Abstract
Objective
Obesity is characterized by excessive accumulation of white adipose tissue (WAT). Conversely, brown adipose tissue is protective against obesity. We recently reported liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), could inhibit high-fat-diet-induced obesity by browning of WAT. However, the molecular mechanism involved is not well defined. Hence, we aimed to explore whether GLP-1RA could promote brown remodeling in WAT by regulating miRNAs.
Methods
After the obesity model was successfully constructed, C57BL/6J mice were treated with liraglutide (200 μg/kg/d) or equivoluminal saline subcutaneously for 12 weeks. Then, the deposition of abdominal fat was measured by CT scanning. At the end of the treatments, glucose and insulin tolerance in mice were assessed. Serum lipid levels were monitored and epididymal WAT (eWAT) were collected for analysis. Quantitative real-time PCR and western blot analyses were conducted to evaluate the expression of genes and miRNAs associated with white fat browning.
Results
Liraglutide significantly reduced body weight and visceral fat mass. Levels of lipid profile were also improved. Liraglutide upregulated the expression of browning-related genes in eWAT. Meanwhile, the expression level of miRNAs (miR-196a and miR-378a) positively associated with the browning of WAT were increased, while the expression of miR-155, miR-199a, and miR-382 negatively related with browning of WAT were decreased.
Conclusion
Our findings suggest that liraglutide could promote brown remodeling of visceral WAT by bi-regulating miRNAs; this might be one of the mechanisms underlying its effect on weight loss.







Similar content being viewed by others
Data availability
All data generated or analyzed during this study are included within the article.
Abbreviations
- GLP-1RA:
-
glucagon-like peptide-1 receptor agonists
- AT:
-
adipose tissue
- WAT:
-
white adipose tissue
- eWAT:
-
epididymal white adipose tissue
- BAT:
-
brown adipose tissue
- UCP1:
-
unique Uncoupling protein 1
- FGF21:
-
fibroblast growth factor 21
- ND:
-
normal diet
- HFD:
-
high-fat diet
- TG:
-
triglycerides
- TC:
-
total cholesterol
- LDL:
-
low-density lipoprotein
- PGC-1α:
-
Peroxisome proliferator-activated receptor-gamma coactivator-1alpha
- PRDM16:
-
positive regulatory domain containing 16
- CIDEA:
-
cell death-inducing DNA fragmentation factorα-like effector A
- MAPK:
-
mitogen-activated protein kinase.
References
X. Jin, T. Qiu, L. Li, R. Yu, X. Chen, C. Li, C.G. Proud, T. Jiang, Pathophysiology of obesity and its associated diseases. Acta. Pharm. Sin. B 13, 2403–2424 (2023). https://doi.org/10.1016/j.apsb.2023.01.012
F. Shamsi, C.H. Wang, Y.H. Tseng, The evolving view of thermogenic adipocytes - ontogeny, niche and function. Nat. Rev. Endocrinol. 17, 726–744 (2021). https://doi.org/10.1038/s41574-021-00562-6
S. Heinonen, R. Jokinen, A. Rissanen, K.H. Pietiläinen, White adipose tissue mitochondrial metabolism in health and in obesity. Obes. Rev. 21, e12958 (2020). https://doi.org/10.1111/obr.12958
D. Da Eira, S. Jani, R.B. Ceddia, An obesogenic diet impairs uncoupled substrate oxidation and promotes whitening of the brown adipose tissue in rats. J. Physiol. 601, 69–82 (2023). https://doi.org/10.1113/jp283721
N. Vujović, M.J. Piron, J. Qian, S.L. Chellappa, A. Nedeltcheva, D. Barr, S.W. Heng, K. Kerlin, S. Srivastav, W. Wang, B. Shoji, M. Garaulet, M.J. Brady, F. Scheer, Late isocaloric eating increases hunger, decreases energy expenditure, and modifies metabolic pathways in adults with overweight and obesity. Cell Metab. 34, 1486–1498.e7 (2022). https://doi.org/10.1016/j.cmet.2022.09.007
Y. Li, P.C. Schwalie, A. Bast-Habersbrunner, S. Mocek, J. Russeil, T. Fromme, B. Deplancke, M. Klingenspor, Systems-genetics-based inference of a core regulatory network underlying white fat browning. Cell Rep. 29, 4099–4113.e5 (2019). https://doi.org/10.1016/j.celrep.2019.11.053
V.M. Lima, J. Liu, B.B. Brandão, C.A. Lino, C.S. Balbino Silva, M.A.C. Ribeiro, T.E. Oliveira, C.C. Real, D. de Paula Faria, C. Cederquist, Z.P. Huang, X. Hu, M.L. Barreto-Chaves, J.C.B. Ferreira, W.T. Festuccia, M.A. Mori, C.R. Kahn, D.Z. Wang, G.P. Diniz, miRNA-22 deletion limits white adipose expansion and activates brown fat to attenuate high-fat diet-induced fat mass accumulation. Metabolism 117, 154723 (2021). https://doi.org/10.1016/j.metabol.2021.154723
Y.F. Lv, J. Yu, Y.L. Sheng, M. Huang, X.C. Kong, W.J. Di, J. Liu, H. Zhou, H. Liang, G.X. Ding, Glucocorticoids suppress the browning of adipose tissue via miR-19b in male mice. Endocrinology 159, 310–322 (2018). https://doi.org/10.1210/en.2017-00566
H. Zhang, M. Guan, K.L. Townsend, T.L. Huang, D. An, X. Yan, R. Xue, T.J. Schulz, J. Winnay, M. Mori, M.F. Hirshman, K. Kristiansen, J.S. Tsang, A.P. White, A.M. Cypess, L.J. Goodyear, Y.H. Tseng, MicroRNA-455 regulates brown adipogenesis via a novel HIF1an-AMPK-PGC1α signaling network. EMBO Rep. 16, 1378–1393 (2015). https://doi.org/10.15252/embr.201540837
L. He, M. Tang, T. Xiao, H. Liu, W. Liu, G. Li, F. Zhang, Y. Xiao, Z. Zhou, F. Liu, F. Hu, Obesity-associated miR-199a/214 cluster inhibits adipose browning via PRDM16-PGC-1α transcriptional network. Diabetes 67, 2585–2600 (2018). https://doi.org/10.2337/db18-0626
N. Arias, L. Aguirre, A. Fernández-Quintela, M. González, A. Lasa, J. Miranda, M.T. Macarulla, M.P. Portillo, MicroRNAs involved in the browning process of adipocytes. J. Physiol. Biochem. 72, 509–521 (2016). https://doi.org/10.1007/s13105-015-0459-z
M. Mori, H. Nakagami, G. Rodriguez-Araujo, K. Nimura, Y. Kaneda, Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol. 10, e1001314 (2012). https://doi.org/10.1371/journal.pbio.1001314
Y. Chen, F. Siegel, S. Kipschull, B. Haas, H. Fröhlich, G. Meister, A. Pfeifer, miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat. Commun. 4, 1769 (2013). https://doi.org/10.1038/ncomms2742
A. Astrup, S. Rossner, L. Van Gaal, A. Rissanen, L. Niskanen, M. Al Hakim, J. Madsen, M.F. Rasmussen, M.E. Lean; N.N.S. Group, Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374, 1606–1616 (2009). https://doi.org/10.1016/S0140-6736(09)61375-1
M.C. Thomas, M.T. Coughlan, M.E. Cooper, The postprandial actions of GLP-1 receptor agonists: the missing link for cardiovascular and kidney protection in type 2 diabetes. Cell Metab. 35, 253–273 (2023). https://doi.org/10.1016/j.cmet.2023.01.004
J. Chen, A. Mei, Y. Wei, C. Li, H. Qian, X. Min, H. Yang, L. Dong, X. Rao, J. Zhong, GLP-1 receptor agonist as a modulator of innate immunity. Front. Immunol. 13, 997578 (2022). https://doi.org/10.3389/fimmu.2022.997578
Food and Drug Administration, Saxenda (Liraglutide 3.0 Mg) Prescribing Information, (Food and Drug Administration, Springer Field, Maryland, 2014)
D. Beiroa, M. Imbernon, R. Gallego, A. Senra, D. Herranz, F. Villarroya, M. Serrano, J. Fernø, J. Salvador, J. Escalada, C. Dieguez, M. Lopez, G. Frühbeck, R. Nogueiras, GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 3346–3358 (2014). https://doi.org/10.2337/db14-0302
L. Lynch, A.E. Hogan, D. Duquette, C. Lester, A. Banks, K. LeClair, D.E. Cohen, A. Ghosh, B. Lu, M. Corrigan, D. Stevanovic, E. Maratos-Flier, D.J. Drucker, D. O’Shea, M. Brenner, iNKT cells induce FGF21 for thermogenesis and are required for maximal weight loss in GLP1 therapy. Cell Metab. 24, 510–519 (2016). https://doi.org/10.1016/j.cmet.2016.08.003
P.L. Valenzuela, P. Carrera-Bastos, A. Castillo-García, D.E. Lieberman, A. Santos-Lozano, A. Lucia, Obesity and the risk of cardiometabolic diseases. Nat. Rev. Cardiol. 20, 475–494 (2023). https://doi.org/10.1038/s41569-023-00847-5
D.M. Rubino, F.L. Greenway, U. Khalid, P.M. O’Neil, J. Rosenstock, R. Sørrig, T.A. Wadden, A. Wizert, W.T. Garvey, Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: The STEP 8 Randomized Clinical Trial. JAMA 327, 138–150 (2022). https://doi.org/10.1001/jama.2021.23619
A.S. Kelly, P. Auerbach, M. Barrientos-Perez, I. Gies, P.M. Hale, C. Marcus, L.D. Mastrandrea, N. Prabhu, S. Arslanian, A randomized, controlled trial of liraglutide for adolescents with obesity. N. Eng. J. Med. 382, 2117–2128 (2020). https://doi.org/10.1056/NEJMoa1916038
D. Papamargaritis, C.W. le Roux, J.J. Holst, M.J. Davies, New therapies for obesity. Cardiovasc. Res. (2022). https://doi.org/10.1093/cvr/cvac176
K. Raun, P. von Voss, C.F. Gotfredsen, V. Golozoubova, B. Rolin, L.B. Knudsen, Liraglutide, a long-acting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, whereas a dipeptidyl peptidase-IV inhibitor, vildagliptin, does not. Diabetes 56, 8–15 (2007). https://doi.org/10.2337/db06-0565
X. Pi-Sunyer, A. Astrup, K. Fujioka, F. Greenway, A. Halpern, M. Krempf, D.C. Lau, C.W. le Roux, R. Violante Ortiz, C.B. Jensen, J.P. Wilding, A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Eng. J. Med. 373, 11–22 (2015). https://doi.org/10.1056/NEJMoa1411892
R.Z. Ye, G. Richard, N. Gévry, A. Tchernof, A.C. Carpentier, Fat cell size: measurement methods, pathophysiological origins, and relationships with metabolic dysregulations. Endocr. Rev. 43, 35–60 (2022). https://doi.org/10.1210/endrev/bnab018
T. Skurk, C. Alberti-Huber, C. Herder, H. Hauner, Relationship between adipocyte size and adipokine expression and secretion. J. Clin. Endocrinol. Metab. 92, 1023–1033 (2007). https://doi.org/10.1210/jc.2006-1055
Y. Wan, X. Bao, J. Huang, X. Zhang, W. Liu, Q. Cui, D. Jiang, Z. Wang, R. Liu, Q. Wang, Novel GLP-1 analog supaglutide reduces HFD-induced obesity associated with increased Ucp-1 in white adipose tissue in mice. Front. Physiol. 8, 294 (2017). https://doi.org/10.3389/fphys.2017.00294
S. Kajimura, B.M. Spiegelman, P. Seale, Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22, 546–559 (2015). https://doi.org/10.1016/j.cmet.2015.09.007
A. Bartelt, C. John, N. Schaltenberg, J.F.P. Berbée, A. Worthmann, M.L. Cherradi, C. Schlein, J. Piepenburg, M.R. Boon, F. Rinninger, M. Heine, K. Toedter, A. Niemeier, S.K. Nilsson, M. Fischer, S.L. Wijers, W. van Marken Lichtenbelt, L. Scheja, P.C.N. Rensen, J. Heeren, Thermogenic adipocytes promote HDL turnover and reverse cholesterol transport. Nat. Commun. 8, 15010 (2017). https://doi.org/10.1038/ncomms15010
J. Wu, P. Cohen, B.M. Spiegelman, Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 27, 234–250 (2013). https://doi.org/10.1101/gad.211649.112
F. Xu, B. Lin, X. Zheng, Z. Chen, H. Cao, H. Xu, H. Liang, J. Weng, GLP-1 receptor agonist promotes brown remodelling in mouse white adipose tissue through SIRT1. Diabetologia 59, 1059–1069 (2016). https://doi.org/10.1007/s00125-016-3896-5
H.J. Jun, Y. Joshi, Y. Patil, R.C. Noland, J.S. Chang, NT-PGC-1α activation attenuates high-fat diet-induced obesity by enhancing brown fat thermogenesis and adipose tissue oxidative metabolism. Diabetes 63, 3615–3625 (2014). https://doi.org/10.2337/db13-1837
K.J. Chung, A. Chatzigeorgiou, M. Economopoulou, R. Garcia-Martin, V.I. Alexaki, I. Mitroulis, M. Nati, J. Gebler, T. Ziemssen, S.E. Goelz, J. Phieler, J.H. Lim, K.P. Karalis, T. Papayannopoulou, M. Blüher, G. Hajishengallis, T. Chavakis, A self-sustained loop of inflammation-driven inhibition of beige adipogenesis in obesity. Nat. Immunol. 18, 654–664 (2017). https://doi.org/10.1038/ni.3728
M. Uldry, W. Yang, J. St-Pierre, J. Lin, P. Seale, B.M. Spiegelman, Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 3, 333–341 (2006). https://doi.org/10.1016/j.cmet.2006.04.002
D. Cuevas-Ramos, R. Mehta, C.A. Aguilar-Salinas, Fibroblast growth factor 21 and browning of white adipose tissue. Front. Physiol. 10, 37 (2019). https://doi.org/10.3389/fphys.2019.00037
S. Jash, S. Banerjee, M.J. Lee, S.R. Farmer, V. Puri, CIDEA transcriptionally regulates UCP1 for britening and thermogenesis in human fat cells. iScience 20, 73–89 (2019). https://doi.org/10.1016/j.isci.2019.09.011
J. Wang, Y. Zhou, D. Long, Y. Wu, F. Liu, GLP-1 receptor agonist, liraglutide, protects podocytes from apoptosis in diabetic nephropathy by promoting white fat browning. Biochem. Biophys. Res. Commun. 664, 142–151 (2023). https://doi.org/10.1016/j.bbrc.2023.04.012
L. Zhao, C. Zhu, M. Lu, C. Chen, X. Nie, B. Abudukerimu, K. Zhang, Z. Ning, Y. Chen, J. Cheng, F. Xia, N. Wang, M.D. Jensen, Y. Lu, The key role of a glucagon-like peptide-1 receptor agonist in body fat redistribution. J. Endocrinol. 240, 271–286 (2019). https://doi.org/10.1530/joe-18-0374
X. Zhang, D.C. Yeung, M. Karpisek, D. Stejskal, Z.G. Zhou, F. Liu, R.L. Wong, W.S. Chow, A.W. Tso, K.S. Lam, A. Xu, Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57, 1246–1253 (2008). https://doi.org/10.2337/db07-1476
P.Y. Ma, X.Y. Li, Y.L. Wang, D.Q. Lang, L. Liu, Y.K. Yi, Q. Liu, C.Y. Shen, Natural bioactive constituents from herbs and nutraceuticals promote browning of white adipose tissue. Pharmacol. Res. 178, 106175 (2022). https://doi.org/10.1016/j.phrs.2022.106175
N. Huang, J. Wang, W. Xie, Q. Lyu, J. Wu, J. He, W. Qiu, N. Xu, Y. Zhang, MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1. Biochem. Biophys. Res. Commun. 457, 37–42 (2015). https://doi.org/10.1016/j.bbrc.2014.12.055
W.H. Choi, J. Ahn, C.H. Jung, Y.J. Jang, T.Y. Ha, β-lapachone prevents diet-induced obesity by increasing energy expenditure and stimulating the browning of white adipose tissue via downregulation of miR-382 expression. Diabetes 65, 2490–2501 (2016). https://doi.org/10.2337/db15-1423
Funding
This study was supported in part by grants from the National Natural Science Foundation of China (82000809, 81870548), the Social Development Project of Jiangsu Province (BE2018692), the Natural Science Foundation of Jiangsu Province, China (BK20191222), and the Social Development Project of Zhenjiang City (SH2019041), Jiangsu Province.
Author information
Authors and Affiliations
Contributions
L.Z. and G.Y. conceived and designed the study. L.Z. and W.L. performed the analysis, prepared the figures, and drafted the manuscript. W.L. and P.Z. performed the experiment, collected the data. D.W., L.Y., and G.Y. conceived the study and participated in its design and coordination. All the authors discussed the results and approved the final manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Ethical approval
The study was approved by the Biomedical Research Ethics Committee of Affiliated Hospital of Jiangsu University, Zhenjiang, China, and performed in accordance with the Declaration of Helsinki.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhao, L., Li, W., Zhang, P. et al. Liraglutide induced browning of visceral white adipose through regulation of miRNAs in high-fat-diet-induced obese mice. Endocrine 85, 222–232 (2024). https://doi.org/10.1007/s12020-024-03734-2
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s12020-024-03734-2


