Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasma cells: finding new light at the end of B cell development

Abstract

Plasma cells are cellular factories devoted entirely to the manufacture and export of a single product: soluble immunoglobulin (Ig). As the final mediators of a humoral response, plasma cells play a critical role in adaptive immunity. Although intense effort has been devoted to studying the regulation and requirements for early B cell development, little information has been available on plasma cells. However, more recent work—including studies on genetically altered mice and data from microarray analyses—has begun to identify the regulatory cascades that initiate and maintain the plasma cell phenotype. This review will summarize our current understanding of the molecules that regulate commitment to a plasma cell fate and those that mediate plasma cell function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasma cell.
Figure 2: Generation of plasma cells in spleen during a humoral response.
Figure 3: Regulatory cascades in plasma cell development.

Similar content being viewed by others

References

  1. Sze, D. M., Toellner, K. M., Garcia de Vinuesa, C., Taylor, D. R. & MacLennan, I. C. Intrinsic constraint on plasmablast growth and extrinsic limits of plasma cell survival. J. Exp. Med. 192, 813–821 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen-Bettecken, U., Wecker, E. & Schimpl, A. Transcriptional control of μ- and κ-gene expression in resting and bacterial lipopolysaccharide-activated normal B cells. Immunobiology 174, 162–176 (1987).

    CAS  PubMed  Google Scholar 

  3. Takagaki, Y. & Manley, J. L. Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol. Cell. 2, 761–771 (1998).

    CAS  PubMed  Google Scholar 

  4. Silacci, P., Mottet, A., Steimle, V., Reith, W. & Mach, B. Developmental extinction of major histocompatibility complex class II gene expression in plasmocytes is mediated by silencing of the transactivator gene CIITA. J. Exp. Med. 180, 1329–1336 (1994).

    CAS  PubMed  Google Scholar 

  5. Sanderson, R. D., Lalor, P. & Bernfield, M. B lymphocytes express and lose syndecan at specific stages of differentiation. Cell. Reg. 1, 27–35 (1989).

    CAS  Google Scholar 

  6. Hargreaves, D. C. et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J. Exp. Med. 194, 45–56 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    CAS  PubMed  Google Scholar 

  8. Nutt, S. L., Eberhard, D., Horcher, M., Rolink, A. G. & Busslinger, M. Pax5 determines the identity of B cells from the beginning to the end of B-lymphopoiesis. Int. Rev. Immunol. 20, 65–82 (2001).

    CAS  PubMed  Google Scholar 

  9. Barberis, A., Widenhorn, K., Vitelli, L. & Busslinger, M. A novel B-cell lineage-specific transcription factor present at early but not late stages of differentiation. Genes Dev. 4, 849–859 (1990).

    CAS  PubMed  Google Scholar 

  10. Turner, C. A. Jr., Mack, D. H. & Davis, M. M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    CAS  PubMed  Google Scholar 

  11. Angelin-Duclos, C., Cattoretti, G., Lin, K. I. & Calame, K. Commitment of B lymphocytes to a plasma cell fate is associated with blimp-1 expression in vivo. J. Immunol. 165, 5462–5471 (2000).

    CAS  PubMed  Google Scholar 

  12. Eisenbeis, C. F., Singh, H. & Storb, U. Pip, a novel IRF family member, is a lymphoid-specific, PU. 1-dependent transcriptional activator. Genes Dev. 9, 1377–1387 (1995).

    CAS  PubMed  Google Scholar 

  13. Falini, B. et al. A monoclonal antibody (MUM1p) detects expression of the MUM1/IRF4 protein in a subset of germinal center B cells, plasma cells, and activated T cells. Blood 95, 2084–2092 (2000).

    CAS  PubMed  Google Scholar 

  14. Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001).

    CAS  PubMed  Google Scholar 

  15. Macpherson, A. J. et al. IgA production without μ or δ chain expression in developing B cells. Nature Immunol. 2, 625–631 (2001).

    CAS  Google Scholar 

  16. Fu, Y. X. & Chaplin, D. D. Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol. 17, 399–433 (1999).

    CAS  PubMed  Google Scholar 

  17. Loder, F. et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 190, 75–89 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin, F. & Kearney, J. F. B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a “natural immune memory”. Immunol. Rev. 175, 70–79 (2000).

    CAS  PubMed  Google Scholar 

  19. Oliver, A. M., Martin, F. & Kearney, J. F. IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J. Immunol. 162, 7198–7207 (1999).

    CAS  PubMed  Google Scholar 

  20. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    CAS  PubMed  Google Scholar 

  21. Fagarasan, S., Watanabe, N. & Honjo, T. Generation, expansion, migration and activation of mouse B1 cells. Immunol. Rev. 176, 205–215 (2000).

    CAS  PubMed  Google Scholar 

  22. Dal Porto, J. M., Haberman, A. M., Shlomchik, M. J. & Kelsoe, G. Antigen drives very low affinity B cells to become plasmacytes and enter germinal centers. J. Immunol. 161, 5373–5381 (1998).

    CAS  PubMed  Google Scholar 

  23. Tomayko, M. M. & Cancro, M. P. Long-lived B cells are distinguished by elevated expression of A1. J. Immunol. 160, 107–111 (1998).

    CAS  PubMed  Google Scholar 

  24. Lam, K. P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997).

    CAS  PubMed  Google Scholar 

  25. Cariappa, A. et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity 14, 603–615 (2001).

    CAS  PubMed  Google Scholar 

  26. Wang, J. H. et al. Aiolos regulates B cell activation and maturation to effector state. Immunity 9, 543–553 (1998).

    CAS  PubMed  Google Scholar 

  27. Khan, W. N. et al. Defective B cell development and function in Btk-deficient mice. Immunity 3, 283–299 (1995).

    CAS  PubMed  Google Scholar 

  28. Thompson, J. S. et al. Baff-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293, 2108–2111 (2001).

    CAS  PubMed  Google Scholar 

  29. Marsters, S. A. et al. Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr. Biol. 10, 785–788 (2000).

    CAS  PubMed  Google Scholar 

  30. Do, R. & Chen-Kiang, S. Mechanism of BLyS action in B cell immunity. Cytok. Growth Factor Rev. 199, 1–8 (2001).

    Google Scholar 

  31. McHeyzer-Williams, L. J., Driver, D. J. & McHeyzer-Williams, M. G. Germinal center reation. Curr. Opin. Hematol. 8, 52–59 (2001).

    CAS  PubMed  Google Scholar 

  32. Merville, P. et. al. Bcl-2+ tonsillar plaoma cells are rescued from apoptosis by bone marrow fibroblasts. J. Exp. Med. 183, 227–236 (1996).

    CAS  PubMed  Google Scholar 

  33. Slifka, M. K., Antia, R., Whitmire, J. K. & Ahmed, R. Humoral immunity due to long-lived plasma cells. Immunity 8, 363–372 (1998).

    CAS  PubMed  Google Scholar 

  34. Smith, K. G., Light, A., Nossal, G. J. & Tarlinton, D. M. The extent of affinity maturation differs between the memory and antibody-forming cell compartments in the primary immune response. EMBO J. 16, 2996–3006 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Arpin, C. et al. Generation of memory B cells and plasma cells in vitro. Science 268, 720–722 (1995).

    CAS  PubMed  Google Scholar 

  36. Stuber, E. & Strober, W. The T cell-B cell interaction via OX40-OX40L is necessary for the T cell–dependent humoral immune response. J. Exp. Med. 183, 979–989 (1996).

    CAS  PubMed  Google Scholar 

  37. Choe, J. & Choi, Y. S. IL-10 interrupts memory B cell expansion in the germinal center by inducing differentiation into plasma cells. Eur. J. Immunol. 28, 508–515 (1998).

    CAS  PubMed  Google Scholar 

  38. Zhang, X. et al. The distinct roles of T cell-derived cytokines and a novel follicular dendritic cell-signaling molecule 8d6 in germinal center-B cell differentiation. J. Immunol. 167, 49–56 (2001).

    CAS  PubMed  Google Scholar 

  39. Kawano, M. M., Mihara, K., Huang, N., Tsujimoto, T. & Kuramoto, A. Differentiation of early plasma cells on bone marrow stromal cells requires interleukin-6 for escaping from apoptosis. Blood 85, 487–494 (1995).

    CAS  PubMed  Google Scholar 

  40. Morse, L., Chen, D., Franklin, D., Xiong, Y. & Chen-Kiang, S. Induction of cell cycle arrest and B cell terminal differentiation by CDK inhibitor p18(INK4c) and IL-6. Immunity 6, 47–56 (1997).

    CAS  PubMed  Google Scholar 

  41. Gado, K., Domjan, G., Hegyesi, H. & Falus, A. Role of interleukin-6 in the pathogenesis of multiple myeloma. Cell. Biol. Int. 24, 195–209 (2000).

    CAS  PubMed  Google Scholar 

  42. Garcia De Vinuesa, C. et al. Dendritic cells associated with plasmablast survival. Eur. J. Immunol. 29, 3712–3721 (1999).

    CAS  PubMed  Google Scholar 

  43. McHeyzer-Williams, M. G. & Ahmed, R. B cell memory and the long-lived plasma cell. Curr. Opin. Immunol. 11, 172–179 (1999).

    CAS  PubMed  Google Scholar 

  44. Maruyama, M., Lam, K. P. & Rajewsky, K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407, 636–642 (2000).

    CAS  PubMed  Google Scholar 

  45. Driver, D., McHeyzer-Williuams, L. C. M., Stetson, D. & McHeyzer-Williams, M. Development and maintenance of a B220-memory B cell compartment. J. Immunol. 167, 1393–1405 (2001).

    CAS  PubMed  Google Scholar 

  46. Arpin, C., Banchereau, J. & Liu, Y. J. Memory B cells are biased towards terminal differentiation: a strategy that may prevent repertoire freezing. J. Exp. Med. 186, 931–940 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Silvy, A., Lagresle, C., Bella, C. & Defrance, T. The differentiation of human memory B cells into specific antibody- secreting cells is CD40 independent. Eur. J. Immunol. 26, 517–524 (1996).

    CAS  PubMed  Google Scholar 

  48. Liou, H. C. et al. A new member of the leucine zipper class of proteins that binds to the HLA DR α promoter. Science 247, 1581–1584 (1990).

    CAS  PubMed  Google Scholar 

  49. Reimold, A. M. et al. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14, 152–157 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Reimold, A. M. et al. Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J. Exp. Med. 183, 393–401 (1996).

    CAS  PubMed  Google Scholar 

  51. Wallin, J. J., Gackstetter, E. R. & Koshland, M. E. Dependence of BSAP repressor and activator functions on BSAP concentration. Science 279, 1961–1964 (1998).

    CAS  PubMed  Google Scholar 

  52. Wen, X. et al. Identification of c-myc promoter-binding protein and X-box binding protein 1 as interleukin-6 target genes in human multiple myeloma cells. Int. J. Oncol. 15, 173–178 (1999).

    CAS  PubMed  Google Scholar 

  53. Yoshida, H. et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis -acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 20, 6755–6767 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schliephake, D. E. & Schimpl, A. Blimp-1 overcomes the block in IgM secretion in lipopolysaccharide/anti- μ F(ab′)2-co-stimulated B lymphocytes. Eur. J. Immunol. 26, 268–271 (1996).

    CAS  PubMed  Google Scholar 

  55. Piskurich, J. F. et al. BLIMP-I mediates extinction of major histocompatibility class II transactivator expression in plasma cells. Nature Immunol. 1, 526–532 (2000).

    CAS  Google Scholar 

  56. Keller, A. D. & Maniatis, T. Only two of the five zinc fingers of the eukaryotic transcriptional repressor PRDI-BF1 are required for sequence-specific DNA binding. Mol. Cell. Biol. 12, 1940–1949 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ren, B., Chee, K. J., Kim, T. H. & Maniatis, T. PRDI-BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes Dev. 13, 125–137 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu, J., Angelin-Duclos, C., Greenwood, J., Liao, J. & Calame, K. Transcriptional repression by blimp-1 (PRDI-BF1) involves recruitment of histone. Mol. Cell. Biol. 20, 2592–2603 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Reljic, R., Wagner, S. D., Peakman, L. J. & Fearon, D. T. Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6. J. Exp. Med. 192, 1841–1848 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Shaffer, A. L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13, 199–212 (2000).

    CAS  PubMed  Google Scholar 

  61. Randall, T. D. et al. Arrest of B lymphocyte terminal differentiation by CD40 signaling: mechanism for lack of antibody-secreting cells in germinal centers. Immunity 8, 733–742 (1998).

    CAS  PubMed  Google Scholar 

  62. Lin, Y., Wong, K. & Calame, K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 276, 596–599 (1997).

    CAS  PubMed  Google Scholar 

  63. Usui, T. et al. Overexpression of B cell-specific activator protein (BSAP/Pax-5) in a late B cell is sufficient to suppress differentiation to an Ig high producer cell with plasma cell phenotype. J. Immunol. 158, 3197–3204 (1997).

    CAS  PubMed  Google Scholar 

  64. Rinkenberger, J. L., Wallin, J. J., Johnson, K. W. & Koshland, M. E. An interleukin-2 signal relieves BSAP (Pax5)-mediated repression of the immunoglobulin J chain gene. Immunity 5, 377–386 (1996).

    CAS  PubMed  Google Scholar 

  65. Singh, M. & Birshtein, B. K. NF-HB (BSAP) is a repressor of the murine immunoglobulin heavy-chain 3′ α enhancer at early stages of B-cell differentiation. Mol. Cell. Biol. 13, 3611–3622 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Waldburger, J. M. et al. Lessons from the bare lymphocyte syndrome: molecular mechanisms regulating MHC class II expression. Immunol. Rev. 178, 148–165 (2000).

    CAS  PubMed  Google Scholar 

  67. Lin, K. I., Lin, Y. & Calame, K. Repression of c-myc is necessary but not sufficient for terminal differentiation of B lymphocytes in vitro. Mol. Cell. Biol. 20, 8684–8695 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Horcher, M., Souabni, A. & Busslinger, M. Pax5/bsap maintains the identity of B cells in late b lymphopoiesis. Immunity 14, 779–790 (2001).

    CAS  PubMed  Google Scholar 

  69. Dent, A. L., Shaffer, A. L., Yu, X., Allman, D. & Staudt, L. M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).

    CAS  PubMed  Google Scholar 

  70. Ye, B. H. et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2- type inflammation. Nature Genet. 16, 161–170 (1997).

    CAS  PubMed  Google Scholar 

  71. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    CAS  PubMed  Google Scholar 

  72. Mittrucker, H. W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540–543 (1997).

    CAS  PubMed  Google Scholar 

  73. Matsuyama, T. et al. Molecular cloning of LSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE). Nucleic Acids Res. 23, 2127–2136 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mamane, Y. et al. Interferon regulatory factors: the next generation. Gene 237, 1–14 (1999).

    CAS  PubMed  Google Scholar 

  75. Gupta, S., Jiang, M., Anthony, A. & Pernis, A. B. Lineage-specific modulation of interleukin 4 signaling by interferon regulatory factor 4. J. Exp. Med. 190, 1837–1848 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gupta, S., Anthony, A. & Pernis, A. B. Stage-specific modulation of IFN-regulatory factor 4 function by kruppel-type zinc finger proteins. J. Immunol. 166, 6104–6111 (2001).

    CAS  PubMed  Google Scholar 

  77. Grumont, R. J. & Gerondakis, S. Rel induces interferon regulatory factor 4 (IRF-4) expression in lymphocytes. Modulation of interferon-regulated gene expression by rel/nuclear factor κB. J. Exp. Med. 191, 1281–1292 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Brass, A. L., Kehrli, E., Eisenbeis, C. F., Storb, U. & Singh, H. Pip, a lymphoid-restricted IRF, contains a regulatory domain that is important for autoinhibition and ternary complex formation with the Ets factor PU. 1. Genes Dev. 10, 2335–2347 (1996).

    CAS  PubMed  Google Scholar 

  79. Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).

    CAS  PubMed  Google Scholar 

  80. Peng, S. L., Gerth, A. J., Ranger, A. M. & Glimcher, L. H. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14, 13–20 (2001).

    CAS  PubMed  Google Scholar 

  81. Matthias, P. Lymphoid-specific transcription mediated by the conserved octamer site: who is doing what? Semin. Immunol. 10, 155–163 (1998).

    CAS  PubMed  Google Scholar 

  82. Corcoran, L. M. & Karvelas, M. Oct-2 is required early in T cell-independent B cell activation for G1 progression and for proliferation. Immunity 1, 635–645 (1994).

    CAS  PubMed  Google Scholar 

  83. Qin, X. F., Reichlin, A., Luo, Y., Roeder, R. G. & Nussenzweig, M. C. OCA-B integrates B cell antigen receptor-, CD40L- and IL 4-mediated signals for the germinal center pathway of B cell development. EMBO J. 17, 5066–5075 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Schubart, K. et al. B cell development and immunoglobulin gene transcription in the absence of Oct-2 and OBF-1. Nature Immunol. 2, 69–74 (2001).

    CAS  Google Scholar 

  85. Niu, H., Ye, B. H. & Dalla-Favera, R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev. 12, 1953–1961 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank members of my laboratory and many other colleagues for helpful discussions. Supported by grant numbers GM29361 and AI43576.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn L. Calame.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calame, K. Plasma cells: finding new light at the end of B cell development. Nat Immunol 2, 1103–1108 (2001). https://doi.org/10.1038/ni1201-1103

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/ni1201-1103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing