Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment strategies for allergy and asthma

Key Points

  • Allergic diseases, including asthma, rhinitis, conjunctivitis and food allergies, have reached epidemic proportions worldwide. Allergic inflammatory responses are mediated by expansion of the T helper 2 (TH2)-cell subset of T cells together with isotype switching of B cells to generate IgE antibodies specific for common environmental allergens.

  • A comprehension of the cellular and soluble mediator components of allergic inflammatory responses is important for understanding the mechanisms of current treatment modalities and in leading to the identification of new therapeutic targets.

  • In theory, allergen avoidance should be beneficial as a primary or secondary prophylaxis, but most studies show discrepancies. Inhaled corticosteroids, and short- and long-acting β2-adrenoceptor agonists (SABAs and LABAs) are now the mainstay of asthma treatment, having established anti-inflammatory and bronchodilator effects. Immunomodulators are an option for those patients whose symptoms are not controlled by conventional treatments, although cytokine-directed therapies offer new promise.

  • Allergen immunotherapy is known to induce immunological tolerance and has been recommended for the management of allergic diseases. Allergen extracts or recombinant allergens can be administered either by regular subcutaneous injections or sublingually, and these are the only treatments that influence the natural history of allergic disease.

  • IgE and mast cells are cogent therapeutic targets. A humanized, non-anaphylactic, IgE-specific IgG1 antibody has been developed recently and is effective for the treatment of severe allergic asthma and allergic rhinoconjunctivitis. Several therapies that inhibit FcÉ›RI-mediated activation of mast cells have been identified and are now in clinical development.

  • Allergic inflammation has been characterized as being mainly a TH2-cell-mediated disease; therefore, efforts to alter the balance between TH2 cells, TH1 cells and regulatory T (TReg) cells in asthma have been aggressively pursued, either by inhibiting TH2-cell cytokines — in particular, interleukin-4 (IL-4), IL-13 and IL-5 — or by promoting TH1-cell and TReg-cell responses. Given that tissue injury and aberrant repair are also important components of chronic allergic diseases, restoration of the barrier function by administration of growth factors is another promising therapeutic strategy.

Abstract

Allergic diseases have reached epidemic proportions worldwide. An understanding of the cellular and soluble mediators that are involved in allergic inflammatory responses not only helps in understanding the mechanisms of current treatments, but is also important for the identification of new targets that are amenable to both small-molecule and biological interventions. There is now considerable optimism with regards to tackling the allergy epidemic in light of improvements in systemic and mucosal allergen-specific immunotherapy, the identification of key cytokines and their receptors that drive T-helper-2-cell polarization, a clearer understanding of the pathways of leukocyte recruitment and the signalling pathways that are involved in cell activation and mediator secretion, and new approaches to vaccine development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Allergic mechanisms.
Figure 2: Inflammatory and remodelling responses in asthma with activation of the epithelial–mesenchymal unit.
Figure 3: Anti-inflammatory actions of corticosteroids.
Figure 4: Effects of allergen-specific immunotherapy (SIT) on immune parameters.
Figure 5: The effects of targeting IgE on allergic responses.
Figure 6: Cytokine-based therapies in asthma.

Similar content being viewed by others

References

  1. Georas, S. N., Guo, J., De, F. U. & Casolaro, V. T-helper cell type-2 regulation in allergic disease. Eur. Respir. J. 26, 1119–1137 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Sicherer, S. H. & Sampson, H. A. Peanut allergy: emerging concepts and approaches for an apparent epidemic. J. Allergy Clin. Immunol. 120, 491–503 (2007).

    Article  PubMed  Google Scholar 

  3. Asher, M. I. et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 368, 733–743 (2006).

    Article  PubMed  Google Scholar 

  4. Ishizaka, K., Ishizaka, T. & Hornbrook, M. M. Physicochemical properties of reaginic antibody. V. Correlation of reaginic activity wth γ-E-globulin antibody. J. Immunol. 97, 840–853 (1966).

    CAS  PubMed  Google Scholar 

  5. Eder, W., Ege, M. J. & von Mutius, E. The asthma epidemic. N. Engl. J. Med. 355, 2226–2235 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Hammad, H. & Lambrecht, B. N. Recent progress in the biology of airway dendritic cells and implications for understanding the regulation of asthmatic inflammation. J. Allergy Clin. Immunol. 118, 331–336 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Glimcher, L. H. Trawling for treasure: tales of T-bet. Nature Immunol. 8, 448–450 (2007).

    Article  CAS  Google Scholar 

  8. Hammad, H. & Lambrecht, B. N. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nature Rev. Immunol. (in the press).

  9. von Garnier, C. et al. Allergic airways disease develops after an increase in allergen capture and processing in the airway mucosa. J. Immunol. 179, 5748–5759 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Cousins, D. J., Lee, T. H. & Staynov, D. Z. Cytokine coexpression during human TH1/TH2 cell differentiation: direct evidence for coordinated expression of TH2 cytokines. J. Immunol. 169, 2498–2506 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Romagnani, S. Regulation of the T-cell response. Clin. Exp. Allergy 36, 1357–1366 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Wing, K., Fehervari, Z. & Sakaguchi, S. Emerging possibilities in the development and function of regulatory T cells. Int. Immunol. 18, 991–1000 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Seddiki, N. et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203, 1693–1700 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bacchetta, R., Gambineri, E. & Roncarolo, M. G. Role of regulatory T cells and FOXP3 in human diseases. J. Allergy Clin. Immunol. 120, 227–235 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Larche, M. Regulatory T cells in allergy and asthma. Chest 132, 1007–1014 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Stockinger, B. TH17 cells: an orphan with influence. Immunol. Cell Biol. 85, 83–84 (2007).

    Article  PubMed  Google Scholar 

  17. Chen, Z., Tato, C. M., Muul, L., Laurence. A. & O'Shea, J. J. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum. 56, 2936–2946 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bullens, D. M. et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir. Res. 7, 135 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dragon, S. et al. IL-17 enhances IL-1β-mediated CXCL8 release from human airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L1023–L1029 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Cockcroft, D. W., Hargreave, F. E., O'Byrne, P. M. & Boulet, L. P. Understanding allergic asthma from allergen inhalation tests. Can. Respir. J. 14, 414–418 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kelly, M., Hwang, J. M. & Kubes, P. Modulating leukocyte recruitment in inflammation. J. Allergy Clin. Immunol. 120, 3–10 (2007). An important review that describes the molecular mechanisms of the leukocyte-recruitment cascade. It includes most of the important original papers in this field.

    Article  CAS  PubMed  Google Scholar 

  22. Palmqvist, C., Wardlaw, A. J. & Bradding, P. Chemokines and their receptors as potential targets for the treatment of asthma. Br. J. Pharmacol. 151, 725–736 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pease, J. E. & Williams, T. J. The attraction of chemokines as a target for specific anti-inflammatory therapy. Br. J. Pharmacol. 147 (Suppl. 1), S212–S221 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schleimer, R. P., Kato, A., Kern, R., Kuperman, D. & Avila, P. C. Epithelium: at the interface of innate and adaptive immune responses. J. Allergy Clin. Immunol. 120, 1279–1284 (2007). This review discusses recent studies that have looked at the molecular and cellular mechanisms by which epithelial cells help to shape the immune and inflammatory responses of dendritic cells, T cells and B cells, and inflammatory-cell recruitment in the context of human disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holgate, S. T. The epithelium takes centre stage in asthma and atopic dermatitis. Trends Immunol. 28, 248–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Bucchieri, F. et al. Asthmatic bronchial epithelium is more susceptible to oxidant-induced apoptosis. Am. J. Respir. Cell Mol. Biol. 27, 179–185 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Davies, D. E., Wicks, J., Powell, R. M., Puddicombe, S. M. & Holgate, S. T. Airway remodeling in asthma: new insights. J. Allergy Clin. Immunol. 111, 215–225 (2003). A provocative review that discusses an alternative view of asthma pathogenesis by emphasizing the crucial role played by the airway microenvironment and by changes due to remodelling.

    Article  CAS  PubMed  Google Scholar 

  28. Klunker, S. et al. A second step of chemotaxis after transendothelial migration: keratinocytes undergoing apoptosis release IFN-γ-inducible protein 10, monokine induced by IFN-γ, and IFN-γ-inducible α-chemoattractant for T cell chemotaxis toward epidermis in atopic dermatitis. J. Immunol. 171, 1078–1084 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Illi, S. et al. Perennial allergen sensitisation early in life and chronic asthma in children: a birth cohort study. Lancet 368, 763–770 (2006). This large, prospective, multicentre study investigates the role of allergic sensitization and allergen exposure early in life and shows that sensitization to perennial allergens developing in the first 3 years of life is associated with a loss of lung function and increased the development of airway hyper-responsiveness at school age.

    Article  PubMed  Google Scholar 

  30. Corver, K. et al. House dust mite allergen reduction and allergy at 4 yr: follow up of the PIAMA-study. Pediatr. Allergy Immunol. 17, 329–336 (2006).

    Article  PubMed  Google Scholar 

  31. Woodcock, A. et al. Early life environmental control: effect on symptoms, sensitization, and lung function at age 3 years. Am. J. Respir. Crit. Care Med. 170, 433–439 (2004).

    Article  PubMed  Google Scholar 

  32. Arshad, S. H., Bateman, B., Sadeghnejad, A., Gant, C. & Matthews, S. M. Prevention of allergic disease during childhood by allergen avoidance: the Isle of Wight prevention study. J. Allergy Clin. Immunol. 119, 307–313 (2007).

    Article  PubMed  Google Scholar 

  33. Turcanu, V., Maleki, S. J. & Lack, G. Characterization of lymphocyte responses to peanuts in normal children, peanut-allergic children, and allergic children who acquired tolerance to peanuts. J. Clin. Invest. 111, 1065–1072 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holt, P. G. & Sly, P. D. Prevention of allergic respiratory disease in infants: current aspects and future perspectives. Curr. Opin. Allergy Clin. Immunol. 7, 547–555 (2007).

    Article  PubMed  Google Scholar 

  35. Woodcock, A. et al. Control of exposure to mite allergen and allergen-impermeable bed covers for adults with asthma. N. Engl. J. Med. 349, 225–236 (2003).

    Article  PubMed  Google Scholar 

  36. Terreehorst, I. et al. Evaluation of impermeable covers for bedding in patients with allergic rhinitis. N. Engl. J. Med. 349, 237–246 (2003).

    Article  PubMed  Google Scholar 

  37. Barnes, P. J., Chung, K. F. & Page, C. P. Inflammatory mediators of asthma: an update. Pharmacol. Rev. 50, 515–596 (1998).

    CAS  PubMed  Google Scholar 

  38. Barnes, P. J. & Adcock, I. M. Transcription factors and asthma. Eur. Respir. J. 12, 221–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Barnes, P. J. & Adcock, I. M. How do corticosteroids work in asthma? Ann. Intern. Med. 139, 359–370 (2003). This article summarizes recent developments in our understanding of the fundamental mechanisms of gene transcription, which have led to important advances in our understanding of the molecular mechanisms by which corticosteroids suppress inflammation and provide insights into why corticosteroids fail to work in patients with steroid-resistant asthma.

    Article  CAS  PubMed  Google Scholar 

  40. Bisgaard, H., Hermansen, M. N., Loland, L., Halkjaer, L. B. & Buchvald, F. Intermittent inhaled corticosteroids in infants with episodic wheezing. N. Engl. J. Med. 354, 1998–2005 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Guilbert, T. W. et al. Long-term inhaled corticosteroids in preschool children at high risk for asthma. N. Engl. J. Med. 354, 1985–1997 (2006). References 40 and 41 are large, controlled, prospective studies that provide decisive evidence that early anti-inflammatory therapy with inhaled corticosteroids in pre-school children at high risk for asthma fails to modify the natural course of the disease.

    Article  CAS  PubMed  Google Scholar 

  42. Harrison, T. W., Oborne, J., Newton, S. & Tattersfield, A. E. Doubling the dose of inhaled corticosteroid to prevent asthma exacerbations: randomised controlled trial. Lancet 363, 271–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Chaudhuri, R. et al. Cigarette smoking impairs the therapeutic response to oral corticosteroids in chronic asthma. Am. J. Respir. Crit. Care Med. 168, 1308–1311 (2003).

    Article  PubMed  Google Scholar 

  44. Palmqvist, M. et al. Inhaled dry-powder formoterol and salmeterol in asthmatic patients: onset of action, duration of effect and potency. Eur. Respir. J. 10, 2484–2489 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Usmani, O. S. et al. Glucocorticoid receptor nuclear translocation in airway cells after inhaled combination therapy. Am. J. Respir. Crit. Care Med. 172, 704–712 (2005).

    Article  PubMed  Google Scholar 

  46. Mcivor, R. A. et al. Potential masking effects of salmeterol on airway inflammation in asthma. Am. J. Respir. Crit. Care Med. 158, 924–930 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Del, C. A. et al. Comparative pharmacology of the H1 antihistamines. J. Invest. Allergol. Clin. Immunol. 16 (Suppl 1), 3–12 (2006).

    Google Scholar 

  48. Gyllfors, P., Dahlen, S. E., Kumlin, M., Larsson, K. & Dahlen, B. Bronchial responsiveness to leukotriene D4 is resistant to inhaled fluticasone propionate. J. Allergy Clin. Immunol. 118, 78–83 (2006). A small clinical trial showing that fluticasone had a significant protective effect on bronchial responsiveness to methacholine but not LTD 4 , which provides evidence in favour of the theory that there is an additive therapeutic efficacy of anti-leukotrienes with inhaled corticosteroids in asthma.

    Article  CAS  PubMed  Google Scholar 

  49. Kemp, J. P. Recent advances in the management of asthma using leukotriene modifiers. Am. J. Respir. Med. 2, 139–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Polosa, R. Critical appraisal of antileukotriene use in asthma management. Curr. Opin. Pulm. Med. 13, 24–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Nayak, A. & Langdon, R. B. Montelukast in the treatment of allergic rhinitis: an evidence-based review. Drugs 67, 887–901 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Friedmann, P. S. et al. A double-blind, placebo-controlled trial of montelukast in adult atopic eczema. Clin. Exp. Allergy 37, 1536–1540 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Boswell-Smith, V., Cazzola, M. & Page, C. P. Are phosphodiesterase 4 inhibitors just more theophylline? J. Allergy Clin. Immunol. 117, 1237–1243 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Holgate, S. T. & Polosa, R. The mechanisms, diagnosis, and management of severe asthma in adults. Lancet. 368, 780–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Hijnen, D. J., Knol, E., Bruijnzeel-Koomen, C. & de Bruin-Weller, M. Cyclosporin A treatment is associated with increased serum immunoglobulin E levels in a subgroup of atopic dermatitis patients. Dermatitis 18, 163–165 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Truyen, E. et al. Evaluation of airway inflammation by quantitative TH1/TH2 cytokine mRNA measurement in sputum of asthma patients. Thorax 61, 202–208 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Howarth, P. H. et al. Tumour necrosis factor (TNFα) as a novel therapeutic target in symptomatic corticosteroid-dependent asthma. Thorax 60, 1012–1018 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Waserman, S., Dolovich, J., Conway, M. & Marshall, J. S. TNFα dysregulation in asthma: relationship to ongoing corticosteroid therapy. Can. Respir. J. 7, 229–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Berry, M. A. et al. Evidence of a role of tumor necrosis factor-α in refractory asthma. N. Engl. J. Med. 354, 697–708 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Duan, W. et al. Inhaled p38α mitogen-activated protein kinase antisense oligonucleotide attenuates asthma in mice. Am. J. Respir. Crit. Care Med. 171, 571–578 (2005).

    Article  PubMed  Google Scholar 

  61. Birrell, M. A. et al. IκB kinase-2-independent and -dependent inflammation in airway disease models: relevance of IKK-2 inhibition to the clinic. Mol. Pharmacol. 69, 1791–1800 (2006). This was the first study to examine the effect of an IKK2 inhibitor (TPCA-1) in well-validated models that mimic aspects of airway inflammation. TPCA-1 blocked the increase in NF-κB binding to DNA with an associated decrease in the release of inflammatory mediators and in the inflammatory-cell burden in the lungs.

    Article  CAS  PubMed  Google Scholar 

  62. Wu, K., Bi, Y., Sun, K. & Wang, C. IL-10-producing type 1 regulatory T cells and allergy. Cell Mol. Immunol. 4, 269–275 (2007).

    PubMed  Google Scholar 

  63. Wan, Y. Y. & Flavell, R. A. 'Yin-Yang' functions of transforming growth factor-β and T regulatory cells in immune regulation. Immunol. Rev. 220, 199–213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Durham, S. R. et al. Long-term clinical efficacy of grass-pollen immunotherapy. N. Engl. J. Med. 341, 468–475 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Williams, A. P., Krishna, M. T. & Frew, A. J. The safety of immunotherapy. Clin. Exp. Allergy 34, 513–514 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Larché, M. Update on the current status of peptide immunotherapy. J. Allergy Clin. Immunol. 119, 906–909 (2007). This recent review summarizes the mechanisms by which allergen-specific immunotherapy exerts its immunological and anti-inflammatory effects. It also addresses new approaches to improve the efficacy of and decrease the incidence and severity of adverse reactions to allergen-specific immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  67. Valenta, R. & Niederberger, V. Recombinant allergens for immunotherapy. J. Allergy Clin. Immunol. 119, 826–830 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Lund, L. et al. Comparison of allergenicity and immunogenicity of an intact allergen vaccine and commercially available allergoid products for birch pollen immunotherapy. Clin. Exp. Allergy 37, 564–571 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Wheeler, A. A novel adjuvant complex, tyrosine–MPL, for prophylactic and therapeutic vaccines. Vaccine 24 (Suppl. 2), 40–41 (2006).

    Article  CAS  Google Scholar 

  70. Scholl, I., Kopp, T., Bohle, B. & Jensen-Jarolim, E. Biodegradable PLGA particles for improved systemic and mucosal treatment of Type I allergy. Immunol. Allergy Clin. North Am. 26, 349–364, ix (2006).

    Article  PubMed  Google Scholar 

  71. Creticos, P. S., Chen, Y. H. & Schroeder, J. T. New approaches in immunotherapy: allergen vaccination with immunostimulatory DNA. Immunol. Allergy Clin. North Am. 24, 569–581, v (2004).

    Article  PubMed  Google Scholar 

  72. Valovirta, E., Jacobsen, L., Ljorring, C., Koivikko, A. & Savolainen, J. Clinical efficacy and safety of sublingual immunotherapy with tree pollen extract in children. Allergy, 61, 1177–1183 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Ozdemir, C. et al. Efficacy of long-term sublingual immunotherapy as an adjunct to pharmacotherapy in house dust mite-allergic children with asthma. Pediatr. Allergy Immunol. 18, 508–515 (2007).

    Article  PubMed  Google Scholar 

  74. Pajno, G. B. Sublingual immunotherapy: the optimism and the issues. J. Allergy Clin. Immunol. 119, 796–801 (2007). A recent overview that highlights the pros and cons of sublingual immunotherapy for the treatment of patients with asthma and/or rhinitis. It also addresses new approaches to improve the treatment of patients with IgE-mediated food allergy and to modify the natural course of allergic diseases.

    Article  PubMed  Google Scholar 

  75. Abramson, M. J., Puy, R. M. & Weiner, J. M. Allergen immunotherapy for asthma. Cochrane Database Syst. Rev. CD001186 (2003). This meta-analysis of 75 controlled trials (including a total of 3,188 participants with asthma) indicates that there is a significant reduction in asthma symptoms and medication and an improvement in bronchial hyper-reactivity after allergen immunotherapy.

  76. Lent, A. M. et al. Immunologic response to administration of standardized dog allergen extract at differing doses. J. Allergy Clin. Immunol. 118, 1249–1256 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Ewbank, P. A. et al. A double-blind, placebo-controlled immunotherapy dose-response study with standardized cat extract. J. Allergy Clin. Immunol. 111, 155–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Creticos, P. S. et al. Nasal challenge with ragweed pollen in hay fever patients. Effect of immunotherapy. J. Clin. Invest. 76, 2247–2253 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Frew, A. J., Powell, R. J., Corrigan, C. J. & Durham, S. R. Efficacy and safety of specific immunotherapy with SQ allergen extract in treatment-resistant seasonal allergic rhinoconjunctivitis. J. Allergy Clin. Immunol. 117, 319–325 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Des, R. A. et al. Immunotherapy with a standardized Dermatophagoides pteronyssinus extract. VI. Specific immunotherapy prevents the onset of new sensitizations in children. J. Allergy Clin. Immunol. 99, 450–453 (1997).

    Article  Google Scholar 

  81. Purello-D'Ambrosio, F. et al. Prevention of new sensitizations in monosensitized subjects submitted to specific immunotherapy or not. A retrospective study. Clin. Exp. Allergy 31, 1295–1302 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Pajno, G. B., Barberio, G., De, L. F., Morabito, L. & Parmiani, S. Prevention of new sensitizations in asthmatic children monosensitized to house dust mite by specific immunotherapy. A six-year follow-up study. Clin. Exp. Allergy 31, 1392–1397 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Guerra, S., Sherrill, D. L., Martinez, F. D. & Barbee, R. A. Rhinitis as an independent risk factor for adult-onset asthma. J. Allergy Clin. Immunol. 109, 419–425 (2002).

    Article  PubMed  Google Scholar 

  84. Polosa, R., Al-Delaimy, W. K., Russo, C., Piccillo, G. & Sarva, M. Greater risk of incident asthma cases in adults with allergic rhinitis and effect of allergen immunotherapy: a retrospective cohort study. Respir. Res. 6, 153 (2005). This retrospective cohort study shows that allergic rhinitis is an important independent risk factor for asthma and that treatment with allergen immunotherapy was significantly and inversely related to the development of new-onset asthma in adults with allergic rhinitis.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Moller, C. et al. Pollen immunotherapy reduces the development of asthma in children with seasonal rhinoconjunctivitis (the PAT study). J. Allergy Clin. Immunol. 109, 251–256 (2002).

    Article  PubMed  Google Scholar 

  86. Niggemann, B. et al. Five-year follow-up on the PAT study: specific immunotherapy and long-term prevention of asthma in children. Allergy 61, 855–859 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Polosa, R. et al. Effect of immunotherapy on asthma progression, BHR and sputum eosinophils in allergic rhinitis. Allergy 59, 1224–1228 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Novembre, E. et al. Coseasonal sublingual immunotherapy reduces the development of asthma in children with allergic rhinoconjunctivitis. J. Allergy Clin. Immunol. 114, 851–857 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Gould, H. J. & Sutton, B. J. IgE in allergy and asthma today. Nature Rev. Immunol. (in the press).

  90. Corne, J. et al. The effect of intravenous administration of a chimeric anti-IgE antibody on serum IgE levels in atopic subjects: efficacy, safety and pharmacokinetics. J. Clin. Invest. 99, 879–887 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Holgate, S. T., Djukanovic, R., Casale, T. & Bousquet, J. Anti-immunoglobulin E treatment with omalizumab in allergic diseases: an update on anti-inflammatory activity and clinical efficacy. Clin. Exp. Allergy 35, 408–416 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Plewako, H. et al. The effect of omalizumab on nasal allergic inflammation. J. Allergy Clin. Immunol. 110, 68–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Bez, C. et al. Effect of anti-immunoglobulin E on nasal inflammation in patients with seasonal allergic rhinoconjunctivitis. Clin. Exp. Allergy 34, 1079–1085 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Peng, Z. et al. Novel IgE peptide-based vaccine prevents the increase of IgE and down-regulates elevated IgE in rodents. Clin. Exp. Allergy 37, 1040–1048 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Vernersson, M., Ledin, A., Johansson, J. & Hellman, L. Generation of therapeutic antibody responses against IgE through vaccination. FASEB J. 16, 875–877 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Poole, J. A., Meng, J., Reff, M., Spellman, M. C. & Rosenwasser, L. J. Anti-CD23 monoclonal antibody, lumiliximab, inhibited allergen-induced responses in antigen-presenting cells and T cells from atopic subjects. J. Allergy Clin. Immunol. 116, 780–788 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Edwards, A. M. & Howell, J. B. The chromones: history, chemistry and clinical development. A tribute to the work of Dr R. E. C. Altounyan. Clin. Exp. Allergy 30, 756–774 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Bradding, P., Walls, A. F. & Holgate, S. T. The role of the mast cell in the pathophysiology of asthma. J. Allergy Clin. Immunol. 117, 1277–1284 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Alton, E. W. & Norris, A. A. Chloride transport and the actions of nedocromil sodium and cromolyn sodium in asthma 1. J. Allergy Clin. Immunol. 98, S102–S105 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Mark, D. S. et al. The K+ channel iKCA1 potentiates Ca2+ influx and degranulation in human lung mast cells. J. Allergy Clin. Immunol. 114, 66–72 (2004).

    Article  CAS  Google Scholar 

  101. Cruse, G., Duffy, S. M., Brightling, C. E. & Bradding, P. Functional KCa3.1 K+ channels are required for human lung mast cell migration. Thorax 61, 880–885 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kraft, S. et al. Anti-CD63 antibodies suppress IgE-dependent allergic reactions in vitro and in vivo. J. Exp. Med. 201, 385–396 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kraft, S. & Kinet, J. P. New developments in FcɛRI regulation, function and inhibition. Nature Rev. Immunol. 7, 365–378 (2007).

    Article  CAS  Google Scholar 

  104. Matsubara, S. et al. Inhibition of spleen tyrosine kinase prevents mast cell activation and airway hyperresponsiveness. Am. J. Respir. Crit. Care Med. 173, 56–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Rossi, A. B. et al. Identification of the Syk kinase inhibitor R112 by a human mast cell screen. J. Allergy Clin. Immunol. 118, 749–755 (2006). References 103–105 focus on new therapeutic approaches to inhibit mast-cell activation through the modulation of Fc-receptor signalling. The use and the potential clinical application of chimeric fusion proteins, SRC tyrosine kinases and ATP-competitive SYK inhibitors are discussed.

    Article  CAS  PubMed  Google Scholar 

  106. Guyer, B. J. et al. Mast cell inhibitor R112 is well tolerated and affects prostaglandin D2 but not other mediators, symptoms, or nasal volumes in a nasal challenge model of allergic rhinitis. Allergy Asthma Proc. 27, 208–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Meltzer, E. O., Berkowitz, R. B. & Grossbard, E. B. An intranasal Syk-kinase inhibitor (R112) improves the symptoms of seasonal allergic rhinitis in a park environment. J. Allergy Clin. Immunol. 115, 791–796 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Okayama, Y. & Kawakami, T. Development, migration, and survival of mast cells. Immunol. Res. 34, 97–115 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Reber, L., Da Silva, C. A. & Frossard, N. Stem cell factor and its receptor c-Kit as targets for inflammatory diseases. Eur. J. Pharmacol. 533, 327–340 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Berlin, A. A., Hogaboam, C. M. & Lukacs, N. W. Inhibition of SCF attenuates peribronchial remodeling in chronic cockroach allergen-induced asthma. Lab. Invest. 86, 557–565 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Malbec, O. & Daeron, M. The mast cell IgG receptors and their roles in tissue inflammation. Immunol. Rev. 217, 206–221 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Daheshia, M., Friend, D. S., Grusby, M. J., Austen, K. F. & Katz, H. R. Increased severity of local and systemic anaphylactic reactions in gp49B1-deficient mice. J. Exp. Med. 194, 227–234 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Strait, R. T., Morris, S. C. & Finkelman, F. D. IgG-blocking antibodies inhibit IgE-mediated anaphylaxis in vivo through both antigen interception and FcγRIIb cross-linking. J. Clin. Invest. 116, 833–841 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ott, V. L., Tamir, I., Niki, M., Pandolfi, P. P. & Cambier, J. C. Downstream of kinase, p62(dok), is a mediator of FcγIIB inhibition of FcɛRI signaling. J. Immunol. 168, 4430–4439 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Castells, M. C. et al. gp49B1–α(v)β3 interaction inhibits antigen-induced mast cell activation. Nature Immunol. 2, 436–442 (2001).

    Article  CAS  Google Scholar 

  116. Allen, L. C., Kepley, C. L., Saxon, A. & Zhang, K. Modifications to an Fcγ–Fcvarɛ fusion protein alter its effectiveness in the inhibition of FcvarɛRI-mediated functions. J. Allergy Clin. Immunol. 120, 462–468 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Zhu, D. et al. A chimeric human–cat fusion protein blocks cat-induced allergy. Nature Med. 11, 446–449 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Borish, L. C. et al. Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 160, 1816–1823 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Borish, L. C. et al. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J. Allergy Clin. Immunol. 107, 963–970 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Hart, T. K. et al. Preclinical efficacy and safety of pascolizumab (SB 240683): a humanized anti-interleukin-4 antibody with therapeutic potential in asthma. Clin. Exp. Immunol. 130, 93–100 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Le, B. H. et al. Control of allergic reactions in mice by an active anti-murine IL-4 immunization. Vaccine 25, 7206–7216 (2007).

    Article  CAS  Google Scholar 

  122. Ma, Y. et al. Novel cytokine peptide-based vaccines: an interleukin-4 vaccine suppresses airway allergic responses in mice. Allergy 62, 675–682 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Linhart, B. et al. Costimulation blockade inhibits allergic sensitization but does not affect established allergy in a murine model of grass pollen allergy. J. Immunol. 178, 3924–3931 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Wynn, T. A. IL-13 effector functions. Annu. Rev. Immunol. 21, 425–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Andrews, A. L. et al. IL-13 receptor α2: a regulator of IL-13 and IL-4 signal transduction in primary human fibroblasts. J. Allergy Clin. Immunol. 118, 858–865 (2006). This study describes the ability of the non-signalling receptor IL-13Rα2 to regulate not only IL-13- but also IL-4-mediated effects and reveals a new role for IL-13Rα2 as a negative regulator of both IL-13 and IL-4 signalling in human bronchial fibroblasts. IL-13Rα2, by efficiently suppressing T H 2-cell-mediated responses, is a potential therapeutic target for the treatment of asthma.

    Article  CAS  PubMed  Google Scholar 

  126. Grunig, G. et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282, 2261–2263 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bree, A. et al. IL-13 blockade reduces lung inflammation after Ascaris suum challenge in cynomolgus monkeys. J. Allergy Clin. Immunol. 119, 1251–1257 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Wenzel, S., Wilbraham, D., Fuller, R., Getz, E. B. & Longphre, M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370, 1422–1431 (2007). This recent randomized controlled trial shows that nebulization of an IL-4 variant (pitrakinra) that potently inhibits the binding of IL-4 and IL-13 to IL-4Rα-containing complexes could markedly decrease the symptoms of experimental asthma.

    Article  CAS  PubMed  Google Scholar 

  129. Ma, Y. et al. Novel recombinant interleukin-13 peptide-based vaccine reduces airway allergic inflammatory responses in mice. Am. J. Respir. Crit. Care Med. 176, 439–445 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. McCusker, C. T. et al. Inhibition of experimental allergic airways disease by local application of a cell-penetrating dominant-negative STAT6 peptide. J. Immunol. 179, 2556–2564 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Popescu, F. D. Antisense- and RNA-interference-based therapeutic strategies in allergy. J. Cell Mol. Med. 9, 840–853 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Menzies-Gow, A. N., Flood-Page, P. T., Robinson, D. S. & Kay, A. B. Effect of inhaled interleukin-5 on eosinophil progenitors in the bronchi and bone marrow of asthmatic and non-asthmatic volunteers. Clin. Exp. Allergy 37, 1023–1032 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Leckie, M. J. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2144–2148 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Kips, J. C. et al. Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a pilot study. Am. J. Respir. Crit. Care Med. 167, 1655–1659 (2003).

    Article  PubMed  Google Scholar 

  135. Flood-Page, P. et al. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am. J. Respir. Crit. Care Med. 176, 1062–1071 (2007). A multicentre, randomized, double-blind, placebo-controlled study that provides conclusive evidence that treatment with an IL-5-blocking monoclonal antibody, mepolizumab, fails to give a significant clinical benefit in patients with moderate persistent asthma.

    Article  CAS  PubMed  Google Scholar 

  136. Flood-Page, P. T., Menzies-Gow, A. N., Kay, A. B. & Robinson, D. S. Eosinophil's role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am. J. Respir. Crit. Care Med. 167, 199–204 (2003).

    Article  PubMed  Google Scholar 

  137. Liu, L. Y. et al. Decreased expression of membrane IL-5 receptor-α on human eosinophils: I. Loss of membrane IL-5 receptor-α on airway eosinophils and increased soluble IL-5 receptor-α in the airway after allergen challenge. J. Immunol. 169, 6452–6458 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Liu, L. Y. et al. Decreased expression of membrane IL-5 receptor-α on human eosinophils: II. IL-5 down-modulates its receptor via a proteinase-mediated process. J. Immunol. 169, 6459–6466 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Alam, R. & Busse, W. W. The eosinophil — quo vadis? J. Allergy Clin. Immunol. 113, 38–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Flood-Page, P. et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J. Clin. Invest. 112, 1029–1036 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Phipps, S., Flood-Page, P., Menzies-Gow, A., Ong, Y. E. & Kay, A. B. Intravenous anti-IL-5 monoclonal antibody reduces eosinophils and tenascin deposition in allergen-challenged human atopic skin. J. Invest. Dermatol. 122, 1406–1412 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Kariyawasam, H. H., Aizen, M., Barkans, J., Robinson, D. S. & Kay, A. B. Remodeling and airway hyperresponsiveness but not cellular inflammation persist after allergen challenge in asthma. Am. J. Respir. Crit. Care Med. 175, 896–904 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Garrett, J. K. et al. Anti-interleukin-5 (mepolizumab) therapy for hypereosinophilic syndromes. J. Allergy Clin. Immunol. 113, 115–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Stein, M. L. et al. Anti-IL-5 (mepolizumab) therapy for eosinophilic esophagitis. J. Allergy Clin. Immunol. 118, 1312–1319 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Oldhoff, J. M. et al. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy 60, 693–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. O'Byrne, P. et al. A single dose of MEDI-528, a monoclonal antibody against interleukin-19, is well tolerated in mild and moderate asthmatics in the phase II trial MI-CP-138. Chest 132, 478 (2007).

    Article  Google Scholar 

  147. Boguniewicz, M. et al. The effects of nebulized recombinant interferon-γ in asthmatic airways. J. Allergy Clin. Immunol. 95, 133–135 (1995).

    Article  CAS  PubMed  Google Scholar 

  148. Reisinger, J. et al. IFNγ-enhanced allergen penetration across respiratory epithelium augments allergic inflammation. J. Allergy Clin. Immunol. 115, 973–981 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Simon, H. U., Seelbach, H., Ehmann, R. & Schmitz, M. Clinical and immunological effects of low-dose IFNα treatment in patients with corticosteroid-resistant asthma. Allergy 58, 1250–1255 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Kroegel, C. et al. Interferon-αcon1 treatment of three patients with severe glucocorticoid-dependent asthma. Effect on disease control and systemic glucocorticosteroid dose. Respiration 73, 566–570 (2006).

    Article  PubMed  Google Scholar 

  151. Wark, P. A. et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J. Exp. Med. 201, 937–947 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Contoli, M. et al. Role of deficient type III interferon-λ production in asthma exacerbations. Nature Med. 12, 1023–1026 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Holgate, S. T. Exacerbations: the asthma paradox. Am. J. Respir. Crit. Care Med. 172, 941–943 (2005).

    Article  PubMed  Google Scholar 

  154. Bryan, S. A. et al. Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2149–2153 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. Kuipers, H. et al. Dendritic cells retrovirally overexpressing IL-12 induce strong TH1 responses to inhaled antigen in the lung but fail to revert established TH2 sensitization. J. Leukocyte Biol. 76, 1028–1038 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Grunig, G. et al. Interleukin-10 is a natural suppressor of cytokine production and inflammation in a murine model of allergic bronchopulmonary aspergillosis. J. Exp. Med. 185, 1089–1099 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fu, C. L., Chuang, Y. H., Chau, L. Y. & Chiang, B. L. Effects of adenovirus-expressing IL-10 in alleviating airway inflammation in asthma. J. Gene Med. 8, 1393–1399 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Chernoff, A. E. et al. A randomized, controlled trial of IL-10 in humans. Inhibition of inflammatory cytokine production and immune responses. J. Immunol. 154, 5492–5499 (1995).

    CAS  PubMed  Google Scholar 

  159. Hoffjan, S. & Stemmler, S. On the role of the epidermal differentiation complex in ichthyosis vulgaris, atopic dermatitis and psoriasis. Br. J. Dermatol. 157, 441–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Tillie-Leblond, I. et al. Keratinocyte growth factor improves alterations of lung permeability and bronchial epithelium in allergic rats. Eur. Respir. J. 30, 31–39 (2007). This original work in an animal model of chronic asthma shows that treatment with keratinocyte growth factor decreases lung permeability and airway inflammation in animals challenged with ovalbumin. The observed effects seem to be associated with restoration of epithelial integrity during chronic allergic asthma. These findings open new prospects for asthma therapies.

    Article  CAS  PubMed  Google Scholar 

  161. Dieckgraefe, B. K., Korzenik, J. R. & Anant, S. Growth factors as treatment options for intestinal inflammation. Ann. NY Acad. Sci. 1072, 300–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Radtke, M. L. & Kolesar, J. M. Palifermin (Kepivance) for the treatment of oral mucositis in patients with hematologic malignancies requiring hematopoietic stem cell support. J. Oncol. Pharm. Pract. 11, 121–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Ying, S. et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of TH2-attracting chemokines and disease severity. J. Immunol. 174, 8183–8190 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Satoh, M., Iida, S. & Shitara, K. Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies. Expert Opin. Biol. Ther. 6, 1161–1173 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Cox, G. et al. Asthma control during the year after bronchial thermoplasty N. Engl. J. Med. 356, 1327–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Ruckert, R. et al. Blocking IL-15 prevents the induction of allergen-specific T cells and allergic inflammation in vivo. J. Immunol. 174, 5507–5515 (2005).

    Article  PubMed  Google Scholar 

  167. Rahman, M. S. et al. IL-17A induces eotaxin-1/CC chemokine ligand 11 expression in human airway smooth muscle cells: role of MAPK (Erk1/2, JNK and p38) pathways. J. Immunol. 177, 4064–4071 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Schnyder-Candrian, S. et al. Interleukin-17 is a negative regulator of established allergic asthma. J. Exp. Med. 203, 2715–2725 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ballantyne, S. J. et al. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J. Allergy Clin. Immunol. 120, 1234–1231 (2007). This paper shows that a neutralizing antibody specific for IL-25 can prevent airway hyper-responsiveness, which is an important feature of clinical asthma, and results in significantly decreased levels of IL-5 and IL-13 production, eosinophil infiltration, goblet-cell hyperplasia and serum IgE secretion in an experimental model of allergic asthma. These findings indicate that IL-25 is an important therapeutic target.

    Article  CAS  Google Scholar 

  170. Hayakawa, H., Hayakawa, M., Kume, A. & Tominaga, S. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J. Biol. Chem. 282, 26369–26380 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Sonkoly, E. et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J. Allergy Clin. Immunol. 117, 411–417 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Fina, D., Fantini, M. C., Pallone, F. & Monteleone, G. Role of interleukin-21 in inflammation and allergy. Inflamm. Allergy Drug Targets 6, 63–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Liu, Y. J. Thymic stromal lymphopoietin: master switch for allergic inflammation. J. Exp. Med. 203, 269–273 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Matsubara, S. et al. IL-2 and IL-18 attenuation of airway hyperresponsiveness requires STAT4, IFNγ and natural killer cells. Am. J. Respir. Cell Mol. Biol. 36, 324–332 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.P. is a Professor of Medicine and he is supported by the University of Catania, Italy. S.T.H. is a UK Medical Research Council Clinical Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Holgate.

Ethics declarations

Competing interests

Holgate, S. T. & Polosa, R. Treatment strategies for allergy and asthma. Nature Reviews Immunology 15 February 2008 (doi: 10.1038/nri2262)

Stephen Holgate is a consultant for Novartis, Cambridge Antibody Technology, Merck, Synairgen and Centocor. He occasionally participates in sponsored lectures overseas. He is also a non-executive board member of Synairgen and holds shares in the company.

Riccardo Polosa is a consultant for CV Therapeutics, Duska Therapeutics and NeuroSearch and has received lecture fees from Pharmaxis, Merck and Novartis.

Related links

Related links

FURTHER INFORMATION

Stephen Holgate's homepage

Glossary

T helper 2 cells

(TH2 cells). A T-helper-cell subset that has an important role in humoral immunity and in allergic responses. TH2 cells produce cytokines that regulate IgE synthesis (IL-4), eosinophil proliferation (IL-5), mast-cell proliferation (IL-9) and airway hyper-responsiveness (IL-13). A TH2-cell pattern of cytokine expression is observed in allergic inflammation and in parasitic infections, conditions that are both associated with IgE production and eosinophilia.

Atopy

This term (from the Greek ατοπια, meaning placelessness) refers to the susceptibility to develop exaggerated IgE responses to common environmental allergens, defined clinically by the presence of one or more positive skin-prick tests. Atopy represents a genetic predisposition towards allergic diseases.

Regulatory T cells

(TReg cells). These are specialized cells that act to suppress the function of other cells. In allergic inflammation, TReg cells can have an important role in limiting allergic responses by suppressing the function of TH2 cells. The molecular mechanism by which TReg cells exert their activity is either through cell-to-cell contact with the cell being suppressed or through secretion of the immunosuppressive cytokines TGFβ and IL-10.

Transactivation

A transcriptional mechanism by which gene transcription is induced resulting in the de novo synthesis of susceptible proteins.

Transrepression

A transcriptional mechanism by which gene transcription is prevented resulting in an overall repressive effect.

Xanthine

A purine base found in most body tissues and fluids as a result of purine degradation. Theophylline is a methylated xanthine with activities as both a cyclic-AMP phosphodiesterase inhibitor and adenosine-receptor antagonist, which is commonly used for its effects as a mild stimulant and as a bronchodilator.

CpG oligonucleotide motifs

DNA oligonucleotide sequences that include a cytosine–guanosine sequence and certain flanking nucleotides. They have been found to induce innate immune responses through interaction with TLR9. When coupled to allergens, CpG DNA seems to increase immunological tolerance by shifting the balance of T-cell phenotypes from TH2 to TH1 cells. CpG motifs are also known as immunostimulatory oligodeoxynucleotides (ISS ODNs).

Airway hyper-responsiveness

An abnormally increased sensitivity of the airways to otherwise innocuous stimuli, resulting in increased responses to inhaled allergen and airway smooth-muscle spasmogens (for example, methacholine or histamine). In humans, this is generally defined by PC20 (the provocation concentration of the spasmogen that causes a 20% decrease in forced expiratory volume in one second, FEV1).

Immunoreceptor tyrosine-based activation motif

(ITAM). Activating receptors often have ITAMs consisting of a consensus amino-acid sequence with paired tyrosines and leucines (YxxI/Lx(6–12) YxxI/L). These are normally located in the cytoplasmic domains of ligand-binding transmembrane receptors (such as FcεRI and TCR) and they mediate interaction between the transmembrane receptor complex and protein tyrosine kinase activity, which is required to initiate early and late signalling events.

Immunoreceptor tyrosine-based inhibitory motif

(ITIM). Inhibitory receptors often have one or more ITIMs (consensus, S/I/V/LxYxxI/V/L). Ligand engagement by inhibitory receptors (such as CTLA4 in T cells) results in ITIM phosphorylation and the recruitment of phosphotyrosine phosphatases, which leads to decreased tyrosine phosphorylation of activation-pathway effectors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holgate, S., Polosa, R. Treatment strategies for allergy and asthma. Nat Rev Immunol 8, 218–230 (2008). https://doi.org/10.1038/nri2262

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nri2262

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing