region or population.

Folliculitis

An infection of the skin localized to the hair follicles. Lesions are erythematous and sometimes pustular.

Infective endocarditis

An infection of a heart valve that can lead to tissue destruction, valvular dysfunction, stroke and heart failure.

Necrotizing pneumonia

A severe, often fulminant, infection of the lungs with tissue destruction caused both by the pathogen and by the response of the host immune system.

Necrotizing fasciitis

A deep infection of subcutaneous tissue resulting in progressive destruction of the fascial and fat layers. It can spread rapidly and is associated with a high mortality if not treated early.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuya, E., Lowy, F. Antimicrobial-resistant bacteria in the community setting. Nat Rev Microbiol 4, 36–45 (2006). https://doi.org/10.1038/nrmicro1325

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro1325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing