Abstract
The primordial abundances of light elements produced in the standard theory of Big Bang nucleosynthesis (BBN) depend only on the cosmic ratio of baryons to photons, a quantity inferred from observations of the microwave background1. The predicted2,3,4 primordial 7Li abundance is four times that measured in the atmospheres of Galactic halo stars5,6,7. This discrepancy could be caused by modification of surface lithium abundances during the starsâ lifetimes8 or by physics beyond the Standard Model that affects early nucleosynthesis9,10. The lithium abundance of low-metallicity gas provides an alternative constraint on the primordial abundance and cosmic evolution of lithium11 that is not susceptible to the in situ modifications that may affect stellar atmospheres. Here we report observations of interstellar 7Li in the low-metallicity gas of the Small Magellanic Cloud, a nearby galaxy with a quarter the Sunâs metallicity. The present-day 7Li abundance of the Small Magellanic Cloud is nearly equal to the BBN predictions, severely constraining the amount of possible subsequent enrichment of the gas by stellar and cosmic-ray nucleosynthesis. Our measurements can be reconciled with standard BBN with an extremely fine-tuned depletion of stellar Li with metallicity. They are also consistent with non-standard BBN.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Dunkley, J. et al. Five-year Wilkinson Microwave Anisotropy Probe observations: likelihoods and parameters from the WMAP data. Astrophys. J. 180 (Suppl.). 306â329 (2009)
Steigman, G. Primordial nucleosynthesis in the precision cosmology era. Ann. Rev. Nuclear Particle Sci. 57, 463â491 (2007)
Cyburt, R. H., Fields, B. D. & Olive, K. A. An update on the big bang nucleosynthesis prediction for 7Li: the problem worsens. J. Cosmol. Astro-Particle Phys. 11, 012 (2008)
Fields, B. D. The primordial lithium problem. Ann. Rev. Nuclear Particle Sci. 61, 47â68 (2011)
Spite, M. & Spite, F. Lithium abundance at the formation of the Galaxy. Nature 297, 483â485 (1982)
Sbordone, L. et al. The metal-poor end of the Spite plateau. 1: Stellar parameters, metallicities and lithium abundances. Astron. Astrophys. 522, A26 (2010)
Meléndez, J., Casagrande, L., RamÃrez, I., Asplund, M. & Schuster, W. J. Observational evidence for a broken Li Spite plateau and mass-dependent Li depletion. Astron. Astrophys. 515, L3âL7 (2010)
Korn, A. J. et al. A probable stellar solution to the cosmological lithium discrepancy. Nature 442, 657â659 (2006)
Jedamzik, K. Did something decay, evaporate, or annihilate during big bang nucleosynthesis? Phys. Rev. D 70, 063524 (2004)
Pospelov, M. & Pradler, J. Big Bang nucleosynthesis as a probe of new physics. Ann. Rev. Nuclear Particle Sci. 60, 539â568 (2010)
ProdanoviÄ, T. & Fields, B. D. Probing primordial and pre-galactic lithium with high-velocity clouds. Astrophys. J. 616, L115âL118 (2004)
Dekker, H., D'Odorico, S., Kaufer, A., Delabre, B. & Kotzlowski, H. Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory. Proc. SPIE 4008, 534â545 (2000)
Cox, N. L. J. et al. Interstellar gas, dust and diffuse bands in the SMC. Astron. Astrophys. 470, 941â955 (2007)
Welty, D. E., Federman, S. R., Gredel, R., Thorburn, J. A. & Lambert, D. L. VLT UVES observations of interstellar molecules and diffuse bands in the Magellanic clouds. Astrophys. J. 165 (Suppl.). 138â172 (2006)
Cartledge, S. I. B. et al. FUSE measurements of far-ultraviolet extinction. II. Magellanic cloud sight lines. Astrophys. J. 630, 355â367 (2005)
Steigman, G. Cosmic lithium: going up or coming down? Astrophys. J. 457, 737â742 (1996)
Welty, D. E., Hobbs, L. M. & Morton, D. C. High-resolution observations of interstellar Ca I absorption-implications for depletions and electron densities in diffuse clouds. Astrophys. J. 147 (Suppl.). 61â96 (2003)
Weingartner, J. C. & Draine, B. T. Electron-ion recombination on grains and polycyclic aromatic hydrocarbons. Astrophys. J. 563, 842â852 (2001)
Knauth, D. C., Federman, S. R. & Lambert, D. L. An ultra-high-resolution survey of the interstellar 6Li/7Li isotope ratio in the solar neighborhood. Astrophys. J. 586, 268â285 (2003)
Welty, D. E. & Hobbs, L. M. A. High-resolution survey of interstellar K I absorption. Astrophys. J. 133 (Suppl.). 345â393 (2001)
Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the sun. Annu. Rev. Astron. Astrophys. 47, 481â522 (2009)
Lambert, D. L. & Reddy, B. E. Lithium abundances of the local thin disc stars. Mon. Not. R. Astron. Soc. 349, 757â767 (2004)
Prantzos, N. Production and evolution of Li, Be and B isotopes in the Galaxy. Astron. Astrophys. 542, A67 (2012)
Romano, D., Tosi, M., Matteucci, F. & Chiappini, C. Light element evolution resulting from WMAP data. Mon. Not. R. Astron. Soc. 346, 295â303 (2003)
Iocco, F., Mangano, G., Miele, G., Pisanti, O. & Serpico, P. D. Primordial nucleosynthesis: from precision cosmology to fundamental physics. Phys. Rep. 472, 1â76 (2009)
Suzuki, T. K. & Inoue, S. Cosmic-ray production of 6Li by structure formation shocks in the early Milky Way: a fossil record of dissipative processes during galaxy formation. Astrophys. J. 573, 168â173 (2002)
Kawanomoto, S. et al. The new detections of 7Li/6Li isotopic ratio in the interstellar media. Astrophys. J. 701, 1506â1518 (2009)
Acknowledgements
We thank the European Southern Observatory for granting us time for this project as part of proposal 382.B-0556. We also thank A. Fox and H. Sana for discussions about the UVES data and A. Korn, P. Molaro, T. Prodanovic, D. Romano, and D. Welty for input on the project that improved the paper.
Author information
Authors and Affiliations
Contributions
All authors participated in the interpretation and commented on the manuscript. J.C.H. led the project and was responsible for the text of the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Text and Data 1-6, Supplementary Figures 1-4, Supplementary Tables 1-3 and additional references. (PDF 1312 kb)
Rights and permissions
About this article
Cite this article
Howk, J., Lehner, N., Fields, B. et al. Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud. Nature 489, 121â123 (2012). https://doi.org/10.1038/nature11407
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature11407
This article is cited by
-
Cosmology and fundamental physics with the ELT-ANDES spectrograph
Experimental Astronomy (2024)
-
Classical novae with CUBES
Experimental Astronomy (2023)
-
Tests and Problems of the Standard Model in Cosmology
Foundations of Physics (2017)
-
The lithium problem
Nature (2012)