Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature
  • Published:

DNA in a material world

Abstract

The specific bonding of DNA base pairs provides the chemical foundation for genetics. This powerful molecular recognition system can be used in nanotechnology to direct the assembly of highly structured materials with specific nanoscale features, as well as in DNA computation to process complex information. The exploitation of DNA for material purposes presents a new chapter in the history of the molecule.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assembly of branched DNA molecules.
Figure 2: Two-dimensional DNA arrays.
Figure 3: A rotary DNA nanomachine.
Figure 4: Applications of DNA scaffolds.

References

  1. Hoffmann, R. DNA as clay. Am. Sci. 82, 308–311 (1994).

    ADS  Google Scholar 

  2. Cuberes, M. T., Schlittler, R. R. & Gimzewski, J. K. Room-temperature repositioning of individual C-60 molecules at Cu steps: operation of a molecular counting device. Appl. Phys. Lett. 69, 3016–3018 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Caruthers, M. H. Gene synthesis machines: DNA chemistry and its uses. Science 230, 281–285 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  Google Scholar 

  5. Seeman, N. C. Molecular craftwork with DNA. Chem. Intell. 1, 38–47 (1995).

    Google Scholar 

  6. Jaeger, L., Westhof, E. & Leontis, N. B. Tecto-RNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res. 29, 455–463 (2001).

    Article  CAS  Google Scholar 

  7. Zhang, X., Yan, H., Shen, Z. & Seeman, N. C. Paranemic cohesion of topologically-closed DNA molecules. J. Am. Chem. Soc. 124, 12940–12941 (2002).

    Article  CAS  Google Scholar 

  8. Chen, J. & Seeman, N. C. The synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Seeman, N. C. Nucleic acid nanostructures and topology. Angew. Chem. Int. Edn Engl. 37, 3220–3238 (1998).

    Article  CAS  Google Scholar 

  10. Li, X., Yang, X., Qi, J. & Seeman, N. C. Antiparallel DNA double crossover molecules as components for nanoconstruction. J. Am. Chem. Soc. 118, 6131–6140 (1996).

    Article  CAS  Google Scholar 

  11. Winfree, E., Liu, F., Wenzler, L.A. & Seeman, N.C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Mao, C., Sun, W. & Seeman, N. C. Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. J. Am. Chem. Soc. 121, 5437–5443 (1999).

    Article  CAS  Google Scholar 

  13. LaBean, T. et al. The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000).

    Article  CAS  Google Scholar 

  14. Mao, C., Sun, W., Shen, Z. & Seeman, N. C. A DNA nanomechanical device based on the B–Z transition. Nature 397, 144–146 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Yurke, B., Turberfield, A. J., Mills, A. P. Jr Simmel, F. C. & Newmann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Yan, H., Zhang, X., Shen, Z. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    Article  ADS  CAS  Google Scholar 

  17. Niemeyer, C. M., Koehler, J. & Wuerdemann, C. DNA-directed assembly of bi-enzymic complexes from in vivo biotinylated NADP(H):FMN oxidoreductase and luciferase. ChemBioChem 3, 242–245 (2002).

    Article  CAS  Google Scholar 

  18. Robinson, B. H. & Seeman, N. C. The design of a biochip: a self-assembling molecular-scale memory device. Protein Eng. 1, 295–300 (1987).

    Article  CAS  Google Scholar 

  19. Keren, K. et al. Sequence-specific molecular lithography on single DNA molecules. Science 297, 72–75 (2002).

    Article  ADS  CAS  Google Scholar 

  20. Alivisatos, A. P. et al. Organization of 'nanocrystal molecules' using DNA. Nature 382, 609–611 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Taton, T. A., Mucic, R. C., Mirkin, C. A. & Letsinger, R. L. The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structures. J. Am. Chem. Soc. 122, 6305–6306 (2000).

    Article  CAS  Google Scholar 

  22. Pena, S. R. N., Raina, S., Goodrich, G. P., Fedoroff, N. V. & Keating, C. D. Hybridization and enzymatic extension of Au nanoparticle-bound oligonucleotides. J. Am. Chem. Soc. 124, 7314–7323 (2002).

    Article  CAS  Google Scholar 

  23. Dekker, C. & Ratner, M. A. Electronic properties of DNA. Phys. World 14, 29–33 (2001).

    Article  CAS  Google Scholar 

  24. Fahlman, R. P. & Sen, D. DNA conformational switches as sensitive electronic sensors of analytes. J. Am. Chem. Soc. 124, 4610–4616 (2002).

    Article  CAS  Google Scholar 

  25. Seeman, N. C. The construction of 3-D stick figures from branched DNA. DNA Cell Biol. 10, 475–486 (1991).

    Article  CAS  Google Scholar 

  26. Eckardt, L. H. et al. Chemical copying of connectivity. Nature 420, 286 (2002).

    Article  ADS  CAS  Google Scholar 

  27. Adleman, L. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Winfree, E. in DNA Based Computers. Proceedings of a DIMACS Workshop, April 4, 1995, Princeton University (eds Lipton, R. J & Baum, E. B.) 199–219 (American Mathematical Society, Providence, 1996).

    Google Scholar 

  29. Winfree, E. Algorithmic self-assembly of DNA: theoretical motivations and 2D assembly experiments. J. Biol. Mol. Struct. Dynamics Conversat. 11 2, 263–270 (2000).

    Article  Google Scholar 

  30. Mao, C., LaBean, T., Reif, J. H. & Seeman, N. C. Logical computation using algorithmic self-assembly of DNA triple crossover molecules. Nature 407, 493–496 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from the National Institute of General Medical Sciences, the Office of Naval Research, the National Science Foundation, and the Defense Advanced Research Projects Agency/Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadrian C. Seeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seeman, N. DNA in a material world. Nature 421, 427–431 (2003). https://doi.org/10.1038/nature01406

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nature01406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing