Abstract
Antibodyâdrug conjugates (ADCs) represent a powerful therapeutic approach for the treatment of a range of cancers. They merge the toxicity of known chemical agents with the specificity of monoclonal antibodies, thereby maximizing efficacy while minimizing adverse side effects. Although multiple ADCs have made it to the marketplace, their development remains a challenge in part owing to the lack of three-dimensional (3D) structural information that must account for the inherent flexibility of monoclonal antibodies as well as that of the drug payloads. This Perspective discusses computational methods, including machine learning and physics-based approaches, that could facilitate the interpretation of experimental data, make predictions on optimal solutions concerning drug conjugate linker type, conjugation sites and drug/antibody ratios and minimize the number of design iterations during ADC development. We explore examples of how the information content from physics-based 3D molecular modeling and simulations on model ADCs may facilitate ADC design.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Corrie, P. G. Cytotoxic chemotherapy: clinical aspects. Medicine 39, 717â722 (2011).
Saeed, R. F. et al. Targeted therapy and personalized medicine. Cancer Treat. Res. 185, 177â205 (2023).
Mathe, G., Loc, T. & Bernard, J. Effect sur la leucémie 1210 de la souris dâun combinaison par diazotation dâα-méthoptèrine et de γ-globulines de hamsters porteurs de cette leucémie par hétérograffe. C. R. Hebd. Seances Acad. Sci. 246, 1626â1628 (1958).
Davies, D. A. & OâNeill, G. J. In vivo and in vitro effects of tumour specific antibodies with chlorambucil. Br. J. Cancer Suppl. 1, 285â298 (1973).
Ford, C. H. et al. Localisation and toxicity study of a vindesineâanti-CEA conjugate in patients with advanced cancer. Br. J. Cancer 47, 35â42 (1983).
Kesireddy, M., Kothapalli, S. R., Gundepalli, S. G. & Asif, S. A review of the current FDA-approved antibodyâdrug conjugates: landmark clinical trials and indications. Pharmaceut. Med. 38, 39â54 (2024).
Fernández-Quintero, M. L. et al. Assessing developability early in the discovery process for novel biologics. mAbs 15, 2171248 (2023).
Zhang, W. et al. Developability assessment at early-stage discovery to enable development of antibody-derived therapeutics. Antib. Ther. 6, 13â29 (2023).
Zalar, M., Svilenov, H. L. & Golovanov, A. P. Binding of excipients is a poor predictor for aggregation kinetics of biopharmaceutical proteins. Eur. J. Pharm. Biopharm. 151, 127â136 (2020).
Cloutier, T., Sudrik, C., Mody, N., Sathish, H. A. & Trout, B. L. Molecular computations of preferential interaction coefficients of IgG1 monoclonal antibodies with sorbitol, sucrose, and trehalose and the impact of these excipients on aggregation and viscosity. Mol. Pharm. 16, 3657â3664 (2019).
Polimeni, M. et al. A multi-scale numerical approach to study monoclonal antibodies in solution. APL Bioeng. 8, 016111 (2024).
Daberdaku, S. & Ferrari, C. Antibody interface prediction with 3D Zernike descriptors and SVM. Bioinformatics 35, 1870â1876 (2019).
Mason, D. M. et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat. Biomed. Eng. 5, 600â612 (2021).
Lu, S., Li, Y., Wang, F., Nan, X. & Zhang, S. Leveraging sequential and spatial neighbors information by using CNNs linked with GCNs for paratope prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 19, 68â74 (2022).
Narayanan, H. et al. Design of biopharmaceutical formulations accelerated by machine learning. Mol. Pharm. 18, 3843â3853 (2021).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583â589 (2021).
Du, Z. et al. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 16, 5634â5651 (2021).
Ruffolo, J. A., Chu, L. S., Mahajan, S. P. & Gray, J. J. Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nat. Commun. 14, 2389 (2023).
Abanades, B. et al. ImmuneBuilder: deep-learning models for predicting the structures of immune proteins. Commun. Biol. 6, 575 (2023).
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493â500 (2024).
Dunbar, J. et al. SAbDab: the structural antibody database. Nucleic Acids Res. 42, D1140âD1146 (2014).
Sirin, S., Apgar, J. R., Bennett, E. M. & Keating, A. E. AB-Bind: antibody binding mutational database for computational affinity predictions. Protein Sci. 25, 393â409 (2016).
Jankauskaite, J., Jimenez-Garcia, B., Dapkunas, J., Fernandez-Recio, J. & Moal, I. H. SKEMPI 2.0: an updated benchmark of changes in proteinâprotein binding energy, kinetics and thermodynamics upon mutation. Bioinformatics 35, 462â469 (2019).
Shen, L. et al. ADCdb: the database of antibodyâdrug conjugates. Nucleic Acids Res. 52, D1097âD1109 (2024).
Bai, G. et al. Accelerating antibody discovery and design with artificial intelligence: recent advances and prospects. Semin. Cancer Biol. 95, 13â24 (2023).
Villalobos, P. et al. Will we run out of data? An analysis of the limits of scaling datasets in machine learning. Preprint at https://doi.org/10.48550/arXiv.2211.04325 (2022).
Sinha, N. & Smith-Gill, S. J. Molecular dynamics simulation of a high-affinity antibodyâprotein complex: the binding site is a mosaic of locally flexible and preorganized rigid regions. Cell Biochem. Biophys. 43, 253â273 (2005).
Zhao, J., Nussinov, R. & Ma, B. Antigen binding allosterically promotes Fc receptor recognition. mAbs 11, 58â74 (2019).
Kralj, S. et al. Molecular dynamics simulations reveal interactions of an IgG1 antibody with selected Fc receptors. Front. Chem. 9, 705931 (2021).
Li, C. et al. Site-selective chemoenzymatic modification on the core fucose of an antibody enhances its Fcγ receptor affinity and ADCC activity. J. Am. Chem. Soc. 143, 7828â7838 (2021).
Wang, Q. et al. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions. Biotechnol. Bioeng. 119, 102â117 (2022).
Ou, C. et al. Synthetic antibodyârhamnose cluster conjugates show potent complement-dependent cell killing by recruiting natural antibodies. Chemistry 28, e202200146 (2022).
Hoffmann, D. et al. Predicting deamidation and isomerization sites in therapeutic antibodies using structure-based in silico approaches. mAbs 16, 2333436 (2024).
Sheng, Z. et al. Structural basis of antibody conformation and stability modulation by framework somatic hypermutation. Front. Immunol. 12, 811632 (2021).
Ikeuchi, E., Kuroda, D., Nakakido, M., Murakami, A. & Tsumoto, K. Delicate balance among thermal stability, binding affinity, and conformational space explored by single-domain VHH antibodies. Sci. Rep. 11, 20624 (2021).
Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031â3048 (2017).
Harmalkar, A. et al. Toward generalizable prediction of antibody thermostability using machine learning on sequence and structure features. mAbs 15, 2163584 (2023).
Natesan, R. & Agrawal, N. J. IgG1 and IgG4 antibodies sample initial structure dependent local conformational states and exhibit non-identical Fab dynamics. Sci. Rep. 13, 4791 (2023).
Timasheff, S. N. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22, 67â97 (1993).
Cloutier, T. K., Sudrik, C., Mody, N., Sathish, H. A. & Trout, B. L. Machine learning models of antibody-excipient preferential interactions for use in computational formulation design. Mol. Pharm. 17, 3589â3599 (2020).
Makowski, E. K. et al. Reduction of monoclonal antibody viscosity using interpretable machine learning. mAbs 16, 2303781 (2024).
Lai, P. K. et al. Machine learning applied to determine the molecular descriptors responsible for the viscosity behavior of concentrated therapeutic antibodies. Mol. Pharm. 18, 1167â1175 (2021).
Lai, P. K., Gallegos, A., Mody, N., Sathish, H. A. & Trout, B. L. Machine learning prediction of antibody aggregation and viscosity for high concentration formulation development of protein therapeutics. mAbs 14, 2026208 (2022).
Saurabh, S. et al. Mechanistic insights into the adsorption of monoclonal antibodies at the water/vapor interface. Mol. Pharm. 21, 704â717 (2024).
Guvench, O. & MacKerell, A. D. Jr. Computational fragment-based binding site identification by ligand competitive saturation. PLoS Comput. Biol. 5, e1000435 (2009).
Lakkaraju, S. K., Raman, E. P., Yu, W. & MacKerell, A. D. J. Sampling of organic solutes in aqueous and heterogeneous environments using oscillating excess grand canonical-like Monte Carloâmolecular dynamics simulations. J. Chem. Theory Comput. 10, 2281â2290 (2014).
MacKerell, A. D. J., Jo, S., Lakkaraju, S. K., Lind, C. & Yu, W. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots). Biochim. Biophys. Acta Gen. Subj. 1864, 129519 (2020).
Yu, W., Jo, S., Lakkaraju, S. K., Weber, D. J. & MacKerell, A. D. J. Exploring proteinâprotein interactions using the site-identification by ligand competitive saturation methodology. Proteins 87, 289â301 (2019).
Goel, H., Hazel, A., Yu, W., Jo, S. & MacKerell, A. D. J. Application of site-identification by ligand competitive saturation in computer-aided drug design. New J. Chem. 46, 919â932 (2022).
Somani, S. et al. Toward biotherapeutics formulation composition engineering using site-identification by ligand competitive saturation (SILCS). J. Pharm. Sci. 110, 1103â1110 (2021).
Jo, S., Xu, A., Curtis, J. E., Somani, S. & MacKerell, A. D. J. Computational characterization of antibody-excipient interactions for rational excipient selection using the site identification by ligand competitive saturation-biologics approach. Mol. Pharm. 17, 4323â4333 (2020).
Li, X. et al. Investigating the interaction between excipients and monoclonal antibodies PGT121 and N49P9.6-FR-LS: a comprehensive analysis. Mol. Pharm. 22, 1831â1846 (2025).
Orr, A. A. et al. Mapping the distribution and affinities of ligand interaction sites on human serum albumin. Biophys. J. https://doi.org/10.1016/j.bpj.2025.03.016 (2025).
Orr, A. A., Tao, A., Guvench, O. & MacKerell, A. D. J. Site identification by ligand competitive saturation-biologics approach for structure-based protein charge prediction. Mol. Pharm. 20, 2600â2611 (2023).
Walsh, S. J. et al. Site-selective modification strategies in antibodyâdrug conjugates. Chem. Soc. Rev. 50, 1305â1353 (2021).
Junutula, J. R. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925â932 (2008).
Liu, H. & May, K. Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. mAbs 4, 17â23 (2012).
Bryant, P. et al. In vitro and in vivo evaluation of cysteine rebridged trastuzumabâMMAE antibody drug conjugates with defined drug-to-antibody ratios. Mol. Pharm. 12, 1872â1879 (2015).
Dimasi, N. et al. Efficient preparation of site-specific antibodyâdrug conjugates using cysteine insertion. Mol. Pharm. 14, 1501â1516 (2017).
Matsuda, Y. et al. Chemical site-specific conjugation platform to improve the pharmacokinetics and therapeutic index of antibodyâdrug conjugates. Mol. Pharm. 18, 4058â4066 (2021).
Jaramillo, M. L. et al. A glyco-engineering approach for site-specific conjugation to Fab glycans. mAbs 15, 2149057 (2023).
Yang, Q. et al. Evaluation of two chemoenzymatic glycan remodeling approaches to generate site-specific antibodyâdrug conjugates. Antibodies 12, 71 (2023).
Pettersen, E. F. et al. UCSF Chimeraâa visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605â1612 (2004).
Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455â461 (2010).
Coumans, R. G. E. et al. A platform for the generation of site-specific antibodyâdrug conjugates that allows for selective reduction of engineered cysteines. Bioconjug. Chem. 31, 2136â2146 (2020).
Yu, W., Weber, D. J. & MacKerell, A. D. J. Integrated covalent drug design workflow using site identification by ligand competitive saturation. J. Chem. Theory Comput. 19, 3007â3021 (2023).
Harris, R. C., Liu, R. & Shen, J. Predicting reactive cysteines with implicit-solvent-based continuous constant pH molecular dynamics in amber. J. Chem. Theory Comput. 16, 3689â3698 (2020).
Aho, N. et al. Scalable constant pH molecular dynamics in GROMACS. J. Chem. Theory Comput. 18, 6148â6160 (2022).
Gokcan, H. & Isayev, O. Prediction of protein pKa with representation learning. Chem. Sci. 13, 2462â2474 (2022).
Cai, Z. et al. Basis for accurate protein pKa prediction with machine learning. J. Chem. Inf. Model. 63, 2936â2947 (2023).
Gupta, N. et al. Computationally designed antibodyâdrug conjugates self-assembled via affinity ligands. Nat. Biomed. Eng. 3, 917â929 (2019).
Nadkarni, D. V. et al. Impact of drug conjugation and loading on target antigen binding and cytotoxicity in cysteine antibodyâdrug conjugates. Mol. Pharm. 18, 889â897 (2021).
Lyon, R. P. et al. Reducing hydrophobicity of homogeneous antibodyâdrug conjugates improves pharmacokinetics and therapeutic index. Nat. Biotechnol. 33, 733â735 (2015).
Maria Castellanos, M., Steven, H., David, G. & Joseph, C. Characterization of the NISTmAb reference material using small-angle scattering and molecular simulation: part I: dilute protein structures. Anal. Bioanal. Chem. 410, 2141â2159 (2018).
Gallagher, D. T., Karageorgos, I., Hudgens, J. W. & Galvin, C. V. Data on crystal organization in the structure of the Fab fragment from the NIST reference antibody, RM 8671. Data Brief 16, 29â36 (2018).
Gallagher, D. T., Galvin, C. V. & Karageorgos, I. Structure of the Fc fragment of the NIST reference antibody RM8671. Acta Crystallogr. F Struct. Biol. Commun. 74, 524â529 (2018).
Barreca, M. et al. Antibodyâdrug conjugates for lymphoma patients: preclinical and clinical evidences. Explor. Target. Antitumor Ther. 3, 763â794 (2022).
Connors, J. M., Ansell, S. M., Fanale, M., Park, S. I. & Younes, A. Five-year follow-up of brentuximab vedotin combined with ABVD or AVD for advanced-stage classical Hodgkin lymphoma. Blood 130, 1375â1377 (2017).
Tian, C. et al. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 16, 528â552 (2020).
Robertson, M. J., Tirado-Rives, J. & Jorgensen, W. L. Improved peptide and protein torsional energetics with the OPLS-AA force field. J. Chem. Theory Comput. 11, 3499â3509 (2015).
Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71â73 (2017).
Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671â690 (2010).
Dodda, L. S., Cabeza de Vaca, I., Tirado-Rives, J. & Jorgensen, W. L. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 45, W331âW336 (2017).
Orr, A. A., Sharif, S., Wang, J. & MacKerell, A. D. J. Preserving the integrity of empirical force fields. J. Chem. Inf. Model. 62, 3825â3831 (2022).
Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545â1614 (2009).
Salomon-Ferrer, R., Case, D. A. & Walker, R. C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 198â210 (2013).
Wang, Y., Harrison, C. B., Schulten, K. & McCammon, J. A. Implementation of accelerated molecular dynamics in NAMD. Comput. Sci. Discov. 4, 015002 (2011).
Eastman, P. et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).
Fernández-Quintero, M. L., Georges, G., Varga, J. M. & Liedl, K. R. Ensembles in solution as a new paradigm for antibody structure prediction and design. mAbs 13, 1923122 (2021).
Koirala, K. et al. In Computational Drug Discovery and Design (eds Gore, M. & Jagtap, U. B.) 187â202 (Springer, 2024).
Lemkul, J. A., Huang, J., Roux, B. & MacKerell, A. D. J. An empirical polarizable force field based on the classical Drude oscillator model: development history and recent applications. Chem. Rev. 116, 4983â5013 (2016).
Strickley, R. G. & Lambert, W. J. A review of formulations of commercially available antibodies. J. Pharm. Sci. 110, 2590â2608 (2021).
Ekins, S. et al. Progress in predicting human ADME parameters in silico. J. Pharmacol. Toxicol. Methods 44, 251â272 (2000).
Ekins, S., Honeycutt, J. D. & Metz, J. T. Evolving molecules using multi-objective optimization: applying to ADME/Tox. Drug Discov. Today 15, 451â460 (2010).
Ma, L. et al. Research on prediction of human oral bioavailability of drugs based on improved deep forest. J. Mol. Graph. Model. 133, 108851 (2024).
Lettieri, M., Rodda, M. & Carlucci, V. Machine learning in early prediction of metabolism of drugs. Methods Mol. Biol. 2834, 275â291 (2025).
Ren, J. N. et al. FGTN: fragment-based graph transformer network for predicting reproductive toxicity. Arch. Toxicol. 98, 4077â4092 (2024).
Pamonsupornwichit, T. et al. Engineering affinity of humanized ScFv targeting CD147 antibody: a combined approach of mCSM-AB2 and molecular dynamics simulations. J. Mol. Graph. Model. 133, 108884 (2024).
Lee, B. & Richards, F. M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379â400 (1971).
Yang, M., Huang, J., Simon, R., Wang, L. X. & MacKerell, A. D. J. Conformational heterogeneity of the HIV envelope glycan shield. Sci. Rep. 7, 4435 (2017).
Acknowledgements
Financial support was from NIH R35 GM131710, and computational support was from the University of Maryland Computer-Aided Drug Design Center.
Author information
Authors and Affiliations
Contributions
A.A.O. modeled the monoclonal antibody and ADCs and performed and analyzed SILCS simulations. A.C. created ADC mutants and performed and analyzed canonical MD simulations. A.D.M. Jr conceptualized and supervised the entire project and wrote the first draft with all authors involved in revising the manuscript.
Corresponding author
Ethics declarations
Competing interests
A.D.M. Jr is a cofounder and the CSO of SilcsBio LLC. A.A.O. was employed by SilcsBio LLC. A.C. has no competing interests.
Peer review
Peer review information
Nature Chemical Biology thanks Yutaka Matsuda and the other, anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Fig. 1, Supplementary Notes 1â5, Supplementary Scheme and Supplementary References
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Croitoru, A., Orr, A.A. & MacKerell, A.D. Harnessing computational technologies to facilitate antibodyâdrug conjugate development. Nat Chem Biol 21, 1138â1147 (2025). https://doi.org/10.1038/s41589-025-01950-z
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41589-025-01950-z