Abstract
Plasma cells are cellular factories devoted entirely to the manufacture and export of a single product: soluble immunoglobulin (Ig). As the final mediators of a humoral response, plasma cells play a critical role in adaptive immunity. Although intense effort has been devoted to studying the regulation and requirements for early B cell development, little information has been available on plasma cells. However, more recent workâincluding studies on genetically altered mice and data from microarray analysesâhas begun to identify the regulatory cascades that initiate and maintain the plasma cell phenotype. This review will summarize our current understanding of the molecules that regulate commitment to a plasma cell fate and those that mediate plasma cell function.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Sze, D. M., Toellner, K. M., Garcia de Vinuesa, C., Taylor, D. R. & MacLennan, I. C. Intrinsic constraint on plasmablast growth and extrinsic limits of plasma cell survival. J. Exp. Med. 192, 813â821 (2000).
Chen-Bettecken, U., Wecker, E. & Schimpl, A. Transcriptional control of μ- and κ-gene expression in resting and bacterial lipopolysaccharide-activated normal B cells. Immunobiology 174, 162â176 (1987).
Takagaki, Y. & Manley, J. L. Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol. Cell. 2, 761â771 (1998).
Silacci, P., Mottet, A., Steimle, V., Reith, W. & Mach, B. Developmental extinction of major histocompatibility complex class II gene expression in plasmocytes is mediated by silencing of the transactivator gene CIITA. J. Exp. Med. 180, 1329â1336 (1994).
Sanderson, R. D., Lalor, P. & Bernfield, M. B lymphocytes express and lose syndecan at specific stages of differentiation. Cell. Reg. 1, 27â35 (1989).
Hargreaves, D. C. et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J. Exp. Med. 194, 45â56 (2001).
Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556â562 (1999).
Nutt, S. L., Eberhard, D., Horcher, M., Rolink, A. G. & Busslinger, M. Pax5 determines the identity of B cells from the beginning to the end of B-lymphopoiesis. Int. Rev. Immunol. 20, 65â82 (2001).
Barberis, A., Widenhorn, K., Vitelli, L. & Busslinger, M. A novel B-cell lineage-specific transcription factor present at early but not late stages of differentiation. Genes Dev. 4, 849â859 (1990).
Turner, C. A. Jr., Mack, D. H. & Davis, M. M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297â306 (1994).
Angelin-Duclos, C., Cattoretti, G., Lin, K. I. & Calame, K. Commitment of B lymphocytes to a plasma cell fate is associated with blimp-1 expression in vivo. J. Immunol. 165, 5462â5471 (2000).
Eisenbeis, C. F., Singh, H. & Storb, U. Pip, a novel IRF family member, is a lymphoid-specific, PU. 1-dependent transcriptional activator. Genes Dev. 9, 1377â1387 (1995).
Falini, B. et al. A monoclonal antibody (MUM1p) detects expression of the MUM1/IRF4 protein in a subset of germinal center B cells, plasma cells, and activated T cells. Blood 95, 2084â2092 (2000).
Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300â307 (2001).
Macpherson, A. J. et al. IgA production without μ or δ chain expression in developing B cells. Nature Immunol. 2, 625â631 (2001).
Fu, Y. X. & Chaplin, D. D. Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol. 17, 399â433 (1999).
Loder, F. et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 190, 75â89 (1999).
Martin, F. & Kearney, J. F. B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a ânatural immune memoryâ. Immunol. Rev. 175, 70â79 (2000).
Oliver, A. M., Martin, F. & Kearney, J. F. IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J. Immunol. 162, 7198â7207 (1999).
Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222â2226 (2000).
Fagarasan, S., Watanabe, N. & Honjo, T. Generation, expansion, migration and activation of mouse B1 cells. Immunol. Rev. 176, 205â215 (2000).
Dal Porto, J. M., Haberman, A. M., Shlomchik, M. J. & Kelsoe, G. Antigen drives very low affinity B cells to become plasmacytes and enter germinal centers. J. Immunol. 161, 5373â5381 (1998).
Tomayko, M. M. & Cancro, M. P. Long-lived B cells are distinguished by elevated expression of A1. J. Immunol. 160, 107â111 (1998).
Lam, K. P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073â1083 (1997).
Cariappa, A. et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity 14, 603â615 (2001).
Wang, J. H. et al. Aiolos regulates B cell activation and maturation to effector state. Immunity 9, 543â553 (1998).
Khan, W. N. et al. Defective B cell development and function in Btk-deficient mice. Immunity 3, 283â299 (1995).
Thompson, J. S. et al. Baff-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293, 2108â2111 (2001).
Marsters, S. A. et al. Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr. Biol. 10, 785â788 (2000).
Do, R. & Chen-Kiang, S. Mechanism of BLyS action in B cell immunity. Cytok. Growth Factor Rev. 199, 1â8 (2001).
McHeyzer-Williams, L. J., Driver, D. J. & McHeyzer-Williams, M. G. Germinal center reation. Curr. Opin. Hematol. 8, 52â59 (2001).
Merville, P. et. al. Bcl-2+ tonsillar plaoma cells are rescued from apoptosis by bone marrow fibroblasts. J. Exp. Med. 183, 227â236 (1996).
Slifka, M. K., Antia, R., Whitmire, J. K. & Ahmed, R. Humoral immunity due to long-lived plasma cells. Immunity 8, 363â372 (1998).
Smith, K. G., Light, A., Nossal, G. J. & Tarlinton, D. M. The extent of affinity maturation differs between the memory and antibody-forming cell compartments in the primary immune response. EMBO J. 16, 2996â3006 (1997).
Arpin, C. et al. Generation of memory B cells and plasma cells in vitro. Science 268, 720â722 (1995).
Stuber, E. & Strober, W. The T cell-B cell interaction via OX40-OX40L is necessary for the T cellâdependent humoral immune response. J. Exp. Med. 183, 979â989 (1996).
Choe, J. & Choi, Y. S. IL-10 interrupts memory B cell expansion in the germinal center by inducing differentiation into plasma cells. Eur. J. Immunol. 28, 508â515 (1998).
Zhang, X. et al. The distinct roles of T cell-derived cytokines and a novel follicular dendritic cell-signaling molecule 8d6 in germinal center-B cell differentiation. J. Immunol. 167, 49â56 (2001).
Kawano, M. M., Mihara, K., Huang, N., Tsujimoto, T. & Kuramoto, A. Differentiation of early plasma cells on bone marrow stromal cells requires interleukin-6 for escaping from apoptosis. Blood 85, 487â494 (1995).
Morse, L., Chen, D., Franklin, D., Xiong, Y. & Chen-Kiang, S. Induction of cell cycle arrest and B cell terminal differentiation by CDK inhibitor p18(INK4c) and IL-6. Immunity 6, 47â56 (1997).
Gado, K., Domjan, G., Hegyesi, H. & Falus, A. Role of interleukin-6 in the pathogenesis of multiple myeloma. Cell. Biol. Int. 24, 195â209 (2000).
Garcia De Vinuesa, C. et al. Dendritic cells associated with plasmablast survival. Eur. J. Immunol. 29, 3712â3721 (1999).
McHeyzer-Williams, M. G. & Ahmed, R. B cell memory and the long-lived plasma cell. Curr. Opin. Immunol. 11, 172â179 (1999).
Maruyama, M., Lam, K. P. & Rajewsky, K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407, 636â642 (2000).
Driver, D., McHeyzer-Williuams, L. C. M., Stetson, D. & McHeyzer-Williams, M. Development and maintenance of a B220-memory B cell compartment. J. Immunol. 167, 1393â1405 (2001).
Arpin, C., Banchereau, J. & Liu, Y. J. Memory B cells are biased towards terminal differentiation: a strategy that may prevent repertoire freezing. J. Exp. Med. 186, 931â940 (1997).
Silvy, A., Lagresle, C., Bella, C. & Defrance, T. The differentiation of human memory B cells into specific antibody- secreting cells is CD40 independent. Eur. J. Immunol. 26, 517â524 (1996).
Liou, H. C. et al. A new member of the leucine zipper class of proteins that binds to the HLA DR α promoter. Science 247, 1581â1584 (1990).
Reimold, A. M. et al. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14, 152â157 (2000).
Reimold, A. M. et al. Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J. Exp. Med. 183, 393â401 (1996).
Wallin, J. J., Gackstetter, E. R. & Koshland, M. E. Dependence of BSAP repressor and activator functions on BSAP concentration. Science 279, 1961â1964 (1998).
Wen, X. et al. Identification of c-myc promoter-binding protein and X-box binding protein 1 as interleukin-6 target genes in human multiple myeloma cells. Int. J. Oncol. 15, 173â178 (1999).
Yoshida, H. et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis -acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 20, 6755â6767 (2000).
Schliephake, D. E. & Schimpl, A. Blimp-1 overcomes the block in IgM secretion in lipopolysaccharide/anti- μ F(abâ²)2-co-stimulated B lymphocytes. Eur. J. Immunol. 26, 268â271 (1996).
Piskurich, J. F. et al. BLIMP-I mediates extinction of major histocompatibility class II transactivator expression in plasma cells. Nature Immunol. 1, 526â532 (2000).
Keller, A. D. & Maniatis, T. Only two of the five zinc fingers of the eukaryotic transcriptional repressor PRDI-BF1 are required for sequence-specific DNA binding. Mol. Cell. Biol. 12, 1940â1949 (1992).
Ren, B., Chee, K. J., Kim, T. H. & Maniatis, T. PRDI-BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes Dev. 13, 125â137 (1999).
Yu, J., Angelin-Duclos, C., Greenwood, J., Liao, J. & Calame, K. Transcriptional repression by blimp-1 (PRDI-BF1) involves recruitment of histone. Mol. Cell. Biol. 20, 2592â2603 (2000).
Reljic, R., Wagner, S. D., Peakman, L. J. & Fearon, D. T. Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6. J. Exp. Med. 192, 1841â1848 (2000).
Shaffer, A. L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13, 199â212 (2000).
Randall, T. D. et al. Arrest of B lymphocyte terminal differentiation by CD40 signaling: mechanism for lack of antibody-secreting cells in germinal centers. Immunity 8, 733â742 (1998).
Lin, Y., Wong, K. & Calame, K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 276, 596â599 (1997).
Usui, T. et al. Overexpression of B cell-specific activator protein (BSAP/Pax-5) in a late B cell is sufficient to suppress differentiation to an Ig high producer cell with plasma cell phenotype. J. Immunol. 158, 3197â3204 (1997).
Rinkenberger, J. L., Wallin, J. J., Johnson, K. W. & Koshland, M. E. An interleukin-2 signal relieves BSAP (Pax5)-mediated repression of the immunoglobulin J chain gene. Immunity 5, 377â386 (1996).
Singh, M. & Birshtein, B. K. NF-HB (BSAP) is a repressor of the murine immunoglobulin heavy-chain 3Ⲡα enhancer at early stages of B-cell differentiation. Mol. Cell. Biol. 13, 3611â3622 (1993).
Waldburger, J. M. et al. Lessons from the bare lymphocyte syndrome: molecular mechanisms regulating MHC class II expression. Immunol. Rev. 178, 148â165 (2000).
Lin, K. I., Lin, Y. & Calame, K. Repression of c-myc is necessary but not sufficient for terminal differentiation of B lymphocytes in vitro. Mol. Cell. Biol. 20, 8684â8695 (2000).
Horcher, M., Souabni, A. & Busslinger, M. Pax5/bsap maintains the identity of B cells in late b lymphopoiesis. Immunity 14, 779â790 (2001).
Dent, A. L., Shaffer, A. L., Yu, X., Allman, D. & Staudt, L. M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589â592 (1997).
Ye, B. H. et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2- type inflammation. Nature Genet. 16, 161â170 (1997).
Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553â563 (2000).
Mittrucker, H. W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540â543 (1997).
Matsuyama, T. et al. Molecular cloning of LSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE). Nucleic Acids Res. 23, 2127â2136 (1995).
Mamane, Y. et al. Interferon regulatory factors: the next generation. Gene 237, 1â14 (1999).
Gupta, S., Jiang, M., Anthony, A. & Pernis, A. B. Lineage-specific modulation of interleukin 4 signaling by interferon regulatory factor 4. J. Exp. Med. 190, 1837â1848 (1999).
Gupta, S., Anthony, A. & Pernis, A. B. Stage-specific modulation of IFN-regulatory factor 4 function by kruppel-type zinc finger proteins. J. Immunol. 166, 6104â6111 (2001).
Grumont, R. J. & Gerondakis, S. Rel induces interferon regulatory factor 4 (IRF-4) expression in lymphocytes. Modulation of interferon-regulated gene expression by rel/nuclear factor κB. J. Exp. Med. 191, 1281â1292 (2000).
Brass, A. L., Kehrli, E., Eisenbeis, C. F., Storb, U. & Singh, H. Pip, a lymphoid-restricted IRF, contains a regulatory domain that is important for autoinhibition and ternary complex formation with the Ets factor PU. 1. Genes Dev. 10, 2335â2347 (1996).
Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707â747 (1997).
Peng, S. L., Gerth, A. J., Ranger, A. M. & Glimcher, L. H. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14, 13â20 (2001).
Matthias, P. Lymphoid-specific transcription mediated by the conserved octamer site: who is doing what? Semin. Immunol. 10, 155â163 (1998).
Corcoran, L. M. & Karvelas, M. Oct-2 is required early in T cell-independent B cell activation for G1 progression and for proliferation. Immunity 1, 635â645 (1994).
Qin, X. F., Reichlin, A., Luo, Y., Roeder, R. G. & Nussenzweig, M. C. OCA-B integrates B cell antigen receptor-, CD40L- and IL 4-mediated signals for the germinal center pathway of B cell development. EMBO J. 17, 5066â5075 (1998).
Schubart, K. et al. B cell development and immunoglobulin gene transcription in the absence of Oct-2 and OBF-1. Nature Immunol. 2, 69â74 (2001).
Niu, H., Ye, B. H. & Dalla-Favera, R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev. 12, 1953â1961 (1998).
Acknowledgements
I thank members of my laboratory and many other colleagues for helpful discussions. Supported by grant numbers GM29361 and AI43576.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Calame, K. Plasma cells: finding new light at the end of B cell development. Nat Immunol 2, 1103â1108 (2001). https://doi.org/10.1038/ni1201-1103
Issue date:
DOI: https://doi.org/10.1038/ni1201-1103
This article is cited by
-
Preventative effect of TSPO ligands on mixed antibody-mediated rejection through a Mitochondria-mediated metabolic disorder
Journal of Translational Medicine (2023)
-
tDCs â a distinct subset with dual functional and developmental roles
Nature Immunology (2023)
-
Predictive Role of a Novel Ferroptosis-Related lncRNA Pairs Model in the Prognosis of Papillary Thyroid Carcinoma
Biochemical Genetics (2023)
-
Immunohistochemical analysis of soft tissue response to polyetheretherketone (PEEK) and titanium healing abutments on dental implants: a randomized pilot clinical study
BMC Oral Health (2022)
-
Monitoring of Soluble Forms of BAFF System (BAFF, APRIL, sR-BAFF, sTACI and sBCMA) in Kidney Transplantation
Archivum Immunologiae et Therapiae Experimentalis (2022)


