Abstract
DNA replication is a fundamental cellular process that ensures the faithful duplication of the genome during cell division. However, this process is frequently challenged by various intrinsic and extrinsic factors that can impede replication fork progression and jeopardize genomic integrity. To safeguard against these challenges, cells have evolved intricate stress response mechanisms, including replication checkpoint activation, translesion DNA synthesis, repriming and fork reversal, all of which are vital for preserving genomic stability. Central to the orchestration of these pathways are post-translational modifications (PTMs), which dynamically regulate the stability, localization, and activity of key proteins involved in the replication stress responses. In this Review, we summarize the primary mechanisms that orchestrate cellular responses to replication stress and highlight emerging insights into the roles of both histone and nonhistone PTMs in the precise and coordinated regulation of replication fork dynamics under genotoxic conditions.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2â9 (2014).
Berti, M., Cortez, D. & Lopes, M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat. Rev. Mol. Cell Biol. 21, 633â651 (2020).
Saxena, S. & Zou, L. Hallmarks of DNA replication stress. Mol. Cell 82, 2298â2314 (2022).
Neelsen, K. J. & Lopes, M. Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat. Rev. Mol. Cell Biol. 16, 207â220 (2015).
Qiu, S., Jiang, G., Cao, L. & Huang, J. Replication fork reversal and protection. Front. Cell Dev. Biol. 9, 670392 (2021).
Marians, K. J. Lesion bypass and the reactivation of stalled replication forks. Annu. Rev. Biochem. 87, 217â238 (2018).
Quinet, A., Tirman, S., Cybulla, E., Meroni, A. & Vindigni, A. To skip or not to skip: choosing repriming to tolerate DNA damage. Mol. Cell 81, 649â658 (2021).
Saldivar, J. C., Cortez, D. & Cimprich, K. A. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat. Rev. Mol. Cell Biol. 18, 622â636 (2017).
Simoneau, A. & Zou, L. An extending ATR-CHK1 circuitry: the replication stress response and beyond. Curr. Opin. Genet. Dev. 71, 92â98 (2021).
Gaillard, H., GarcÃa-Muse, T. & Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer 15, 276â289 (2015).
Macheret, M. & Halazonetis, T. D. DNA replication stress as a hallmark of cancer. Annu. Rev. Pathol. 10, 425â448 (2015).
Lee, J. M., Hammarén, H. M., Savitski, M. M. & Baek, S. H. Control of protein stability by post-translational modifications. Nat. Commun. 14, 201 (2023).
Dikic, I. & Schulman, B. A. An expanded lexicon for the ubiquitin code. Nat. Rev. Mol. Cell Biol. 24, 273â287 (2023).
Millán-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modificationsâcause and consequence of genome function. Nat. Rev. Genet. 23, 563â580 (2022).
Byun, T. S., Pacek, M., Yee, M. C., Walter, J. C. & Cimprich, K. A. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19, 1040â1052 (2005).
Lopes, M., Foiani, M. & Sogo, J. M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 15â27 (2006).
Maréchal, A. & Zou, L. RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res. 25, 9â23 (2015).
Liu, T. & Huang, J. Replication protein A and more: single-stranded DNA-binding proteins in eukaryotic cells. Acta Biochim. Biophys. Sin. (Shanghai) 48, 665â670 (2016).
Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542â1548 (2003).
Ngoi, N. Y. L. et al. Targeting ATR in patients with cancer. Nat. Rev. Clin. Oncol. 21, 278â293 (2024).
Kavlashvili, T., Liu, W., Mohamed, T. M., Cortez, D. & Dewar, J. M. Replication fork uncoupling causes nascent strand degradation and fork reversal. Nat. Struct. Mol. Biol. 30, 115â124 (2023).
Joseph, S. A. et al. Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease. DNA Repair (Amst.) 95, 102943 (2020).
Tian, T. et al. The ZATT-TOP2A-PICH axis drives extensive replication fork reversal to promote genome stability. Mol. Cell 81, 198â211 (2021).
Ding, L. et al. RNF4 controls the extent of replication fork reversal to preserve genome stability. Nucleic Acids Res. 50, 5672â5687 (2022).
Liu, W. et al. RAD51 bypasses the CMG helicase to promote replication fork reversal. Science 380, 382â387 (2023).
Bugreev, D. V., Rossi, M. J. & Mazin, A. V. Cooperation of RAD51 and RAD54 in regression of a model replication fork. Nucleic Acids Res. 39, 2153â2164 (2011).
Halder, S., Ranjha, L., Taglialatela, A., Ciccia, A. & Cejka, P. Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex. Nucleic Acids Res. 50, 8008â8022 (2022).
Pasero, P. & Vindigni, A. Nucleases acting at stalled forks: how to reboot the replication program with a few shortcuts. Annu. Rev. Genet. 51, 477â499 (2017).
Bhat, K. P. & Cortez, D. RPA and RAD51: fork reversal, fork protection, and genome stability. Nat. Struct. Mol. Biol. 25, 446â453 (2018).
Xu, S. et al. Abro1 maintains genome stability and limits replication stress by protecting replication fork stability. Genes Dev. 31, 1469â1482 (2017).
Song, L. et al. Dynamic control of RNA-DNA hybrid formation orchestrates DNA2 activation at stalled forks by RNAPII and DDX39A. Mol. Cell 85, 506â522 (2025).
Xu, Z. et al. DDX39A resolves replication fork-associated RNA-DNA hybrids to balance fork protection and cleavage for genomic stability maintenance. Mol. Cell 85, 490â505 (2025).
Berti, M. et al. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat. Struct. Mol. Biol. 20, 347â354 (2013).
Thangavel, S. et al. DNA2 drives processing and restart of reversed replication forks in human cells. J. Cell Biol. 208, 545â562 (2015).
Xie, H. et al. Synergistic protection of nascent DNA at stalled forks by MSANTD4 and BRCA1/2-RAD51. Nat. Chem. Biol. 21, 1182â1193 (2025).
Bryant, H. E. et al. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J. 28, 2601â2615 (2009).
Bianchi, J. et al. PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol. Cell 52, 566â573 (2013).
Wan, L. et al. hPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity. EMBO Rep. 14, 1104â1112 (2013).
Mourón, S. et al. Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat. Struct. Mol. Biol. 20, 1383â1389 (2013).
GarcÃa-Gómez, S. et al. PrimPol, an archaic primase/polymerase operating in human cells. Mol. Cell 52, 541â553 (2013).
Tirman, S. et al. Temporally distinct post-replicative repair mechanisms fill PRIMPOL-dependent ssDNA gaps in human cells. Mol. Cell 81, 4026â4040 (2021).
Taglialatela, A. et al. REV1-Polζ maintains the viability of homologous recombination-deficient cancer cells through mutagenic repair of PRIMPOL-dependent ssDNA gaps. Mol. Cell 81, 4008â4025 (2021).
Mirsanaye, A. S., Typas, D. & Mailand, N. Ubiquitylation at stressed replication forks: mechanisms and functions. Trends Cell Biol. 31, 584â597 (2021).
GarcÃa-RodrÃguez, N., Wong, R. P. & Ulrich, H. D. Functions of ubiquitin and SUMO in DNA replication and replication stress. Front. Genet. 7, 87 (2016).
Chen, Y. & Yuan, J. The post translational modification of key regulators of ATR signaling in DNA replication. Genome Instab. Dis. 2, 92â101 (2021).
Narita, T., Weinert, B. T. & Choudhary, C. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 20, 156â174 (2019).
Shvedunova, M. & Akhtar, A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 23, 329â349 (2022).
Zhang, H. et al. ATRIP deacetylation by SIRT2 drives ATR checkpoint activation by promoting binding to RPA-ssDNA. Cell Rep. 14, 1435â1447 (2016).
Liu, T. et al. A divergent role of the SIRT1-TopBP1 axis in regulating metabolic checkpoint and DNA damage checkpoint. Mol. Cell 56, 681â695 (2014).
Matheson, C. J., Backos, D. S. & Reigan, P. Targeting WEE1 kinase in cancer. Trends Pharmacol. Sci. 37, 872â881 (2016).
Zhu, X. et al. SIRT1 deacetylates WEE1 and sensitizes cancer cells to WEE1 inhibition. Nat. Chem. Biol. 19, 585â595 (2023).
Yuan, J., Luo, K., Liu, T. & Lou, Z. Regulation of SIRT1 activity by genotoxic stress. Genes Dev. 26, 791â796 (2012).
Zannini, L., Buscemi, G., Kim, J. E., Fontanella, E. & Delia, D. DBC1 phosphorylation by ATM/ATR inhibits SIRT1 deacetylase in response to DNA damage. J. Mol. Cell. Biol. 4, 294â303 (2012).
Lee, S. Y., Kim, J. J. & Miller, K. M. Bromodomain proteins: protectors against endogenous DNA damage and facilitators of genome integrity. Exp. Mol. Med. 53, 1268â1277 (2021).
Zhang, J. et al. BRD4 facilitates replication stress-induced DNA damage response. Oncogene 37, 3763â3777 (2018).
Suskiewicz, M. J., Prokhorova, E., Rack, J. G. M. & Ahel, I. ADP-ribosylation from molecular mechanisms to therapeutic implications. Cell 186, 4475â4495 (2023).
Yu, L., Liu, X. & Yu, X. ADP-ribosylhydrolases: from DNA damage repair to COVID-19. J. Zhejiang Univ. Sci. B 22, 21â30 (2021).
Huang, D. & Kraus, W. L. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol. Cell 82, 2315â2334 (2022).
Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610â621 (2017).
Azarm, K. & Smith, S. Nuclear PARPs and genome integrity. Genes Dev. 34, 285â301 (2020).
Hanzlikova, H. et al. The importance of poly(ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. Mol. Cell 71, 319â331 (2018).
Vaitsiankova, A. et al. PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat. Struct. Mol. Biol. 29, 329â338 (2022).
Yang, Y. G., Cortes, U., Patnaik, S., Jasin, M. & Wang, Z. Q. Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks. Oncogene 23, 3872â3882 (2004).
Ray Chaudhuri, A. et al. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 19, 417â423 (2012).
Min, W. et al. Poly(ADP-ribose) binding to Chk1 at stalled replication forks is required for S-phase checkpoint activation. Nat. Commun. 4, 2993 (2013).
Duursma, A. M., Driscoll, R., Elias, J. E. & Cimprich, K. A. A role for the MRN complex in ATR activation via TOPBP1 recruitment. Mol. Cell 50, 116â122 (2013).
Lee, J. & Dunphy, W. G. The Mre11âRad50âNbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks. Mol. Biol. Cell 24, 1343â1353 (2013).
Ho, Y. C. et al. PARP1 recruits DNA translocases to restrain DNA replication and facilitate DNA repair. PLoS Genet. 18, e1010545 (2022).
Margalef, P. et al. Stabilization of reversed replication forks by telomerase drives telomere catastrophe. Cell 172, 439â453 (2018).
Ray Chaudhuri, A., Ahuja, A. K., Herrador, R. & Lopes, M. Poly(ADP-ribosyl) glycohydrolase prevents the accumulation of unusual replication structures during unperturbed S phase. Mol. Cell. Biol. 35, 856â865 (2015).
Wu, C. K. et al. APLF facilitates interstrand DNA crosslink repair and replication fork protection to confer cisplatin resistance. Nucleic Acids Res. 52, 5676â5697 (2024).
Hammel, M. et al. An intrinsically disordered APLF links Ku, DNA-PKcs, and XRCC4-DNA ligase IV in an extended flexible non-homologous end joining complex. J. Biol. Chem. 291, 26987â27006 (2016).
Patel, J. A. & Kim, H. The TIMELESS effort for timely DNA replication and protection. Cell. Mol. Life Sci. 80, 84 (2023).
Rageul, J. et al. Poly(ADP-ribosyl)ation of TIMELESS limits DNA replication stress and promotes stalled fork protection. Cell Rep. 43, 113845 (2024).
Haince, J. F. et al. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J. Biol. Chem. 283, 1197â1208 (2008).
Ding, X. et al. Synthetic viability by BRCA2 and PARP1/ARTD1 deficiencies. Nat. Commun. 7, 12425 (2016).
Petermann, E., Orta, M. L., Issaeva, N., Schultz, N. & Helleday, T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol. Cell 37, 492â502 (2010).
Zhang, F., Shi, J., Chen, S. H., Bian, C. & Yu, X. The PIN domain of EXO1 recognizes poly(ADP-ribose) in DNA damage response. Nucleic Acids Res. 43, 10782â10794 (2015).
Cheruiyot, A. et al. Poly(ADP-ribose)-binding promotes Exo1 damage recruitment and suppresses its nuclease activities. DNA Repair (Amst.) 35, 106â115 (2015).
Ray Chaudhuri, A. et al. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535, 382â387 (2016).
Dhoonmoon, A., Nicolae, C. M. & Moldovan, G. L. The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1. Nat. Commun. 13, 5063 (2022).
Paull, T. T. 20 years of Mre11 biology: no end in sight. Mol. Cell 71, 419â427 (2018).
Qiu, S. & Huang, J. MRN complex is an essential effector of DNA damage repair. J. Zhejiang Univ. Sci. B 22, 31â37 (2021).
Carter-OâConnell, I. et al. Combining chemical genetics with proximity-dependent labeling reveals cellular targets of Poly(ADP-ribose) polymerase 14 (PARP14). ACS Chem. Biol. 13, 2841â2848 (2018).
Kliza, K. W. et al. Reading ADP-ribosylation signaling using chemical biology and interaction proteomics. Mol. Cell 81, 4552â4567 (2021).
Gu Kang, B. et al. Proteome-wide microarray-based screening of PAR-binding proteins. Nucleic Acids Res. 53, gkaf300 (2025).
Zhou, X. et al. UFMylation: a ubiquitin-like modification. Trends Biochem. Sci. 49, 52â67 (2024).
Komatsu, M., Inada, T. & Noda, N. N. The UFM1 system: working principles, cellular functions, and pathophysiology. Mol. Cell 84, 156â169 (2024).
Gong, Y. et al. PARP1 UFMylation ensures the stability of stalled replication forks. Proc. Natl Acad. Sci. USA 121, e2322520121 (2024).
Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529â542 (2011).
Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106â116 (2012).
Liao, H., Ji, F., Helleday, T. & Ying, S. Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments. EMBO Rep. 19, e46263 (2018).
Cybulla, E. & Vindigni, A. Leveraging the replication stress response to optimize cancer therapy. Nat. Rev. Cancer 23, 6â24 (2023).
Cho, Y. W. et al. PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. J. Biol. Chem. 282, 20395â20406 (2007).
Tian, T. et al. UFL1 triggers replication fork degradation by MRE11 in BRCA1/2-deficient cells. Nat. Chem. Biol. 20, 1650â1661 (2024).
Tan, Q. & Xu, X. PTIP UFMylation promotes replication fork degradation in BRCA1-deficient cells. J. Biol. Chem. 300, 107312 (2024).
Wang, Z. et al. MRE11 UFMylation promotes ATM activation. Nucleic Acids Res. 47, 4124â4135 (2019).
Qin, B. et al. STK38 promotes ATM activation by acting as a reader of histone H4 UFMylation. Sci. Adv. 6, eaax8214 (2020).
Patel, S. R., Kim, D., Levitan, I. & Dressler, G. R. The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev. Cell 13, 580â592 (2007).
Starnes, L. M. et al. A PTIPâPA1 subcomplex promotes transcription for IgH class switching independently from the associated MLL3/MLL4 methyltransferase complex. Genes Dev. 30, 149â163 (2016).
Tan, Q. & Xu, X. MUS81 UFMylation at K400 promotes cell survival in response to camptothecin-induced replication stress. Genome Instab. Dis. 5, 154â163 (2024).
Hsu, C. L., Chong, S. Y., Lin, C. Y. & Kao, C. F. Histone dynamics during DNA replication stress. J. Biomed. Sci. 28, 48 (2021).
Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343â357 (2012).
Zhu, Q. et al. SETD2-mediated H3K14 trimethylation promotes ATR activation and stalled replication fork restart in response to DNA replication stress. Proc. Natl Acad. Sci. USA 118, e2011278118 (2021).
McDaniel, S. L. & Strahl, B. D. Shaping the cellular landscape with Set2/SETD2 methylation. Cell. Mol. Life Sci. 74, 3317â3334 (2017).
Liu, H. et al. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467, 343â346 (2010).
Higgs, M. R. et al. Histone methylation by SETD1A protects nascent DNA through the nucleosome chaperone activity of FANCD2. Mol. Cell 71, 25â41 (2018).
Gaggioli, V. et al. Dynamic de novo heterochromatin assembly and disassembly at replication forks ensures fork stability. Nat. Cell Biol. 25, 1017â1032 (2023).
Wang, L. et al. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell 76, 646â659 (2019).
Li, X., Liu, C., Lei, Z., Chen, H. & Wang, L. Phase-separated chromatin compartments: orchestrating gene expression through condensation. Cell Insight 3, 100213 (2024).
Lee, J. E. et al. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2, e01503 (2013).
Muñoz, I. M. & Rouse, J. Control of histone methylation and genome stability by PTIP. EMBO Rep. 10, 239â245 (2009).
Rondinelli, B. et al. EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat. Cell Biol. 19, 1371â1378 (2017).
Przetocka, S. et al. CtIP-mediated fork protection synergizes with BRCA1 to suppress genomic instability upon DNA replication stress. Mol. Cell 72, 568â582 (2018).
Wang, M. et al. Crucial roles of the BRCA1âBARD1 E3 ubiquitin ligase activity in homology-directed DNA repair. Mol. Cell 83, 3679â3691 (2023).
Jiang, L., Huang, L. & Jiang, W. H3K27me3-mediated epigenetic regulation in pluripotency maintenance and lineage differentiation. Cell Insight 3, 100180 (2024).
Lee, M. G. et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318, 447â450 (2007).
Wu, J. et al. KDM6A-SND1 interaction maintains genomic stability by protecting the nascent DNA and contributes to cancer chemoresistance. Nucleic Acids Res. 52, 7665â7686 (2024).
Kim, J. J. et al. PCAF-mediated histone acetylation promotes replication fork degradation by MRE11 and EXO1 in BRCA-deficient cells. Mol. Cell 80, 327â344 (2020).
Taglialatela, A. et al. Restoration of replication fork stability in BRCA1- and BRCA2-deficient cells by inactivation of SNF2-family fork remodelers. Mol. Cell 68, 414â430 (2017).
Kolinjivadi, A. M. et al. SMARCAL1-mediated fork reversal triggers Mre11-dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments. Mol. Cell 67, 867â881 (2017).
Muñoz, S. et al. SIN3A histone deacetylase action counteracts MUS81 to promote stalled fork stability. Cell Rep. 43, 113778 (2024).
Andronikou, C. & Rottenberg, S. Studying PAR-dependent chromatin remodeling to tackle PARPi resistance. Trends Mol. Med. 27, 630â642 (2021).
Zentout, S. et al. Histone ADP-ribosylation promotes resistance to PARP inhibitors by facilitating PARP1 release from DNA lesions. Proc. Natl Acad. Sci. USA 121, e2322689121 (2024).
Da Costa, A., Chowdhury, D., Shapiro, G. I., DâAndrea, A. D. & Konstantinopoulos, P. A. Targeting replication stress in cancer therapy. Nat. Rev. Drug Discov. 22, 38â58 (2023).
Pfister, S. X. et al. Inhibiting WEE1 selectively kills histone H3K36me3-deficient cancers by dNTP starvation. Cancer Cell 28, 557â568 (2015).
Pillay, N. et al. DNA replication vulnerabilities render ovarian cancer cells sensitive to poly(ADP-ribose) glycohydrolase inhibitors. Cancer Cell 35, 519â533 (2019).
Baillie, K. E. & Stirling, P. C. Beyond kinases: targeting replication stress proteins in cancer therapy. Trends Cancer 7, 430â446 (2021).
Wu, Z., Liu, Y., Zhang, M. & Wang, D. Emerging posttranslational modifications and their roles in DNA damage response. Genome Instab. Dis. 5, 1â16 (2024).
Dai, E., Wang, W., Li, Y., Ye, D. & Li, Y. Lactate and lactylation: behind the development of tumors. Cancer Lett. 591, 216896 (2024).
Bergers, G. & Fendt, S. M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21, 162â180 (2021).
Zhang, Y. et al. The function and mechanism of lactate and lactylation in tumor metabolism and microenvironment. Genes Dis. 10, 2029â2037 (2023).
Zecha, J. et al. Decrypting drug actions and protein modifications by dose- and time-resolved proteomics. Science 380, 93â101 (2023).
Rosenberger, F. A. et al. Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome. Nat. Methods 20, 1530â1536 (2023).
Zhai, Y. et al. Spatiotemporal-resolved protein networks profiling with photoactivation dependent proximity labeling. Nat. Commun. 13, 4906 (2022).
Ctortecka, C. et al. Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications. Nat. Commun. 15, 5707 (2024).
Muneer, G. et al. Mapping nanoscale-to-single-cell phosphoproteomic landscape by Chip-DIA. Adv. Sci. (Weinh.) 12, e2402421 (2025).
Acknowledgements
We apologize to colleagues whose work could not be cited due to space constraints. We thank all members of the Liu and Huang laboratories for their valuable discussions. This work was supported by the National Key Research and Development Program of China (2022YFA1302800 to J.H., 2021YFA1101000 to T.L. and 2023YFC2509200 to M.J.W.), the Central guidance for local scientific and technological development funding project (2025ZY01106 to T.L.), the National Natural Science Foundation of China (32525025 to T.L., U24A20717 to J.H., and 32170730 to J.H.H.) and the Natural Science Foundation of Zhejiang Province (LZ24C070002 to J.H. and LR24H140001 to M.J.W.). Figures were created with BioRender.com.
Author information
Authors and Affiliations
Contributions
T.L. and J.H. conceived and supervised the project. J.H.H., J.H. and T.L. wrote the manuscript. J.H.H. and M.J.W. prepared the figures and tables. All authors reviewed and approved the final version of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Chemical Biology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Han, J., Wu, M., Liu, T. et al. Decoding replication stress responses through post-translational modifications. Nat Chem Biol (2025). https://doi.org/10.1038/s41589-025-02023-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41589-025-02023-x