Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells

Abstract

The transcriptional repressor Blimp-1 promotes the differentiation of CD8+ T cells into short-lived effector cells (SLECs) that express the lectin-like receptor KLRG-1, but how it operates remains poorly defined. Here we show that Blimp-1 bound to and repressed the promoter of the gene encoding the DNA-binding inhibitor Id3 in SLECs. Repression of Id3 by Blimp-1 was dispensable for SLEC development but limited the ability of SLECs to persist as memory cells. Enforced expression of Id3 was sufficient to restore SLEC survival and enhanced recall responses. Id3 function was mediated in part through inhibition of the transcriptional activity of E2A and induction of genes regulating genome stability. Our findings identify the Blimp-1–Id3–E2A axis as a key molecular switch that determines whether effector CD8+ T cells are programmed to die or enter the memory pool.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Blimp-1 binds to the Id3 promoter and represses Id3 expression in effector CD8+ T cells.
Figure 2: Id3 is essential for the generation of CD8+ memory T cells.
Figure 3: Enforced expression of Id3 promotes the long-term survival of KLRG-1+ effector T cells.
Figure 4: Peripheral tissues are enriched for CD8+ T cells overexpressing Id3.
Figure 5: CD8+ T cells overexpressing Id3 mediate enhanced secondary responses.
Figure 6: Id3 does not affect Id2 expression in effector CD8+ T cells.
Figure 7: Id3 modulates the expression of genes encoding molecules involved in DNA replication and repair.
Figure 8: Deletion of E2A results in more CD8+ memory T cell formation.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Turner, C.A. Jr., Mack, D.H. & Davis, M.M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Crotty, S., Johnston, R.J. & Schoenberger, S.P. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat. Immunol. 11, 114–120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Magnusdottir, E. et al. Epidermal terminal differentiation depends on B lymphocyte-induced maturation protein-1. Proc. Natl. Acad. Sci. USA 104, 14988–14993 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nishikawa, K. et al. Blimp1-mediated repression of negative regulators is required for osteoclast differentiation. Proc. Natl. Acad. Sci. USA 107, 3117–3122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rutishauser, R.L. et al. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kallies, A., Xin, A., Belz, G.T. & Nutt, S.L. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 31, 283–295 (2009).

    CAS  PubMed  Google Scholar 

  8. Joshi, N.S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sarkar, S. et al. Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J. Exp. Med. 205, 625–640 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Belz, G.T. & Kallies, A. Effector and memory CD8+ T cell differentiation: toward a molecular understanding of fate determination. Curr. Opin. Immunol. 22, 279–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Rutishauser, R.L. & Kaech, S.M. Generating diversity: transcriptional regulation of effector and memory CD8 T-cell differentiation. Immunol. Rev. 235, 219–233 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Ichii, H. et al. Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nat. Immunol. 3, 558–563 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Martins, G.A., Cimmino, L., Liao, J., Magnusdottir, E. & Calame, K. Blimp-1 directly represses Il2 and the Il2 activator Fos, attenuating T cell proliferation and survival. J. Exp. Med. 205, 1959–1965 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martins, G. & Calame, K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu. Rev. Immunol. 26, 133–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Shaffer, A.L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Overwijk, W.W. et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198, 569–580 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rivera, R.R., Johns, C.P., Quan, J., Johnson, R.S. & Murre, C. Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, Id3. Immunity 12, 17–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Maruyama, T. et al. Control of the differentiation of regulatory T cells and TH17 cells by the DNA-binding inhibitor Id3. Nat. Immunol. 12, 86–95 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Verykokakis, M., Boos, M.D., Bendelac, A. & Kee, B.L. SAP protein-dependent natural killer T-like cells regulate the development of CD8+ T cells with innate lymphocyte characteristics. Immunity 33, 203–215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yokota, Y. Id and development. Oncogene 20, 8290–8298 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Szymczak, A.L. et al. Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Cannarile, M.A. et al. Transcriptional regulator Id2 mediates CD8+ T cell immunity. Nat. Immunol. 7, 1317–1325 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Pan, L., Sato, S., Frederick, J.P., Sun, X.H. & Zhuang, Y. Impaired immune responses and B-cell proliferation in mice lacking the Id3 gene. Mol. Cell. Biol. 19, 5969–5980 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ibarra, A., Schwob, E. & Mendez, J. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc. Natl. Acad. Sci. USA 105, 8956–8961 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jarvinen, T.A. & Liu, E.T. Topoisomerase IIalpha gene (TOP2A) amplification and deletion in cancer–more common than anticipated. Cytopathology 14, 309–313 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Kinzler, K.W. & Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386, 761–763 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Loffler, H., Lukas, J., Bartek, J. & Kramer, A. Structure meets function–centrosomes, genome maintenance and the DNA damage response. Exp. Cell Res. 312, 2633–2640 (2006).

    Article  PubMed  Google Scholar 

  28. Moynahan, M.E. & Jasin, M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat. Rev. Mol. Cell Biol. 11, 196–207 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Warner, S.L., Gray, P.J. & Von Hoff, D.D. Tubulin-associated drug targets: Aurora kinases, Polo-like kinases, and others. Semin. Oncol. 33, 436–448 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Wonsey, D.R. & Follettie, M.T. Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res. 65, 5181–5189 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Xie, S., Xie, B., Lee, M.Y. & Dai, W. Regulation of cell cycle checkpoints by polo-like kinases. Oncogene 24, 277–286 (2005).

    Article  PubMed  Google Scholar 

  32. Holland, A.J. & Cleveland, D.W. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat. Rev. Mol. Cell Biol. 10, 478–487 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Balatoni, C.E. et al. Epigenetic silencing of Stk39 in B-cell lymphoma inhibits apoptosis from genotoxic stress. Am. J. Pathol. 175, 1653–1661 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Greenbaum, S., Lazorchak, A.S. & Zhuang, Y. Differential functions for the transcription factor E2A in positive and negative gene regulation in pre-B lymphocytes. J. Biol. Chem. 279, 45028–45035 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin, Y.C. et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat. Immunol. 11, 635–643 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kee, B.L. E. and ID proteins branch out. Nat. Rev. Immunol. 9, 175–184 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Pan, L., Hanrahan, J., Li, J., Hale, L.P. & Zhuang, Y. An analysis of T cell intrinsic roles of E2A by conditional gene disruption in the thymus. J. Immunol. 168, 3923–3932 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Yoshida, K. et al. Bcl6 controls granzyme B expression in effector CD8+ T cells. Eur. J. Immunol. 36, 3146–3156 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Ichii, H., Sakamoto, A., Kuroda, Y. & Tokuhisa, T. Bcl6 acts as an amplifier for the generation and proliferative capacity of central memory CD8+ T cells. J. Immunol. 173, 883–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Klebanoff, C.A., Gattinoni, L. & Restifo, N.P. CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol. Rev. 211, 214–224 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sallusto, F., Lanzavecchia, A., Araki, K. & Ahmed, R. From vaccines to memory and back. Immunity 33, 451–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wirth, T.C. et al. Repetitive antigen stimulation induces stepwise transcriptome diversification but preserves a core signature of memory CD8+ T cell differentiation. Immunity 33, 128–140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15, 808–813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gattinoni, L., Ji, Y. & Restifo, N.P. Wnt/β-catenin signaling in T-cell immunity and cancer immunotherapy. Clin. Cancer Res. 16, 4695–4701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pearce, E.L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gattinoni, L., Klebanoff, C.A. & Restifo, N.P. Pharmacologic induction of CD8+ T cell memory: better living through chemistry. Sci. Transl. Med. 1, 11ps12 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Mixon and S. Farid of the Flow Cytometry Unit for help with flow cytometry analyses and sorting, and M. Bachinski for help with editing the manuscript. Supported by the Intramural Research Program of the National Cancer Institute, Center for Cancer Research of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Y.J., Z.P., M.R., C.A.K., Z.Y., M.S., R.N.R., D.C.P., Z.A.B. and L.G. did experiments; Y.J., Z.P., M.R., C.A.K., E.W. and L.G. analyzed experiments; Y.J., Z.P., P.M., D.S.S., F.M.M., N.P.R. and L.G. designed experiments; and Y.J., N.P.R. and L.G. wrote the manuscript.

Corresponding authors

Correspondence to Nicholas P Restifo or Luca Gattinoni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Table 1 and Methods (PDF 1948 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, Y., Pos, Z., Rao, M. et al. Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nat Immunol 12, 1230–1237 (2011). https://doi.org/10.1038/ni.2153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni.2153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing