Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gout-associated uric acid crystals activate the NALP3 inflammasome

Abstract

Development of the acute and chronic inflammatory responses known as gout and pseudogout are associated with the deposition of monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) crystals, respectively, in joints and periarticular tissues. Although MSU crystals were first identified as the aetiological agent of gout in the eighteenth century1 and more recently as a ‘danger signal’ released from dying cells2, little is known about the molecular mechanisms underlying MSU- or CPPD-induced inflammation. Here we show that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1β and IL-18. Macrophages from mice deficient in various components of the inflammasome such as caspase-1, ASC and NALP3 are defective in crystal-induced IL-1β activation. Moreover, an impaired neutrophil influx is found in an in vivo model of crystal-induced peritonitis in inflammasome-deficient mice or mice deficient in the IL-1β receptor (IL-1R). These findings provide insight into the molecular processes underlying the inflammatory conditions of gout and pseudogout, and further support a pivotal role of the inflammasome in several autoinflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Monosodium urate (MSU) and calcium pyrophosphate dihydrate (CPPD) crystals activate IL-1β cleavage and release.
Figure 2: The NALP3 inflammasome is required for the maturation of IL-1β.
Figure 3: IL-1β maturation is an early event after MSU and CPPD stimulation, and is blocked by colchicine.
Figure 4: Role of the inflammasome in a mouse model of crystal-mediated peritonitis.

Similar content being viewed by others

References

  1. Wollaston, H. W. On gouty and urinary concretions. Phil. Trans. 87, 386–400 (1797)

    Article  Google Scholar 

  2. Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Galon, J., Aksentijevich, I., McDermott, M. F., O'Shea, J. J. & Kastner, D. L. TNFRSF1A mutations and autoinflammatory syndromes. Curr. Opin. Immunol. 12, 479–486 (2000)

    Article  CAS  Google Scholar 

  4. Martinon, F. & Tschopp, J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117, 561–574 (2004)

    Article  CAS  Google Scholar 

  5. Stojanov, S. & Kastner, D. L. Familial autoinflammatory diseases: genetics, pathogenesis and treatment. Curr. Opin. Rheumatol. 17, 586–599 (2005)

    Article  CAS  Google Scholar 

  6. Dinarello, C. A. Blocking IL-1 in systemic inflammation. J. Exp. Med. 201, 1355–1359 (2005)

    Article  CAS  Google Scholar 

  7. Shoham, N. G. et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc. Natl Acad. Sci. USA 100, 13501–13506 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Chae, J. J. et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol. Cell 11, 591–604 (2003)

    Article  CAS  Google Scholar 

  9. Burns, K., Martinon, F. & Tschopp, J. New insights into the mechanism of IL-1β maturation. Curr. Opin. Immunol. 15, 26–30 (2003)

    Article  CAS  Google Scholar 

  10. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002)

    Article  CAS  Google Scholar 

  11. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Tschopp, J., Martinon, F. & Burns, K. NALPs: a novel protein family involved in inflammation. Nature Rev. Mol. Cell Biol. 4, 95–104 (2003)

    Article  CAS  Google Scholar 

  13. Martinon, F., Agostini, L., Meylan, E. & Tschopp, J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 14, 1929–1934 (2004)

    Article  CAS  Google Scholar 

  14. Martinon, F. & Tschopp, J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 26, 447–454 (2005)

    Article  CAS  Google Scholar 

  15. Yamamoto, M. et al. ASC is essential for LPS-induced activation of procaspase-1 independently of TLR-associated signal adaptor molecules. Genes Cells 9, 1055–1067 (2004)

    Article  CAS  Google Scholar 

  16. Faires, J. S. & McCarty, D. J. Acute arthritis in man and dog after intrasynovial infection of sodium urate crystals. Lancet 280, 682–685 (1962)

    Article  Google Scholar 

  17. Dalbeth, N. & Haskard, D. O. Mechanisms of inflammation in gout. Rheumatology (Oxford) 44, 1090–1096 (2005)

    Article  CAS  Google Scholar 

  18. Meng, Z. H., Hudson, A. P., Schumacher, H. R. Jr, Baker, J. F. & Baker, D. G. Monosodium urate, hydroxyapatite, and calcium pyrophosphate crystals induce tumour necrosis factor-alpha expression in a mononuclear cell line. J. Rheumatol. 24, 2385–2388 (1997)

    CAS  PubMed  Google Scholar 

  19. Chapman, P. T. et al. Endothelial activation in monosodium urate monohydrate crystal-induced inflammation: in vitro and in vivo studies on the roles of tumor necrosis factor alpha and interleukin-1. Arthritis Rheum. 40, 955–965 (1997)

    Article  CAS  Google Scholar 

  20. Hoffman, H. M. et al. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364, 1779–1785 (2004)

    Article  CAS  Google Scholar 

  21. Hawkins, P. N., Lachmann, H. J. & McDermott, M. F. Interleukin-1-receptor antagonist in the Muckle–Wells syndrome. N. Engl. J. Med. 348, 2583–2584 (2003)

    Article  Google Scholar 

  22. Molad, Y. Update on colchicine and its mechanism of action. Curr. Rheumatol. Rep. 4, 252–256 (2002)

    Article  Google Scholar 

  23. Malawista, S. E. & Seegmiller, J. E. The effect of pretreatment with colchicine on the inflammatory response to microcrystalline urate: A model for gouty inflammation. Ann. Intern. Med. 62, 648–657 (1965)

    Article  CAS  Google Scholar 

  24. Getting, S. J. et al. Molecular determinants of monosodium urate crystal-induced murine peritonitis: a role for endogenous mast cells and a distinct requirement for endothelial-derived selectins. J. Pharmacol. Exp. Ther. 283, 123–130 (1997)

    CAS  PubMed  Google Scholar 

  25. Goldfinger, S. E., Howell, R. R. & Seegmiller, J. E. Suppression of metabolic accompaniments of phagocytosis by colchicine. Arthritis Rheum. 8, 1112–1122 (1965)

    Article  CAS  Google Scholar 

  26. Liu-Bryan, R., Scott, P., Sydlaske, A., Rose, D. M. & Terkeltaub, R. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum. 52, 2936–2946 (2005)

    Article  CAS  Google Scholar 

  27. Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002)

    Article  CAS  Google Scholar 

  28. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002)

    Article  ADS  CAS  Google Scholar 

  29. Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A. & Kolodner, R. D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nature Genet. 29, 301–305 (2001)

    Article  CAS  Google Scholar 

  30. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20, 319–325 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Mattmann for technical support and A. So, H. Everett, E. Meylan, M. Thome and P. Schneider for discussions and critical reading of the manuscript. We thank S. Mariathasan, V. M. Dixit, R. A. Flavell, M. Kopf and S. Akira for the gift of various knockout mice. This work was supported by grants from the Swiss National Science Foundation and the Commission of Technology and Innovation (CTI). V.P. is supported by a fellowship of the FRM (Fondation pour la Recherche Médicale); A.T. by a NCCR grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Tschopp.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

This file contains additional details on the crystal preparation methods, and the reagents and mice used in this study. (DOC 80 kb)

Supplementary Figure Legends

Text to accompany the below Supplementary Figures. (DOC 25 kb)

Supplementary Figure 1

Gene targeting strategy for disruption of the mouse NALP3 gene. (PDF 46 kb)

Supplementary Figure 2

Monosodium urate crystals (MSU)-mediated activation of IL-1β occurs independently of the ATP-receptor P2X7. (PDF 296 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinon, F., Pétrilli, V., Mayor, A. et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006). https://doi.org/10.1038/nature04516

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature04516

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing