Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biased biological functions of horizontally transferred genes in prokaryotic genomes

A Corrigendum to this article was published on 01 October 2004

Abstract

Horizontal gene transfer is one of the main mechanisms contributing to microbial genome diversification1,2,3. To clarify the overall picture of interspecific gene flow among prokaryotes, we developed a new method for detecting horizontally transferred genes and their possible donors by Bayesian inference with training models for nucleotide composition. Our method gives the average posterior probability (horizontal transfer index) for each gene sequence, with a low horizontal transfer index indicating recent horizontal transfer. We found that 14% of open reading frames in 116 prokaryotic complete genomes were subjected to recent horizontal transfer. Based on this data set, we quantitatively determined that the biological functions of horizontally transferred genes, except mobile element genes, are biased to three categories: cell surface, DNA binding and pathogenicity-related functions. Thus, the transferability of genes seems to depend heavily on their functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Donor identification of horizontally transferred genes in Neisseria meningitidis.
Figure 2: Proportion of horizontally transferred (HT) genes in each functional category.

Similar content being viewed by others

References

  1. de la Cruz, F. & Davies, J. Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol. 8, 128–133 (2000).

    Article  CAS  Google Scholar 

  2. Ochman, H., Lawrence, J.G. & Groisman, E.A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  CAS  Google Scholar 

  3. Lawrence, J.G. Gene transfer in bacteria: speciation without species? Theor. Popul. Biol. 61, 449–460 (2002).

    Article  Google Scholar 

  4. Charlebois, R.L., Beiko, R.G. & Ragan, M.A. Microbial phylogenomics: Branching out. Nature 421, 217 (2003).

    Article  CAS  Google Scholar 

  5. Kurland, C.G., Canback, B. & Berg, O.G. Horizontal gene transfer: a critical view. Proc. Natl. Acad. Sci. USA 100, 9658–9662 (2003).

    Article  CAS  Google Scholar 

  6. Gogarten, J.P., Doolittle, W.F. & Lawrence, J.G. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19, 2226–2238 (2002).

    Article  CAS  Google Scholar 

  7. Rivera, M.C., Jain, R., Moore, J.E. & Lake, J.A. Genomic evidence for two functionally distinct gene classes. Proc. Natl. Acad. Sci. USA 95, 6239–6244 (1998).

    Article  CAS  Google Scholar 

  8. Yap, W.H., Zhang, Z. & Wang, Y. Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J. Bacteriol. 181, 5201–5209 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hacker, J. & Kaper, J.B. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641–679 (2000).

    Article  CAS  Google Scholar 

  10. Tettelin, H. et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815 (2000).

    Article  CAS  Google Scholar 

  11. Kroll, J.S., Wilks, K.E., Farrant, J.L. & Langford, P.R. Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc. Natl. Acad. Sci. USA 95, 12381–12385 (1998).

    Article  CAS  Google Scholar 

  12. Davis, J., Smith, A.L., Hughes, W.R. & Golomb, M. Evolution of an autotransporter: domain shuffling and lateral transfer from pathogenic Haemophilus to Neisseria. J. Bacteriol. 183, 4626–4635 (2001).

    Article  CAS  Google Scholar 

  13. Amábile-Cuevas, C.F. & Chicurel, M.E. Bacterial plasmids and gene flux. Cell 70, 189–199 (1992).

    Article  Google Scholar 

  14. Lawrence, J.G. & Ochman, H. Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44, 383–397 (1997).

    Article  CAS  Google Scholar 

  15. Peterson, J.D., Umayam, L.A., Dickinson, T., Hickey, E.K. & White, O. The Comprehensive Microbial Resource. Nucleic Acids Res. 29, 123–125 (2001).

    Article  CAS  Google Scholar 

  16. Finlay, B.B. & Falkow, S. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61, 136–169 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sauer, F.G. et al. Bacterial pili: molecular mechanisms of pathogenesis. Curr. Opin. Microbiol. 3, 65–72 (2000).

    Article  CAS  Google Scholar 

  18. Borodovsky, M. & McIninch, J.D. GENMARK: Parallel gene recognition for both DNA strands. Computers Chem. 17, 123–133 (1993).

    Article  CAS  Google Scholar 

  19. Borodovsky, M. et al. Detection of new genes in a bacterial genome using Markov models for three gene classes. Nucleic Acids Res. 23, 3554–3562 (1995).

    Article  CAS  Google Scholar 

  20. Wang, B. Limitations of compositional approach to identifying horizontally transferred genes. J. Mol. Evol. 53, 244–250 (2001).

    Article  CAS  Google Scholar 

  21. Genereux, D.P. & Logsdon, J.M. Jr. Much ado about bacteria-to-vertebrate lateral gene transfer. Trends. Genet. 19, 191–195 (2003).

    Article  CAS  Google Scholar 

  22. Karlin, S., Mrázek, J. & Campbell, A.M. Codon usages in different gene classes of the Escherichia coli genome. Mol. Microbiol. 29, 1341–1355 (1998).

    Article  CAS  Google Scholar 

  23. Sharp, P.M. & Li, W.H. The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987).

    Article  CAS  Google Scholar 

  24. Hacker, J., Blum-Oehler, G., Mühldorfer, I. & Tschäpe, H. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23, 1089–1097 (1997).

    Article  CAS  Google Scholar 

  25. Pearson, W.R. & Lipman, D.J. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444–2448 (1988).

    Article  CAS  Google Scholar 

  26. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  27. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Tsuboi for coding the horizontally transferred gene detection programs; N. Nishinomiya, M. Matsuo and R. Yamaguchi for technical assistance; and K. Ikeo, J.S. Hwang and R. Barrero for their comments and suggestions. T.I. and T.G. were supported in part by grants from the New Energy and Industrial Technology Development Organization and the Ministry of Economy, Technology, and Industry of Japan. T.I., T.G. and H.M. were supported by grants from the Ministry of Education, Sports, Culture, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Gojobori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Relationship between the total number of examined ORFs and the proportion of HT genes in a genome. (PDF 60 kb)

Supplementary Table 1

Sensitivities and selectivities of HT detection methods. (PDF 2 kb)

Supplementary Table 2

Possible pathogenicity islands detected in this study. (PDF 9 kb)

Supplementary Table 3

Subroles containing frequently transferred genes. (PDF 6 kb)

Supplementary Table 4

Species having an abundance of regulatory function HT genes. (PDF 2 kb)

Supplementary Note (PDF 4 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, Y., Itoh, T., Matsuda, H. et al. Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 36, 760–766 (2004). https://doi.org/10.1038/ng1381

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing