Skip to main content
Log in

The multifaceted regulation of white adipose tissue browning and their therapeutic potential

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Adipose tissue browning, the conversion of white adipose tissue (WAT) into brown or beige adipose tissue, offers potential for combating obesity and metabolic disorders. This review delves in to the transcriptional and epigenetic regulation of WAT browning and how it impacts metabolic health and its significance in various disease conditions. Further the review explains how various external factors such as diet and exercise play an influential role in the regulation of WAT browning. UCP1 gene, which plays a crucial role in cellular thermogenesis is found to be the major mediator of this phenomenon along with functional dynamics of mitochondria. Gut microbiome has been another focus point in this review that highlights how alterations to the composition of different species of bacteria in gut microbiome can directly influence WAT browning. Finally the review discusses the various pharmaceutical and neutraceutical options under research that targets WAT browning to improve metabolic status of an individual. Therapeutic strategies include β3-adrenergic receptor agonists, GLP-1 receptor agonists, AMPK activators, and natural compounds such as capsaicin and resveratrol. Emerging CRISPR/Cas9 gene therapies aim to induce WAT browning. Clinical evidence to prove the significance of this phenomena is currently limited but growing rapidly as seen in the number of clinical trials that are undergoing currently, therefore the review strongly rely upon animal model and cell culture based studies to justify this area of novel research. Despite its potential, challenges like individual variability, long-term safety, and complex gut microbiome interactions remain. Future research should target novel pathways, optimize therapeutic regimens, and personalize treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Wronska A, Kmiec Z (2012) Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol (Oxf) 205(2):194–208. https://doi.org/10.1111/j.1748-1716.2012.02409.x

    Article  PubMed  CAS  Google Scholar 

  2. Langin D (2006) Control of fatty acid and glycerol release in adipose tissue lipolysis. C R Biol 329(8):598–607. https://doi.org/10.1016/j.crvi.2005.10.008

    Article  PubMed  CAS  Google Scholar 

  3. Scheja L, Heeren J (2019) The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol 15(9):507–524. https://doi.org/10.1038/s41574-019-0230-6

    Article  PubMed  CAS  Google Scholar 

  4. Brestoff JR, Wilen CB, Moley JR et al (2021) Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab 33(2):270–282e8. https://doi.org/10.1016/j.cmet.2020.11.008

    Article  PubMed  CAS  Google Scholar 

  5. Ackermann J, Arndt L, Fröba J et al (2024) IL-6 signaling drives self-renewal and alternative activation of adipose tissue macrophages. Front Immunol. https://www.frontiersin.org/journals/immunology/articles/https://doi.org/10.3389/fimmu.2024.1201439. 15-2024

    Article  PubMed  PubMed Central  Google Scholar 

  6. da Costa Fernandes CJ, da Cruz Rodrigues KC, de Melo DG et al (2023) Short-term strength exercise reduces the macrophage M1/M2 ratio in white adipose tissue of obese animals. Life Sci 329:121916. https://doi.org/10.1016/j.lfs.2023.121916

    Article  PubMed  CAS  Google Scholar 

  7. Camino T, Lago-Baameiro N, Bravo SB et al (2022) Human obese white adipose tissue sheds depot-specific extracellular vesicles and reveals candidate biomarkers for monitoring obesity and its comorbidities. Transl Res 239:85–102. https://doi.org/10.1016/j.trsl.2021.01.006

    Article  PubMed  CAS  Google Scholar 

  8. Youssef EM, Elfiky AM, BanglySoliman, Abu-Shahba N, Elhefnawi MM (2020) Expression profiling and analysis of some MiRNAs in subcutaneous white adipose tissue during development of obesity. Genes Nutr 15(1):8. https://doi.org/10.1186/s12263-020-00666-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zhu X, Zeng C, Yu B (2024) White adipose tissue in metabolic associated fatty liver disease. Clin Res Hepatol Gastroenterol 48(5):102336. https://doi.org/10.1016/j.clinre.2024.102336

    Article  PubMed  CAS  Google Scholar 

  10. Schulz TJ, Tseng Y-H (2013) Brown adipose tissue: development, metabolism and beyond. Biochem J 453(2):167–178. https://doi.org/10.1042/BJ20130457

    Article  PubMed  CAS  Google Scholar 

  11. Lee Y-H, Jung Y-S, Choi D (2014) Recent advance in brown adipose physiology and its therapeutic potential. Exp Mol Med 46(2):e78–e78. https://doi.org/10.1038/emm.2013.163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Maliszewska K, Kretowski A (2021) Brown adipose tissue and its role in insulin and glucose homeostasis. Int J Mol Sci 22(4). https://doi.org/10.3390/ijms22041530

  13. Li H, Zou L, Zheng J, Yang T (2024) 12,13-diHOME attenuates high glucose-induced calcification of vascular smooth muscle cells through repressing CPT1A-mediated HMGB1 succinylation. Exp Cell Res 438(1):114031. https://doi.org/10.1016/j.yexcr.2024.114031

    Article  PubMed  CAS  Google Scholar 

  14. Ding Y, Su J, Shan B et al (2024) Brown adipose tissue-derived FGF21 mediates the cardioprotection of dexmedetomidine in myocardial ischemia/reperfusion injury. Sci Rep 14(1):18292. https://doi.org/10.1038/s41598-024-69356-w

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fu P, Zhu R, Jia J et al (2021) Aerobic exercise promotes the functions of brown adipose tissue in obese mice via a mechanism involving COX2 in the VEGF signaling pathway. Nutr Metab (Lond) 18(1):56. https://doi.org/10.1186/s12986-021-00581-0

    Article  PubMed  CAS  Google Scholar 

  16. Luo J, Chen M, Ji H et al (2023) Brown adipose tissue-derived Nrg4 alleviates non-alcoholic fatty liver disease in mice. J Funct Foods 108:105735. https://doi.org/10.1016/j.jff.2023.105735

    Article  CAS  Google Scholar 

  17. Constant B, Kamzolas I, Yang X et al (2025) Distinct signalling dynamics of BMP4 and BMP9 in brown versus white adipocytes. Sci Rep 15(1):15971. https://doi.org/10.1038/s41598-025-99122-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Pervin S, Reddy ST, Singh R (2021) Novel roles of follistatin/myostatin in transforming growth factor-β signaling and adipose browning: potential for therapeutic intervention in obesity related metabolic disorders. Front Endocrinol (Lausanne). 12-2021 https://doi.org/10.3389/fendo.2021.653179https://www.frontiersin.org/journals/endocrinology/articles/

  19. Whittle AJ, Jiang M, Peirce V et al (2015) Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans. Nat Commun 6(1):8951. https://doi.org/10.1038/ncomms9951

    Article  PubMed  CAS  Google Scholar 

  20. Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M (2024) An update on the secretory functions of brown, white, and beige adipose tissue: towards therapeutic applications. Rev Endocr Metab Disord 25(2):279–308. https://doi.org/10.1007/s11154-023-09850-0

    Article  PubMed  CAS  Google Scholar 

  21. Pilkington A-C, Paz HA, Wankhade UD (2021) Beige adipose tissue identification and marker specificity—overview. Front Endocrinol (Lausanne) 12:2021. https://doi.org/10.3389/fendo.2021.599134https://www.frontiersin.org/journals/endocrinology/articles/

  22. Zoico E, Rubele S, De Caro A et al (2019) Brown and beige adipose tissue and aging. Front endocrinol (Lausanne). 10-2019 https://www.frontiersin.org/journals/endocrinology/articles/ https://doi.org/10.3389/fendo.2019.00368

  23. Kononova YA, Tuchina TP, Babenko AY (2024) Brown and beige adipose tissue: one or different targets for treatment of obesity and obesity-related metabolic disorders? Int J Mol Sci 25(24). https://doi.org/10.3390/ijms252413295

  24. Malicka A, Ali A, MacCannell ADV, Roberts LD (2024) Brown and beige adipose tissue-derived metabokine and lipokine inter-organ signalling in health and disease. Exp Physiol. https://doi.org/10.1113/EP092008.;n/a(n/a)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ikeda K, Maretich P, Kajimura S (2018) The common and distinct features of brown and beige adipocytes. Trends Endocrinol Metab 29(3):191–200. https://doi.org/10.1016/j.tem.2018.01.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Mallah A, Stojkova K, Cohen RN, Abu-Lail N, Brey EM, Gonzalez Porras MA (2024) Atomic force microscopy characterization of white and beige adipocyte differentiation. Vitr Cell Dev Biol - Anim 60(8):842–852. https://doi.org/10.1007/s11626-024-00925-z

    Article  CAS  Google Scholar 

  27. Shao M, Vishvanath L, Busbuso NC et al (2018) De Novo adipocyte differentiation from Pdgfrβ + preadipocytes protects against pathologic visceral adipose expansion in obesity. Nat Commun 9(1):890. https://doi.org/10.1038/s41467-018-03196-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Monastra G, Gambioli R, Unfer V, Forte G, Maymo-Masip E, Comitato R (2023) D-Chiro-Inositol and Myo-Inositol induce WAT/BAT Trans-Differentiation in two different human adipocyte models (SGBS and LiSa-2). Int J Mol Sci 24(8). https://doi.org/10.3390/ijms24087421

  29. Shi L, Tao Z, Zheng L et al (2023) FoxO1 regulates adipose transdifferentiation and iron influx by mediating Tgfβ1 signaling pathway. Redox Biol 63:102727. https://doi.org/10.1016/j.redox.2023.102727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Naren Q, Lindsund E, Bokhari MH, Pang W, Petrovic N (2024) Differential responses to UCP1 ablation in classical brown < em > versus beige fat, despite a parallel increase in sympathetic innervation. J Biol Chem 300(3). https://doi.org/10.1016/j.jbc.2024.105760

  31. Cui X, Jing J, Wu R et al (2021) Adipose tissue-derived neurotrophic factor 3 regulates sympathetic innervation and thermogenesis in adipose tissue. Nat Commun 12(1):5362. https://doi.org/10.1038/s41467-021-25766-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Jiang J, Zhou D, Zhang A et al (2023) Thermogenic adipocyte-derived zinc promotes sympathetic innervation in male mice. Nat Metab 5(3):481–494. https://doi.org/10.1038/s42255-023-00751-9

    Article  PubMed  CAS  Google Scholar 

  33. Pinto YO, Festuccia WTL, Magdalon J (2022) The involvement of the adrenergic nervous system in activating human brown adipose tissue and Browning. Hormones 21(2):195–208. https://doi.org/10.1007/s42000-022-00361-2

    Article  PubMed  Google Scholar 

  34. Przygodda F, Lautherbach N, Buzelle SL et al (2020) Sympathetic innervation suppresses the autophagic-lysosomal system in brown adipose tissue under basal and cold-stimulated conditions. J Appl Physiol 128(4):855–871. https://doi.org/10.1152/japplphysiol.00065.2019

    Article  PubMed  CAS  Google Scholar 

  35. Shams S, Amirinejad M, Amani-Shalamzari S, Rajabi H, Suzuki K (2023) Swimming in cold water upregulates genes involved in thermogenesis and the Browning of white adipose tissues. Comp Biochem Physiol Part B Biochem Mol Biol 265:110834. https://doi.org/10.1016/j.cbpb.2023.110834

    Article  CAS  Google Scholar 

  36. Quan Q-L, Kim EJ, Kim S et al (2024) UV irradiation increases appetite and prevents body weight gain through the upregulation of norepinephrine in mice. J Invest Dermatol 144(10):2273–2284e5. https://doi.org/10.1016/j.jid.2024.03.012

    Article  PubMed  CAS  Google Scholar 

  37. Cao W, Medvedev AV, Daniel KW, Collins S (2001) β-Adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J Biol Chem 276(29):27077–27082

    Article  PubMed  CAS  Google Scholar 

  38. Fu J, Li Z, Zhang H et al (2015) Molecular pathways regulating the formation of brown-like adipocytes in white adipose tissue. Diabetes Metab Res Rev 31(5):433–452. https://doi.org/10.1002/dmrr.2600

    Article  PubMed  CAS  Google Scholar 

  39. Wang C, Xia T, Du Y et al (2013) Effects of ATF4 on PGC1α expression in brown adipose tissue and metabolic responses to cold stress. Metabolism 62(2):282–289. https://doi.org/10.1016/j.metabol.2012.07.017

    Article  PubMed  CAS  Google Scholar 

  40. Hou L, Xie M, Cao L et al (2018) Browning of pig white preadipocytes by Co-Overexpressing pig PGC-1α and mice UCP1. Cell Physiol Biochem 48(2):556–568. https://doi.org/10.1159/000491885

    Article  PubMed  CAS  Google Scholar 

  41. Bartelt A, Widenmaier SB, Schlein C et al (2018) Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity. Nat Med 24(3):292–303. https://doi.org/10.1038/nm.4481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Shen S-H, Singh SP, Raffaele M et al (2022) Adipocyte-Specific expression of PGC1α promotes adipocyte Browning and alleviates Obesity-Induced metabolic dysfunction in an HO-1-Dependent fashion. Antioxidants 11(6). https://doi.org/10.3390/antiox11061147

  43. Liang J, Jia Y, Yan H et al (2021) Prdm16-Mediated Browning is involved in resistance to Diet-Induced and monosodium Glutamate-Induced obesity. Diabetes Metab Syndr Obes 14null:4351–4360. https://doi.org/10.2147/DMSO.S335526

    Article  Google Scholar 

  44. Son MJ, Oh K-J, Park A et al (2020) GATA3 induces the upregulation of UCP-1 by directly binding to PGC-1α during adipose tissue Browning. Metabolism 109:154280. https://doi.org/10.1016/j.metabol.2020.154280

    Article  PubMed  CAS  Google Scholar 

  45. Kalinovich AV, de Jong JMA, Cannon B, Nedergaard J (2017) UCP1 in adipose tissues: two steps to full Browning. Biochimie 134:127–137. https://doi.org/10.1016/j.biochi.2017.01.007

    Article  PubMed  CAS  Google Scholar 

  46. Miro C, Menale C, Acampora L et al (2025) Muscle PGC-1α overexpression drives metabolite secretion boosting subcutaneous adipocyte Browning. J Cell Physiol 240(1):e31480. https://doi.org/10.1002/jcp.31480

    Article  PubMed  CAS  Google Scholar 

  47. Carey AL, Vorlander C, Reddy-Luthmoodoo M et al (2014) Reduced UCP-1 content in in vitro differentiated beige/brite adipocytes derived from preadipocytes of human subcutaneous white adipose tissues in obesity. PLoS ONE 9(3):e91997. https://doi.org/10.1371/journal.pone.0091997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gu P, Ding K, Lu L et al (2023) Compromised Browning in white adipose tissue of ageing people. Eur J Endocrinol 188(2):226–235. https://doi.org/10.1093/ejendo/lvad014

    Article  CAS  Google Scholar 

  49. Efremova A, Colleluori G, Thomsky M et al (2020) Biomarkers of Browning in cold exposed Siberian adults. Nutrients 12(8). https://doi.org/10.3390/nu12082162

  50. Omran F, Murphy AM, Younis AZ et al (2023) The impact of metabolic endotoxaemia on the Browning process in human adipocytes. BMC Med 21(1):154. https://doi.org/10.1186/s12916-023-02857-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Subash-Babu P, Alshatwi AA (2018) Ononitol monohydrate enhances PRDM16 & UCP-1 expression, mitochondrial biogenesis and insulin sensitivity via STAT6 and LTB4R in maturing adipocytes. Biomed Pharmacother 99:375–383. https://doi.org/10.1016/j.biopha.2018.01.084

    Article  PubMed  CAS  Google Scholar 

  52. Cai J, Quan Y, Zhu S et al (2024) The Browning and mobilization of subcutaneous white adipose tissue supports efficient skin repair. Cell Metab 36(6):1287–1301e7. https://doi.org/10.1016/j.cmet.2024.05.005

    Article  PubMed  CAS  Google Scholar 

  53. Zhang W, Kong L, Zhong Z, Lin L, Li J, Zheng G (2023) Short chain fatty acids increase fat oxidation and promote Browning through β3-adrenergic receptor/AMP-activated protein kinase α signaling pathway in 3T3-L1 adipocytes. J Funct Foods 103:105488. https://doi.org/10.1016/j.jff.2023.105488

    Article  CAS  Google Scholar 

  54. Guo Y, Wan Z, Zhao P et al (2021) Ultrasound triggered topical delivery of Bmp7 mRNA for white fat Browning induction via engineered smart exosomes. J Nanobiotechnol 19(1):402. https://doi.org/10.1186/s12951-021-01145-3

    Article  CAS  Google Scholar 

  55. Luo X, Li J, Zhang H et al (2022) Irisin promotes the Browning of white adipocytes tissue by AMPKα1 signaling pathway. Res Vet Sci 152:270–276. https://doi.org/10.1016/j.rvsc.2022.08.025

    Article  PubMed  CAS  Google Scholar 

  56. Warrier M, Paules EM, Silva-Gomez J et al (2023) Homocysteine-induced Endoplasmic reticulum stress activates FGF21 and is associated with Browning and atrophy of white adipose tissue in Bhmt knockout mice. Heliyon 9(2):e13216. https://doi.org/10.1016/j.heliyon.2023.e13216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Chen J, Kuang S (2024) A Notch toward progenitor D(G)FRentiation: defining a NOTCH-PDGFR axis in brown adipogenesis. Dev Cell 59(10):1231–1232. https://doi.org/10.1016/j.devcel.2024.04.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Wang H, Yu L, Wang J et al (2023) SLC35D3 promotes white adipose tissue Browning to ameliorate obesity by NOTCH signaling. Nat Commun 14(1):7643. https://doi.org/10.1038/s41467-023-43418-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kaur S, Auger C, Jeschke MG (2020) Adipose tissue metabolic function and dysfunction: impact of burn injury. Front Cell Dev Biol 8. https://www.frontiersin.org/articles/https://doi.org/10.3389/fcell.2020.599576

  60. Alipoor E, Hosseinzadeh-Attar MJ, Rezaei M, Jazayeri S, Chapman M (2020) White adipose tissue Browning in critical illness: A review of the evidence, mechanisms and future perspectives. Obes Rev 21(12):e13085. https://doi.org/10.1111/obr.13085

    Article  PubMed  Google Scholar 

  61. Sidossis LS, Porter C, Saraf MK et al (2015) Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab 22(2):219–227. https://doi.org/10.1016/j.cmet.2015.06.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Barayan D, Abdullahi A, Knuth CM et al (2023) Lactate shuttling drives the Browning of white adipose tissue after burn. Am J Physiol Metab 325(3):E180–E191. https://doi.org/10.1152/ajpendo.00084.2023

    Article  CAS  Google Scholar 

  63. Esaki N, Matsui T, Tsuda T (2023) Lactate induces the development of beige adipocytes via an increase in the level of reactive oxygen species. Food Funct 14(21):9725–9733. https://doi.org/10.1039/D3FO03287F

    Article  PubMed  CAS  Google Scholar 

  64. Liu T, Fu S, Wang Q, Cheng H, Mu D, Luan J (2021) Browning of white adipocytes in fat grafts associated with higher level of necrosis and type 2 macrophage recruitment. Aesthetic Surg J 41(8):NP1092–NP1101. https://doi.org/10.1093/asj/sjab144

    Article  Google Scholar 

  65. Li S, Wang Y, Li Z, Long C, Zhou Q, Chen Q (2022) The links between adipose tissue DNA methylation, obesity, and insulin resistance: A protocol for systematic review. Med (Baltim) 101(47):e31261. https://doi.org/10.1097/MD.0000000000031261

    Article  CAS  Google Scholar 

  66. Shore A, Karamitri A, Kemp P, Speakman JR, Lomax MA (2010) Role of Ucp1 enhancer methylation and chromatin remodelling in the control of Ucp1 expression in murine adipose tissue. Diabetologia 53(6):1164–1173. https://doi.org/10.1007/s00125-010-1701-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ito R, Xie S, Tumenjargal M et al (2024) Mitochondrial biogenesis in white adipose tissue mediated by JMJD1A-PGC-1 axis limits age-related metabolic disease. iScience 27(4):109398. https://doi.org/10.1016/j.isci.2024.109398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Chen Y-T, Hu Y, Yang Q-Y et al (2020) Excessive glucocorticoids during pregnancy impair fetal brown fat development and predispose offspring to metabolic dysfunctions. Diabetes 69(8):1662–1674. https://doi.org/10.2337/db20-0009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Shi Y, Huang X, Zeng Y et al (2024) Endothelial TET2 regulates the white adipose Browning and metabolism via fatty acid oxidation in obesity. Redox Biol 69:103013. https://doi.org/10.1016/j.redox.2023.103013

    Article  PubMed  CAS  Google Scholar 

  70. Serrano A, Asnani-Kishnani M, Couturier C et al (2020) DNA methylation changes are associated with the programming of white adipose tissue Browning features by Resveratrol and nicotinamide riboside neonatal supplementations in mice. Nutrients 12(2). https://doi.org/10.3390/nu12020461

  71. Hu R, Pan J, Zhu J et al (2024) β3-adrenergic receptor methylation mediates fine particulate matter inhalation-impaired white adipose tissue Browning. Nano Today 55:102167. https://doi.org/10.1016/j.nantod.2024.102167

    Article  CAS  Google Scholar 

  72. Nanduri R (2021) Epigenetic regulators of white adipocyte Browning. Epigenomes 5(1). https://doi.org/10.3390/epigenomes5010003

  73. Ferrari A, Longo R, Fiorino E et al (2017) HDAC3 is a molecular brake of the metabolic switch supporting white adipose tissue Browning. Nat Commun 8(1):93. https://doi.org/10.1038/s41467-017-00182-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Tian D, Zeng X, Gong Y, Zheng Y, Zhang J, Wu Z (2023) HDAC1 inhibits beige adipocyte-mediated thermogenesis through histone crotonylation of Pgc1a/Ucp1. Cell Signal 111:110875. https://doi.org/10.1016/j.cellsig.2023.110875

    Article  PubMed  CAS  Google Scholar 

  75. Shi F, de Fatima Silva F, Liu D et al (2023) Salt-inducible kinase Inhibition promotes the adipocyte thermogenic program and adipose tissue Browning. Mol Metab 74:101753. https://doi.org/10.1016/j.molmet.2023.101753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Yang H, Li C, Che M et al (2024) HDAC11 deficiency resists obesity by converting adipose-derived stem cells into brown adipocyte-like cells. Int J Biol Macromol 258:128852. https://doi.org/10.1016/j.ijbiomac.2023.128852

    Article  PubMed  CAS  Google Scholar 

  77. Pan D, Huang L, Zhu LJ et al (2015) Jmjd3-Mediated H3K27me3 dynamics orchestrate brown fat development and regulate white fat plasticity. Dev Cell 35(5):568–583. https://doi.org/10.1016/j.devcel.2015.11.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Ohno H, Shinoda K, Ohyama K, Sharp LZ, Kajimura S (2013) EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504(7478):163–167. https://doi.org/10.1038/nature12652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Fiskus W, Wang Y, Sreekumar A et al (2009) Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor Panobinostat against human AML cells. Blood 114(13):2733–2743. https://doi.org/10.1182/blood-2009-03-213496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Taylor BC, Steinthal LH, Dias M et al (2024) Histone proteoform analysis reveals epigenetic changes in adult mouse brown adipose tissue in response to cold stress. Epigenetics Chromatin 17(1):12. https://doi.org/10.1186/s13072-024-00536-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Shuai L, Zhang L-N, Li B-H et al (2019) SIRT5 regulates brown adipocyte differentiation and browning of subcutaneous white adipose tissue. Diabetes 68(7):1449–1461. https://doi.org/10.2337/db18-1103

    Article  PubMed  CAS  Google Scholar 

  82. Liu Y, Liang J, Liu Z, Tian X, Sun C (2024) Dihydrolipoyl dehydrogenase promotes white adipocytes Browning by activating the RAS/ERK pathway and undergoing crotonylation modification. Int J Biol Macromol 265:130816. https://doi.org/10.1016/j.ijbiomac.2024.130816

    Article  PubMed  CAS  Google Scholar 

  83. Shi T, Wang F, Stieren E, Tong Q (2005) SIRT3, a mitochondrial Sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown Adipocytes *. J Biol Chem 280(14):13560–13567. https://doi.org/10.1074/jbc.M414670200

    Article  PubMed  CAS  Google Scholar 

  84. Kang HS, Lee JH, Oh K-J et al (2020) IDH1-dependent α-KG regulates brown fat differentiation and function by modulating histone methylation. Metabolism 105:154173. https://doi.org/10.1016/j.metabol.2020.154173

    Article  PubMed  CAS  Google Scholar 

  85. Cicatiello AG, Nappi A, Franchini F et al (2024) The histone methyltransferase SMYD1 is induced by thermogenic stimuli in adipose tissue. Epigenomics 16(6):359–374. https://doi.org/10.2217/epi-2023-0381

    Article  PubMed  CAS  Google Scholar 

  86. Chen Y, Kim J, Zhang R et al (2016) Histone demethylase LSD1 promotes adipocyte differentiation through repressing Wnt signaling. Cell Chem Biol 23(10):1228–1240. https://doi.org/10.1016/j.chembiol.2016.08.010

    Article  PubMed  CAS  Google Scholar 

  87. Yuan Y, Fan Y, Zhou Y et al (2023) Linker histone variant H1.2 is a brake on white adipose tissue Browning. Nat Commun 14(1):3982. https://doi.org/10.1038/s41467-023-39713-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Peng J, Li Y, Wang X et al (2018) An Hsp20-FBXO4 axis regulates adipocyte function through modulating PPARγ ubiquitination. Cell Rep 23(12):3607–3620. https://doi.org/10.1016/j.celrep.2018.05.065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Wei P, Pan D, Mao C, Wang Y-X (2012) RNF34 is a Cold-Regulated E3 ubiquitin ligase for PGC-1α and modulates brown fat cell metabolism. Mol Cell Biol 32(2):266–275. https://doi.org/10.1128/MCB.05674-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kim MS, Baek J-H, Lee J, Sivaraman A, Lee K, Chun K-H (2023) Deubiquitinase USP1 enhances CCAAT/enhancer-binding protein beta (C/EBPβ) stability and accelerates adipogenesis and lipid accumulation. Cell Death Dis 14(11):776. https://doi.org/10.1038/s41419-023-06317-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Afonso MS, Verma N, van Solingen C et al (2021) MicroRNA-33 inhibits adaptive thermogenesis and adipose tissue Beiging. Arterioscler Thromb Vasc Biol 41(4):1360–1373. https://doi.org/10.1161/ATVBAHA.120.315798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Zhao L, Li W, Zhang P, Wang D, Yang L, Yuan G (2024) Liraglutide induced Browning of visceral white adipose through regulation of MiRNAs in high-fat-diet-induced obese mice. Endocrine. https://doi.org/10.1007/s12020-024-03734-2

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wang X, Chen S, Lv D et al (2021) Liraglutide suppresses obesity and promotes Browning of white fat via miR-27b in vivo and in vitro. J Int Med Res 49(11):03000605211055059. https://doi.org/10.1177/03000605211055059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. You L, Wang Y, Gao Y et al (2020) The role of microRNA-23b-5p in regulating brown adipogenesis and thermogenic program. Endocr Connect 9(5):457–470. https://doi.org/10.1530/EC-20-0124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Rezq S, Huffman AM, Syed M et al (2021) MicroRNA-21 modulates white adipose tissue Browning and altered thermogenesis in a mouse model of polycystic ovary syndrome. J Endocr Soc 5(Supplement1):A775–A776. https://doi.org/10.1210/jendso/bvab048.1577

    Article  PubMed Central  Google Scholar 

  96. Rocha AL, de Lima TI, de Souza GP et al (2024) Enoxacin induces oxidative metabolism and mitigates obesity by regulating adipose tissue MiRNA expression. Sci Adv 6(49):eabc6250. https://doi.org/10.1126/sciadv.abc6250

    Article  CAS  Google Scholar 

  97. Tan X, Zhu T, Zhang L et al (2022) miR-669a-5p promotes adipogenic differentiation and induces Browning in preadipocytes. Adipocyte 11(1):120–132. https://doi.org/10.1080/21623945.2022.2030570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Liang J, Jia Y, Yu H et al (2022) 5-Aza-2′-Deoxycytidine regulates white adipocyte Browning by modulating miRNA-133a/Prdm16. Metabolites 12(11). https://doi.org/10.3390/metabo12111131

  99. Chen J, Cui X, Shi C et al (2015) Differential LncRNA expression profiles in brown and white adipose tissues. Mol Genet Genomics 290(2):699–707. https://doi.org/10.1007/s00438-014-0954-x

    Article  PubMed  CAS  Google Scholar 

  100. Feng J, Xu H, Pan F et al (2020) An integrated analysis of mRNA and LncRNA expression profiles indicates their potential contribution to brown fat dysfunction with aging. Front Endocrinol (Lausanne) 11. https://doi.org/10.3389/fendo.2020.00046

  101. Tang S, Zhu W, Zheng F et al (2020) The long noncoding RNA Blnc1 protects against Diet-Induced obesity by promoting mitochondrial function in white fat. Diabetes. Metab Syndr Obes 13(null):1189–1201. https://doi.org/10.2147/DMSO.S248692

    Article  CAS  Google Scholar 

  102. Liu Y, Wang J, Shou Y et al (2022) Restoring the epigenetically silenced LncRNA COL18A1-AS1 represses CcRCC progression by lipid Browning via miR-1286/KLF12 axis. Cell Death Dis 13(7):578. https://doi.org/10.1038/s41419-022-04996-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Wang Y, Hua S, Cui X et al (2020) The effect of FOXC2-AS1 on white adipocyte Browning and the possible regulatory mechanism. Front Endocrinol (Lausanne) 11. https://doi.org/10.3389/fendo.2020.565483

  104. Ma J, Wu Y, Cen L et al (2023) Cold-inducible lncRNA266 promotes Browning and the thermogenic program in white adipose tissue. EMBO Rep 24(12):e55467. https://doi.org/10.15252/embr.202255467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Du K, Bai X, Yang L et al (2021) De Novo reconstruction of transcriptome identified long Non-Coding RNA regulator of Aging-Related brown adipose tissue whitening in rabbits. Biology (Basel) 10(11). https://doi.org/10.3390/biology10111176

  106. Iwase M, Sakai S, Seno S et al (2020) Long non-coding RNA 2310069B03Rik functions as a suppressor of Ucp1 expression under prolonged cold exposure in murine beige adipocytes. Biosci Biotechnol Biochem 84(2):305–313. https://doi.org/10.1080/09168451.2019.1677451

    Article  PubMed  CAS  Google Scholar 

  107. Zhang Y, Fu Y, Zheng Y, Wen Z, Wang C (2020) Identification of differentially expressed mRNA and the hub mRNAs modulated by LncRNA Meg3 as a competing endogenous RNA in brown adipose tissue of mice on a high-fat diet. Adipocyte 9(1):347–359. https://doi.org/10.1080/21623945.2020.1789283

    Article  PubMed Central  CAS  Google Scholar 

  108. Jiao Y, Liu L, Gu H et al (2021) Ad36 promotes differentiation of hADSCs into brown adipocytes by up-regulating LncRNA ROR. Life Sci 265:118762. https://doi.org/10.1016/j.lfs.2020.118762

    Article  PubMed  CAS  Google Scholar 

  109. Hong P, Wu Y, Zhang Q et al (2022) Identification of thermogenesis-related LncRNAs in small extracellular vesicles derived from adipose tissue. BMC Genomics 23(1):660. https://doi.org/10.1186/s12864-022-08883-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Siersbæk R, Nielsen R, John S et al (2011) Extensive chromatin remodelling and establishment of transcription factor ‘hotspots’ during early adipogenesis. EMBO J 30(8):1459–1472. https://doi.org/10.1038/emboj.2011.65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Liu T, Mi L, Xiong J et al (2020) BAF60a deficiency uncouples chromatin accessibility and cold sensitivity from white fat Browning. Nat Commun 11(1):2379. https://doi.org/10.1038/s41467-020-16148-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Baldini F, Zeaiter L, Diab F et al (2023) Nuclear and chromatin rearrangement associate to epigenome and gene expression changes in a model of in vitro adipogenesis and hypertrophy. Biochim Biophys Acta - Mol Cell Biol Lipids 1868(10):159368. https://doi.org/10.1016/j.bbalip.2023.159368

    Article  PubMed  CAS  Google Scholar 

  113. Bean C, Audano M, Varanita T et al (2021) The mitochondrial protein Opa1 promotes adipocyte Browning that is dependent on Urea cycle metabolites. Nat Metab 3(12):1633–1647. https://doi.org/10.1038/s42255-021-00497-2

    Article  PubMed  CAS  Google Scholar 

  114. Chen J, Xu X, Li Y et al (2021) Kdm6a suppresses the alternative activation of macrophages and impairs energy expenditure in obesity. Cell Death Differ 28(5):1688–1704. https://doi.org/10.1038/s41418-020-00694-8

    Article  PubMed  CAS  Google Scholar 

  115. Nanduri R, Furusawa T, Lobanov A et al (2022) Epigenetic regulation of white adipose tissue plasticity and energy metabolism by nucleosome binding HMGN proteins. Nat Commun 13(1):7303. https://doi.org/10.1038/s41467-022-34964-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Huang D, Zhang Z, Dong Z, Liu R, Huang J, Xu G (2022) Caloric restriction and Roux-en-Y gastric bypass promote white adipose tissue Browning in mice. J Endocrinol Invest 45(1):139–148. https://doi.org/10.1007/s40618-021-01626-0

    Article  PubMed  CAS  Google Scholar 

  117. Zhang S, Sun S, Wei X et al (2022) Short-term moderate caloric restriction in a high-fat diet alleviates obesity via AMPK/SIRT1 signaling in white adipocytes and liver. Food Nutr Res 66. https://doi.org/10.29219/fnr.v66.7909

  118. Kobayashi M, Uta S, Otsubo M et al (2020) Srebp-1c/Fgf21/Pgc-1α axis regulated by leptin signaling in Adipocytes—Possible mechanism of caloric Restriction-Associated metabolic remodeling of white adipose tissue. Nutrients 12(7). https://doi.org/10.3390/nu12072054

  119. Li J, Chen Q, Zhai X, Wang D, Hou Y, Tang M (2021) Green tea aqueous extract (GTAE) prevents high-fat diet-induced obesity by activating fat Browning. Food Sci Nutr 9(12):6548–6558. https://doi.org/10.1002/fsn3.2580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Dommerholt MB, Blankestijn M, Vieira-Lara MA et al (2021) Short-term protein restriction at advanced age stimulates FGF21 signalling, energy expenditure and Browning of white adipose tissue. FEBS J 288(7):2257–2277. https://doi.org/10.1111/febs.15604

    Article  PubMed  CAS  Google Scholar 

  121. Li G, Xie C, Lu S et al (2017) Intermittent fasting promotes white adipose Browning and decreases obesity by shaping the gut microbiota. Cell Metab 26(4):672–685e4. https://doi.org/10.1016/j.cmet.2017.08.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Zou T, Wang B, Li S, Liu Y, You J (2020) Dietary Apple polyphenols promote fat Browning in high-fat diet-induced obese mice through activation of adenosine monophosphate-activated protein kinase α. J Sci Food Agric 100(6):2389–2398. https://doi.org/10.1002/jsfa.10248

    Article  PubMed  CAS  Google Scholar 

  123. Lin S-X, Yang C, Jiang R-S et al (2024) Flavonoid extracts of citrus aurantium L. Var. Amara engl. Promote Browning of white adipose tissue in high-fat diet-induced mice. J Ethnopharmacol 324:117749. https://doi.org/10.1016/j.jep.2024.117749

    Article  PubMed  CAS  Google Scholar 

  124. Ángel-Martín A, Vaillant F, Moreno-Castellanos N (2024) Daily consumption of golden berry (Physalis peruviana) has been shown to halt the progression of insulin resistance and obesity in obese rats with metabolic syndrome. Nutrients 16(3). https://doi.org/10.3390/nu16030365

  125. McKie GL, Wright DC (2020) Biochemical adaptations in white adipose tissue following aerobic exercise: from mitochondrial biogenesis to Browning. Biochem J 477(6):1061–1081. https://doi.org/10.1042/BCJ20190466

    Article  PubMed  CAS  Google Scholar 

  126. Torabi A, Reisi J, Kargarfard M, Mansourian M. (2024) Differences in the impact of various types of exercise on irisin levels: A systematic review and meta-analysis. Int J Prev Med. 15:11. https://doi.org/10.4103/ijpvm.ijpvm_76_23. https://journals.lww.com/ijom/fulltext/2024/02290/differences_in_the_impact_of_various_types_of.3.aspx

  127. Li J, Yi X, Li T et al (2022) Effects of exercise and dietary intervention on muscle, adipose tissue, and blood IRISIN levels in obese male mice and their relationship with the beigeization of white adipose tissue. Endocr Connect 11(3). https://doi.org/10.1530/EC-21-0625

  128. Aouichat S, Chayah M, Bouguerra-Aouichat S, Agil A (2020) Time-Restricted feeding improves body weight gain, lipid profiles, and atherogenic indices in Cafeteria-Diet-Fed rats: role of Browning of inguinal white adipose tissue. Nutrients 12(8). https://doi.org/10.3390/nu12082185

  129. Otero-Díaz B, Rodríguez-Flores M, Sánchez-Muñoz V et al (2018) Exercise induces white adipose tissue Browning across the weight spectrum in humans. Front Physiol 9. https://www.frontiersin.org/journals/physiology/articles/https://doi.org/10.3389/fphys.2018.01781

  130. Khalafi M, Mohebbi H, Symonds ME et al (2020) The impact of Moderate-Intensity continuous or High-Intensity interval training on adipogenesis and Browning of subcutaneous adipose tissue in obese male rats. Nutrients 12(4). https://doi.org/10.3390/nu12040925

  131. Liu X, Jiang X, Hu J et al (2024) Exercise attenuates high-fat diet-induced PVAT dysfunction through improved inflammatory response and BMP4-regulated adipose tissue Browning. Front Nutr. https://www.frontiersin.org/journals/nutrition/articles/https://doi.org/10.3389/fnut.2024.1393343. 11-2024

    Article  PubMed  PubMed Central  Google Scholar 

  132. Nayak A, Panda SS, Dwivedi I, Meena S, Aich P (2024) Role of gut microbial-derived metabolites and other select agents on adipocyte Browning. Biochem Biophys Res Commun 737:150518. https://doi.org/10.1016/j.bbrc.2024.150518

    Article  PubMed  CAS  Google Scholar 

  133. Suárez-Zamorano N, Fabbiano S, Chevalier C et al (2015) Microbiota depletion promotes Browning of white adipose tissue and reduces obesity. Nat Med 21(12):1497–1501. https://doi.org/10.1038/nm.3994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Li B, Li L, Li M et al (2019) Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue. Cell Rep 26(10):2720–2737e5. https://doi.org/10.1016/j.celrep.2019.02.015

    Article  PubMed  CAS  Google Scholar 

  135. Panda SS, Behera B, Ghosh R, Bagh B, Aich P (2024) Antibiotic induced adipose tissue Browning in C57BL/6 mice: an association with the metabolic profile and the gut microbiota. Life Sci 340:122473. https://doi.org/10.1016/j.lfs.2024.122473

    Article  PubMed  CAS  Google Scholar 

  136. Park S-S, Lee Y-J, Kang H et al (2019) Lactobacillus Amylovorus KU4 ameliorates diet-induced obesity in mice by promoting adipose Browning through PPARγ signaling. Sci Rep 9(1):20152. https://doi.org/10.1038/s41598-019-56817-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Liao J, Liu Y, Yao Y et al (2023) Clostridium Butyricum strain CCFM1299 reduces obesity via increasing energy expenditure and modulating host bile acid metabolism. Nutrients 15(20). https://doi.org/10.3390/nu15204339

  138. Li S, Zhou L, Zhang Q, Yu M, Xiao X (2022) Genistein improves glucose metabolism and promotes adipose tissue Browning through modulating gut microbiota in mice. Food Funct 13(22):11715–11732. https://doi.org/10.1039/D2FO01973F

    Article  PubMed  CAS  Google Scholar 

  139. Du H, Shi L, Yan T et al (2022) Fu brick tea protects against high-fat diet-induced obesity phenotypes via promoting adipose Browning and thermogenesis in association with gut microbiota. Food Funct 13(21):11111–11124. https://doi.org/10.1039/D2FO02063G

    Article  PubMed  CAS  Google Scholar 

  140. de Moura M, dos Reis Louzano SA, da Conceição LL et al (2021) Antibiotic Followed by a Potential Probiotic Increases Brown Adipose Tissue, Reduces Biometric Measurements, and Changes Intestinal Microbiota Phyla in Obesity. Probiotics Antimicrob Proteins.;13(6):1621–1631. https://doi.org/10.1007/s12602-021-09760-0

  141. Tsukada A, Okamatsu-Ogura Y, Futagawa E et al (2023) White adipose tissue undergoes Browning during preweaning period in association with microbiota formation in mice. iScience 26(7):107239. https://doi.org/10.1016/j.isci.2023.107239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Monfort-Ferré D, Caro A, Menacho M et al (2022) The gut microbiota metabolite succinate promotes adipose tissue Browning in crohn’s disease. J Crohn’s Colitis 16(10):1571–1583. https://doi.org/10.1093/ecco-jcc/jjac069

    Article  Google Scholar 

  143. Chen P-C, Tsai T-P, Liao Y-C et al (2024) Intestinal dual-specificity phosphatase 6 regulates the cold-induced gut microbiota remodeling to promote white adipose Browning. Npj Biofilms Microbiomes 10(1):22. https://doi.org/10.1038/s41522-024-00495-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Xifen Z, Wenting H, Qianbei L et al (2023) Membrane protein amuc_1100 derived from Akkermansia muciniphila facilitates lipolysis and Browning via activating the AC3/PKA/HSL pathway. Microbiol Spectr 11(2):e04323–e04322. https://doi.org/10.1128/spectrum.04323-22

    Article  CAS  Google Scholar 

  145. He Z, Wang T, Qiao L et al (2024) Anti-obesity effects of bifidobacterium lactis YGMCC2013 by promoting adipocyte thermogenesis and beige remodelling in association with gut microbiota. J Funct Foods 115:106099. https://doi.org/10.1016/j.jff.2024.106099

    Article  CAS  Google Scholar 

  146. Liu Y, Zhong X, Lin S et al (2022) Limosilactobacillus reuteri and caffeoylquinic acid synergistically promote adipose Browning and ameliorate obesity-associated disorders. Microbiome 10(1):226. https://doi.org/10.1186/s40168-022-01430-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Sahuri-Arisoylu M, Brody LP, Parkinson JR et al (2016) Reprogramming of hepatic fat accumulation and Browning of adipose tissue by the short-chain fatty acid acetate. Int J Obes 40(6):955–963. https://doi.org/10.1038/ijo.2016.23

    Article  CAS  Google Scholar 

  148. Yu Q, Yu F, Li Q et al (2023) Anthocyanin-Rich butterfly pea flower extract ameliorating Low-Grade inflammation in a High-Fat-Diet and Lipopolysaccharide-Induced mouse model. J Agric Food Chem 71(31):11941–11956. https://doi.org/10.1021/acs.jafc.3c02696

    Article  PubMed  CAS  Google Scholar 

  149. Lun W, Zhou J, Bai Y et al (2023) Chitosan oligosaccharide activates brown adipose tissue by modulating the gut microbiota and bile acid pathways based on faecal microbiota transplantation. J Funct Foods 108:105731. https://doi.org/10.1016/j.jff.2023.105731

    Article  CAS  Google Scholar 

  150. Li H, Zhuang P, Zhang Y et al (2021) Mixed conjugated Linoleic acid sex-dependently reverses high-fat diet-induced insulin resistance via the gut-adipose axis. FASEB J 35(4):e21466. https://doi.org/10.1096/fj.202002161RR

    Article  PubMed  CAS  Google Scholar 

  151. Zhang B, Ni M, Li X, Liu Q, Hu Y, Zhao Y (2021) QSHY granules promote white adipose tissue Browning and correct BCAAs metabolic disorder in NAFLD mice. Diabetes. Metab Syndr Obes 14(null):4241–4251. https://doi.org/10.2147/DMSO.S332659

    Article  CAS  Google Scholar 

  152. Yoshida N, Yamashita T, Osone T et al (2021) Bacteroides spp. Promotes branched-chain amino acid catabolism in brown fat and inhibits obesity. iScience 24(11):103342. https://doi.org/10.1016/j.isci.2021.103342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Virtue AT, McCright SJ, Wright JM et al (2019) The gut microbiota regulates white adipose tissue inflammation and obesity via a family of MicroRNAs. Sci Transl Med 11(496):eaav1892. https://doi.org/10.1126/scitranslmed.aav1892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Li X, Yao Z, Qi X et al (2024) Naringin ameliorates obesity via stimulating adipose thermogenesis and browning, and modulating gut microbiota in diet-induced obese mice. Curr Res Food Sci 8:100683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Yang C, Du Y, Zhao T et al (2024) Consumption of dietary turmeric promotes fat Browning and thermogenesis in association with gut microbiota regulation in high-fat diet-fed mice. Food Funct 15(15):8153–8167

    Article  PubMed  CAS  Google Scholar 

  156. Chen S, Li T, Zhao P et al (2025) Stachyose alleviates high-fat diet-induced obesity via Browning of white adipose tissue and modulation of gut microbiota. Curr Res Food Sci.:101081

  157. Lin W, Lin Y, Koh Y et al (2025) 5-Demethyl‐Polymethoxyflavones mitigate obesity by reducing adipose tissue inflammation, promoting browning, and modulating gut microbiota in High‐Fat Diet‐Fed mice. Mol Nutr Food Res.:e70069

  158. Chiu Y-H, Chou W-L, Ko M-C, Liao J-C, Huang T-H (2025) Curcumin mitigates obesity-driven dysbiosis and liver steatosis while promoting Browning and thermogenesis in white adipose tissue of high-fat diet-fed mice. J Nutr Biochem.:109920

  159. Santana-Oliveira DA, Souza-Tavares H, Fernandes-da-Silva A et al (2023) Exercise prevents obesity by reducing gut-derived inflammatory signals to brown adipocytes in mice. J Endocrinol 259(1). https://doi.org/10.1530/JOE-23-0123

  160. Meng Y, Chen L, Lin W, Wang H, Xu G, Weng X (2020) Exercise reverses the alterations in gut microbiota upon cold exposure and promotes cold-Induced weight loss. Front Physiol. https://www.frontiersin.org/journals/physiology/articles/https://doi.org/10.3389/fphys.2020.00311. 11-2020

    Article  PubMed  PubMed Central  Google Scholar 

  161. Welly RJ, Liu T-W, Zidon TM et al (2016) Comparison of diet versus exercise on metabolic function and gut microbiota in obese rats. Med Sci Sports Exerc 48(9):1688–1698. https://doi.org/10.1249/MSS.0000000000000964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Danysz W, Han Y, Li F et al (2018) Browning of white adipose tissue induced by the ß3 agonist CL-316,243 after local and systemic treatment - PK-PD relationship. Biochim Biophys Acta - Mol Basis Dis 1864:2972–2982 9, Part B. https://doi.org/10.1016/j.bbadis.2018.06.007

    Article  PubMed  CAS  Google Scholar 

  163. Li Y, Ping X, Zhang Y et al (2021) Comparative transcriptome profiling of cold exposure and β3-AR agonist CL316,243-Induced Browning of white fat. Front Physiol 12. https://doi.org/10.3389/fphys.2021.667698

  164. Walker ME, Kodani SD, Mena HA, Tseng Y-H, Cypess AM, Spite M (2024) Brown adipose tissue activation in humans increases plasma levels of lipid mediators. J Clin Endocrinol Metab January dgae016. https://doi.org/10.1210/clinem/dgae016

  165. Sun X, Sui W, Mu Z et al (2023) Mirabegron displays anticancer effects by globally Browning adipose tissues. Nat Commun 14(1):7610. https://doi.org/10.1038/s41467-023-43350-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Chen Y, Ding J, Zhao Y, Ju S, Mao H, Peng X-G (2021) Irisin induces white adipose tissue Browning in mice as assessed by magnetic resonance imaging. Exp Biol Med 246(14):1597–1606. https://doi.org/10.1177/15353702211006049

    Article  CAS  Google Scholar 

  167. Abbasi M, Fan Z, Dawson JA, Wang S (2022) Transdermal delivery of Metformin using dissolving microneedles and iontophoresis patches for Browning subcutaneous adipose tissue. Pharmaceutics 14(4). https://doi.org/10.3390/pharmaceutics14040879

  168. Su M, Sun L, Li W et al (2020) Metformin alleviates hyperuricaemia-induced serum FFA elevation and insulin resistance by inhibiting adipocyte hypertrophy and reversing suppressed white adipose tissue Beiging. Clin Sci 134(12):1537–1553. https://doi.org/10.1042/CS20200580

    Article  CAS  Google Scholar 

  169. Liang G, Fang J, Zhang P, Ding S, Zhao Y, Feng Y (2024) Metformin plus L-carnitine enhances brown/beige adipose tissue activity via Nrf2/HO-1 signaling to reduce lipid accumulation and inflammation in murine obesity. 19(1). https://doi.org/10.1515/med-2024-0900

  170. Tehrani SS, Goodarzi G, Panahi G, Zamani-Garmsiri F, Meshkani R (2023) The combination of Metformin with Morin alleviates hepatic steatosis via modulating hepatic lipid metabolism, hepatic inflammation, brown adipose tissue thermogenesis, and white adipose tissue Browning in high-fat diet-fed mice. Life Sci 323:121706. https://doi.org/10.1016/j.lfs.2023.121706

    Article  PubMed  CAS  Google Scholar 

  171. Lv Y, Zhao C, Jiang Q et al (2024) Dapagliflozin promotes Browning of white adipose tissue through the FGFR1-LKB1-AMPK signaling pathway. Mol Biol Rep 51(1):562. https://doi.org/10.1007/s11033-024-09540-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Martins FF, Marinho TS, Cardoso LEM et al (2022) Semaglutide (GLP-1 receptor agonist) stimulates Browning on subcutaneous fat adipocytes and mitigates inflammation and Endoplasmic reticulum stress in visceral fat adipocytes of obese mice. Cell Biochem Funct 40(8):903–913. https://doi.org/10.1002/cbf.3751

    Article  PubMed  CAS  Google Scholar 

  173. Choi S-S, Kim E-S, Jung J-E et al (2016) PPARγ antagonist Gleevec improves insulin sensitivity and promotes the Browning of white adipose tissue. Diabetes 65(4):829–839. https://doi.org/10.2337/db15-1382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Zong Y, Wang M, Liu Y, Suo X, Fan G, Yang X (2023) 5-HEPE reduces obesity and insulin resistance by promoting adipose tissue Browning through GPR119/AMPK/PGC1α activation. Life Sci 323:121703. https://doi.org/10.1016/j.lfs.2023.121703

    Article  PubMed  CAS  Google Scholar 

  175. Lefranc C, Friederich-Persson M, Foufelle F, Nguyen Dinh Cat A, Jaisser F (2021) Adipocyte-Mineralocorticoid receptor alters mitochondrial quality control leading to mitochondrial dysfunction and senescence of visceral adipose tissue. Int J Mol Sci 22(6). https://doi.org/10.3390/ijms22062881

  176. Marzolla V, Feraco A, Limana F, Kolkhof P, Armani A, Caprio M (2022) Class-specific responses of brown adipose tissue to steroidal and nonsteroidal mineralocorticoid receptor antagonists. J Endocrinol Invest 45(1):215–220. https://doi.org/10.1007/s40618-021-01635-z

    Article  PubMed  CAS  Google Scholar 

  177. Thuzar M, Law WP, Dimeski G, Stowasser M, Ho KKY (2019) Mineralocorticoid antagonism enhances brown adipose tissue function in humans: A randomized placebo-controlled cross-over study. Diabetes Obes Metab 21(3):509–516. https://doi.org/10.1111/dom.13539

    Article  PubMed  CAS  Google Scholar 

  178. Luo L, Wang L, Luo Y, Romero E, Yang X, Liu M (2021) Glucocorticoid/Adiponectin axis mediates full activation of Cold-Induced beige fat thermogenesis. Biomolecules 11(11). https://doi.org/10.3390/biom11111573

  179. Lu K-Y, Primus Dass KT, Lin S-Z, Tseng Y-H, Liu S-P, Harn H-J (2021) N-butylidenephthalide ameliorates high-fat diet-induced obesity in mice and promotes Browning through adrenergic response/ampk activation in mouse beige adipocytes. Biochim Biophys Acta - Mol Cell Biol Lipids 1866(12):159033. https://doi.org/10.1016/j.bbalip.2021.159033

    Article  PubMed  CAS  Google Scholar 

  180. Choi WH, Ahn J, Jung CH, Jang YJ, Ha TY (2016) β-Lapachone prevents Diet-Induced obesity by increasing energy expenditure and stimulating the Browning of white adipose tissue via downregulation of miR-382 expression. Diabetes 65(9):2490–2501. https://doi.org/10.2337/db15-1423

    Article  PubMed  CAS  Google Scholar 

  181. Okla M, Al Madani JO, Chung S, Alfayez M (2020) Apigenin reverses Interleukin-1β-Induced suppression of adipocyte Browning via COX2/PGE2 signaling pathway in human adipocytes. Mol Nutr Food Res 64(1):1900925. https://doi.org/10.1002/mnfr.201900925

    Article  CAS  Google Scholar 

  182. Lee HS, Heo CU, Song Y-H, Lee K, Choi C-I (2023) Naringin promotes fat Browning mediated by UCP1 activation via the AMPK signaling pathway in 3T3-L1 adipocytes. Arch Pharm Res 46(3):192–205. https://doi.org/10.1007/s12272-023-01432-7

    Article  PubMed  CAS  Google Scholar 

  183. Takeda Y, Dai P (2022) Capsaicin directly promotes adipocyte Browning in the chemical compound-induced brown adipocytes converted from human dermal fibroblasts. Sci Rep 12(1):6612. https://doi.org/10.1038/s41598-022-10644-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Pei Y, Otieno D, Gu I et al (2021) Effect of Quercetin on nonshivering thermogenesis of brown adipose tissue in high-fat diet-induced obese mice. J Nutr Biochem 88:108532. https://doi.org/10.1016/j.jnutbio.2020.108532

    Article  PubMed  CAS  Google Scholar 

  185. Milton-Laskíbar I, Gómez-Zorita S, Arias N et al (2020) Effects of Resveratrol and its derivative pterostilbene on brown adipose tissue thermogenic activation and on white adipose tissue Browning process. J Physiol Biochem 76(2):269–278. https://doi.org/10.1007/s13105-020-00735-3

    Article  PubMed  CAS  Google Scholar 

  186. Pacifici F, Malatesta G, Mammi C et al (2023) A novel mix of polyphenols and micronutrients reduces adipogenesis and promotes white adipose tissue Browning via UCP1 expression and AMPK activation. Cells 12(5). https://doi.org/10.3390/cells12050714

  187. Paré M, Darini CY, Yao X et al (2020) Breast cancer mammospheres secrete adrenomedullin to induce lipolysis and Browning of adjacent adipocytes. BMC Cancer 20(1):784. https://doi.org/10.1186/s12885-020-07273-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Xu R, Li Z, Shi B et al (2024) Bone controls Browning of white adipose tissue and protects from diet-induced obesity through Schnurri-3-regulated SLIT2 secretion

  189. Kawabe Y, Mori J, Morimoto H et al (2019) ACE2 exerts anti-obesity effect via stimulating brown adipose tissue and induction of Browning in white adipose tissue. Am J Physiol Metab 317(6):E1140–E1149. https://doi.org/10.1152/ajpendo.00311.2019

    Article  CAS  Google Scholar 

  190. Tsagkaraki E, Nicoloro SM, DeSouza T et al (2021) CRISPR-enhanced human adipocyte Browning as cell therapy for metabolic disease. Nat Commun 12(1):6931. https://doi.org/10.1038/s41467-021-27190-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Zhu H, Liu D, Sui M et al (2023) CRISPRa-based activation of Fgf21 and Fndc5 ameliorates obesity by promoting adipocytes Browning. Clin Transl Med 13(7):e1326. https://doi.org/10.1002/ctm2.1326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Wang C-H, Lundh M, Fu A et al (2020) CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci Transl Med 12(558):eaaz8664. https://doi.org/10.1126/scitranslmed.aaz8664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Michurina S, Stafeev I, Boldyreva M et al (2023) Transplantation of Adipose-Tissue-Engineered constructs with CRISPR-Mediated UCP1 activation. Int J Mol Sci 24(4). https://doi.org/10.3390/ijms24043844

  194. Shen Y, Cohen JL, Nicoloro SM, et al. CRISPR-delivery particles targeting nuclear receptor–interacting protein 1 (Nrip1) in adipose cells to enhance energy expenditure. J Biol Chem. 2018;293(44):17291–17305. https://doi.org/10.1074/jbc.RA118.004554

  195. Hoffmann JM, Grünberg JR, Church C et al (2017) BMP4 gene therapy in mature mice reduces BAT activation but protects from obesity by Browning subcutaneous adipose tissue. Cell Rep 20(5):1038–1049. https://doi.org/10.1016/j.celrep.2017.07.020

    Article  PubMed  CAS  Google Scholar 

  196. Liu P-S, Lin Y-W, Burton FH, Wei L-N (2015) Injecting engineered anti-inflammatory macrophages therapeutically induces white adipose tissue Browning and improves diet-induced insulin resistance. Adipocyte 4(2):123–128. https://doi.org/10.4161/21623945.2014.981438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

The authors did not receive any financial support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

A.S., J.K., and L.K.V. conceived and designed the study. A.S. drafted the manuscript. J.K. and L.K.V. reviewed and edited the manuscript. R.H.L. visualized the data. R.M. collected and curated the data. M.A. and V.C. provided methodology and supervised the study.

Corresponding author

Correspondence to Janardanan Kumar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satheesan, A., Kumar, J., Leela, K.V. et al. The multifaceted regulation of white adipose tissue browning and their therapeutic potential. J Physiol Biochem (2025). https://doi.org/10.1007/s13105-025-01117-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13105-025-01117-3

Keywords