This shrimp packs a punch powerful enough to smash its prey's shell underwater.
Abstract
Stomatopods (mantis shrimp) are well known for the feeding appendages they use to smash shells and impale fish. Here we show that the peacock mantis shrimp (Odontodactylus scyllarus) generates an extremely fast strike that requires major energy storage and release, which we explain in terms of a saddle-shaped exoskeletal spring mechanism. High-speed images reveal the formation and collapse of vapour bubbles next to the prey due to swift movement of the appendage towards it, indicating that O. scyllarus may use destructive cavitation forces to damage its prey.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Burrows, M. Zeit. Vergl. Physiol. 62, 361â381 (1969).
Burrows, M. & Hoyle, G. J. Exp. Zool. 179, 379â394 (1972).
Alexander, R. M. & Bennet-Clark, H. C. Nature 265, 114â117 (1977).
Bennet-Clark, H. C. in The Insect Integument (ed. Hepburn, H. R.) 421â443 (Elsevier, Amsterdam, 1976).
Gronenberg, W. J. Comp. Phys. A 178, 727â734 (1996).
Alexander, R. M. Comp. Biochem. Phys. A 133, 1001â1011 (2002).
Brennen, C. E. Cavitation and Bubble Dynamics (Oxford University Press, New York, 1995).
Lohse, D., Schmitz, B. & Versluis, M. Nature 413, 477â478 (2001).
Versluis, M., Schmitz, B. von der Heydt, A. & Lohse, D. Science 289, 2114â2117 (2000).
Currey, J. D., Nash, A. & Bonfield, W. J. Mater. Sci. 17, 1939â1944 (1982).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Methods
These supplementary methods describe the calculations used to approximate the energy storage and release required by the mantis shrimpâs strike and to demonstrate the need for a specialized spring in the mantis shrimpâs raptorial appendage. (DOC 40 kb)
Rights and permissions
About this article
Cite this article
Patek, S., Korff, W. & Caldwell, R. Deadly strike mechanism of a mantis shrimp. Nature 428, 819â820 (2004). https://doi.org/10.1038/428819a
Issue Date:
DOI: https://doi.org/10.1038/428819a