Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Harnessing computational technologies to facilitate antibody–drug conjugate development

Abstract

Antibody–drug conjugates (ADCs) represent a powerful therapeutic approach for the treatment of a range of cancers. They merge the toxicity of known chemical agents with the specificity of monoclonal antibodies, thereby maximizing efficacy while minimizing adverse side effects. Although multiple ADCs have made it to the marketplace, their development remains a challenge in part owing to the lack of three-dimensional (3D) structural information that must account for the inherent flexibility of monoclonal antibodies as well as that of the drug payloads. This Perspective discusses computational methods, including machine learning and physics-based approaches, that could facilitate the interpretation of experimental data, make predictions on optimal solutions concerning drug conjugate linker type, conjugation sites and drug/antibody ratios and minimize the number of design iterations during ADC development. We explore examples of how the information content from physics-based 3D molecular modeling and simulations on model ADCs may facilitate ADC design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic summary of monoclonal antibody properties obtained through computational approaches.
Fig. 2: Schematic representation of aspects of ADC development.
Fig. 3: Monoclonal antibodies may be linked with payloads at multiple sites, thereby impacting the dynamical and structural properties of the ADC.
Fig. 4: SILCS identifies all possible binding sites of a warhead, avoiding the need for multiple, computationally demanding MD simulations.

Similar content being viewed by others

References

  1. Corrie, P. G. Cytotoxic chemotherapy: clinical aspects. Medicine 39, 717–722 (2011).

    Article  Google Scholar 

  2. Saeed, R. F. et al. Targeted therapy and personalized medicine. Cancer Treat. Res. 185, 177–205 (2023).

    Article  CAS  Google Scholar 

  3. Mathe, G., Loc, T. & Bernard, J. Effect sur la leucémie 1210 de la souris d’un combinaison par diazotation d’α-méthoptèrine et de γ-globulines de hamsters porteurs de cette leucémie par hétérograffe. C. R. Hebd. Seances Acad. Sci. 246, 1626–1628 (1958).

    Google Scholar 

  4. Davies, D. A. & O’Neill, G. J. In vivo and in vitro effects of tumour specific antibodies with chlorambucil. Br. J. Cancer Suppl. 1, 285–298 (1973).

    CAS  PubMed Central  Google Scholar 

  5. Ford, C. H. et al. Localisation and toxicity study of a vindesine–anti-CEA conjugate in patients with advanced cancer. Br. J. Cancer 47, 35–42 (1983).

    Article  CAS  PubMed Central  Google Scholar 

  6. Kesireddy, M., Kothapalli, S. R., Gundepalli, S. G. & Asif, S. A review of the current FDA-approved antibody–drug conjugates: landmark clinical trials and indications. Pharmaceut. Med. 38, 39–54 (2024).

    CAS  Google Scholar 

  7. Fernández-Quintero, M. L. et al. Assessing developability early in the discovery process for novel biologics. mAbs 15, 2171248 (2023).

    Article  PubMed Central  Google Scholar 

  8. Zhang, W. et al. Developability assessment at early-stage discovery to enable development of antibody-derived therapeutics. Antib. Ther. 6, 13–29 (2023).

    CAS  Google Scholar 

  9. Zalar, M., Svilenov, H. L. & Golovanov, A. P. Binding of excipients is a poor predictor for aggregation kinetics of biopharmaceutical proteins. Eur. J. Pharm. Biopharm. 151, 127–136 (2020).

    Article  CAS  Google Scholar 

  10. Cloutier, T., Sudrik, C., Mody, N., Sathish, H. A. & Trout, B. L. Molecular computations of preferential interaction coefficients of IgG1 monoclonal antibodies with sorbitol, sucrose, and trehalose and the impact of these excipients on aggregation and viscosity. Mol. Pharm. 16, 3657–3664 (2019).

    CAS  Google Scholar 

  11. Polimeni, M. et al. A multi-scale numerical approach to study monoclonal antibodies in solution. APL Bioeng. 8, 016111 (2024).

    Article  CAS  PubMed Central  Google Scholar 

  12. Daberdaku, S. & Ferrari, C. Antibody interface prediction with 3D Zernike descriptors and SVM. Bioinformatics 35, 1870–1876 (2019).

    Article  CAS  Google Scholar 

  13. Mason, D. M. et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat. Biomed. Eng. 5, 600–612 (2021).

    Article  CAS  Google Scholar 

  14. Lu, S., Li, Y., Wang, F., Nan, X. & Zhang, S. Leveraging sequential and spatial neighbors information by using CNNs linked with GCNs for paratope prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 19, 68–74 (2022).

    Article  Google Scholar 

  15. Narayanan, H. et al. Design of biopharmaceutical formulations accelerated by machine learning. Mol. Pharm. 18, 3843–3853 (2021).

    CAS  Google Scholar 

  16. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  17. Du, Z. et al. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 16, 5634–5651 (2021).

    Article  CAS  Google Scholar 

  18. Ruffolo, J. A., Chu, L. S., Mahajan, S. P. & Gray, J. J. Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nat. Commun. 14, 2389 (2023).

    Article  CAS  PubMed Central  Google Scholar 

  19. Abanades, B. et al. ImmuneBuilder: deep-learning models for predicting the structures of immune proteins. Commun. Biol. 6, 575 (2023).

    Article  CAS  PubMed Central  Google Scholar 

  20. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed Central  Google Scholar 

  21. Dunbar, J. et al. SAbDab: the structural antibody database. Nucleic Acids Res. 42, D1140–D1146 (2014).

    Article  CAS  Google Scholar 

  22. Sirin, S., Apgar, J. R., Bennett, E. M. & Keating, A. E. AB-Bind: antibody binding mutational database for computational affinity predictions. Protein Sci. 25, 393–409 (2016).

    Article  CAS  Google Scholar 

  23. Jankauskaite, J., Jimenez-Garcia, B., Dapkunas, J., Fernandez-Recio, J. & Moal, I. H. SKEMPI 2.0: an updated benchmark of changes in protein–protein binding energy, kinetics and thermodynamics upon mutation. Bioinformatics 35, 462–469 (2019).

    Article  CAS  Google Scholar 

  24. Shen, L. et al. ADCdb: the database of antibody–drug conjugates. Nucleic Acids Res. 52, D1097–D1109 (2024).

    Article  CAS  Google Scholar 

  25. Bai, G. et al. Accelerating antibody discovery and design with artificial intelligence: recent advances and prospects. Semin. Cancer Biol. 95, 13–24 (2023).

    Article  CAS  Google Scholar 

  26. Villalobos, P. et al. Will we run out of data? An analysis of the limits of scaling datasets in machine learning. Preprint at https://doi.org/10.48550/arXiv.2211.04325 (2022).

  27. Sinha, N. & Smith-Gill, S. J. Molecular dynamics simulation of a high-affinity antibody–protein complex: the binding site is a mosaic of locally flexible and preorganized rigid regions. Cell Biochem. Biophys. 43, 253–273 (2005).

    Article  CAS  Google Scholar 

  28. Zhao, J., Nussinov, R. & Ma, B. Antigen binding allosterically promotes Fc receptor recognition. mAbs 11, 58–74 (2019).

    Article  CAS  Google Scholar 

  29. Kralj, S. et al. Molecular dynamics simulations reveal interactions of an IgG1 antibody with selected Fc receptors. Front. Chem. 9, 705931 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  30. Li, C. et al. Site-selective chemoenzymatic modification on the core fucose of an antibody enhances its Fcγ receptor affinity and ADCC activity. J. Am. Chem. Soc. 143, 7828–7838 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  31. Wang, Q. et al. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions. Biotechnol. Bioeng. 119, 102–117 (2022).

    Article  Google Scholar 

  32. Ou, C. et al. Synthetic antibody–rhamnose cluster conjugates show potent complement-dependent cell killing by recruiting natural antibodies. Chemistry 28, e202200146 (2022).

    Article  CAS  PubMed Central  Google Scholar 

  33. Hoffmann, D. et al. Predicting deamidation and isomerization sites in therapeutic antibodies using structure-based in silico approaches. mAbs 16, 2333436 (2024).

    Article  PubMed Central  Google Scholar 

  34. Sheng, Z. et al. Structural basis of antibody conformation and stability modulation by framework somatic hypermutation. Front. Immunol. 12, 811632 (2021).

    Article  CAS  Google Scholar 

  35. Ikeuchi, E., Kuroda, D., Nakakido, M., Murakami, A. & Tsumoto, K. Delicate balance among thermal stability, binding affinity, and conformational space explored by single-domain VHH antibodies. Sci. Rep. 11, 20624 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  36. Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  37. Harmalkar, A. et al. Toward generalizable prediction of antibody thermostability using machine learning on sequence and structure features. mAbs 15, 2163584 (2023).

    Article  PubMed Central  Google Scholar 

  38. Natesan, R. & Agrawal, N. J. IgG1 and IgG4 antibodies sample initial structure dependent local conformational states and exhibit non-identical Fab dynamics. Sci. Rep. 13, 4791 (2023).

    Article  CAS  PubMed Central  Google Scholar 

  39. Timasheff, S. N. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22, 67–97 (1993).

    Article  CAS  Google Scholar 

  40. Cloutier, T. K., Sudrik, C., Mody, N., Sathish, H. A. & Trout, B. L. Machine learning models of antibody-excipient preferential interactions for use in computational formulation design. Mol. Pharm. 17, 3589–3599 (2020).

    CAS  Google Scholar 

  41. Makowski, E. K. et al. Reduction of monoclonal antibody viscosity using interpretable machine learning. mAbs 16, 2303781 (2024).

    Article  PubMed Central  Google Scholar 

  42. Lai, P. K. et al. Machine learning applied to determine the molecular descriptors responsible for the viscosity behavior of concentrated therapeutic antibodies. Mol. Pharm. 18, 1167–1175 (2021).

    CAS  Google Scholar 

  43. Lai, P. K., Gallegos, A., Mody, N., Sathish, H. A. & Trout, B. L. Machine learning prediction of antibody aggregation and viscosity for high concentration formulation development of protein therapeutics. mAbs 14, 2026208 (2022).

    Article  PubMed Central  Google Scholar 

  44. Saurabh, S. et al. Mechanistic insights into the adsorption of monoclonal antibodies at the water/vapor interface. Mol. Pharm. 21, 704–717 (2024).

    CAS  Google Scholar 

  45. Guvench, O. & MacKerell, A. D. Jr. Computational fragment-based binding site identification by ligand competitive saturation. PLoS Comput. Biol. 5, e1000435 (2009).

    Article  PubMed Central  Google Scholar 

  46. Lakkaraju, S. K., Raman, E. P., Yu, W. & MacKerell, A. D. J. Sampling of organic solutes in aqueous and heterogeneous environments using oscillating excess grand canonical-like Monte Carlo–molecular dynamics simulations. J. Chem. Theory Comput. 10, 2281–2290 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  47. MacKerell, A. D. J., Jo, S., Lakkaraju, S. K., Lind, C. & Yu, W. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots). Biochim. Biophys. Acta Gen. Subj. 1864, 129519 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  48. Yu, W., Jo, S., Lakkaraju, S. K., Weber, D. J. & MacKerell, A. D. J. Exploring protein–protein interactions using the site-identification by ligand competitive saturation methodology. Proteins 87, 289–301 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  49. Goel, H., Hazel, A., Yu, W., Jo, S. & MacKerell, A. D. J. Application of site-identification by ligand competitive saturation in computer-aided drug design. New J. Chem. 46, 919–932 (2022).

    Article  CAS  Google Scholar 

  50. Somani, S. et al. Toward biotherapeutics formulation composition engineering using site-identification by ligand competitive saturation (SILCS). J. Pharm. Sci. 110, 1103–1110 (2021).

    Article  CAS  Google Scholar 

  51. Jo, S., Xu, A., Curtis, J. E., Somani, S. & MacKerell, A. D. J. Computational characterization of antibody-excipient interactions for rational excipient selection using the site identification by ligand competitive saturation-biologics approach. Mol. Pharm. 17, 4323–4333 (2020).

    CAS  Google Scholar 

  52. Li, X. et al. Investigating the interaction between excipients and monoclonal antibodies PGT121 and N49P9.6-FR-LS: a comprehensive analysis. Mol. Pharm. 22, 1831–1846 (2025).

    CAS  Google Scholar 

  53. Orr, A. A. et al. Mapping the distribution and affinities of ligand interaction sites on human serum albumin. Biophys. J. https://doi.org/10.1016/j.bpj.2025.03.016 (2025).

  54. Orr, A. A., Tao, A., Guvench, O. & MacKerell, A. D. J. Site identification by ligand competitive saturation-biologics approach for structure-based protein charge prediction. Mol. Pharm. 20, 2600–2611 (2023).

    CAS  Google Scholar 

  55. Walsh, S. J. et al. Site-selective modification strategies in antibody–drug conjugates. Chem. Soc. Rev. 50, 1305–1353 (2021).

    Article  CAS  Google Scholar 

  56. Junutula, J. R. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925–932 (2008).

    Article  CAS  Google Scholar 

  57. Liu, H. & May, K. Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. mAbs 4, 17–23 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  58. Bryant, P. et al. In vitro and in vivo evaluation of cysteine rebridged trastuzumab–MMAE antibody drug conjugates with defined drug-to-antibody ratios. Mol. Pharm. 12, 1872–1879 (2015).

    CAS  Google Scholar 

  59. Dimasi, N. et al. Efficient preparation of site-specific antibody–drug conjugates using cysteine insertion. Mol. Pharm. 14, 1501–1516 (2017).

    CAS  Google Scholar 

  60. Matsuda, Y. et al. Chemical site-specific conjugation platform to improve the pharmacokinetics and therapeutic index of antibody–drug conjugates. Mol. Pharm. 18, 4058–4066 (2021).

    CAS  Google Scholar 

  61. Jaramillo, M. L. et al. A glyco-engineering approach for site-specific conjugation to Fab glycans. mAbs 15, 2149057 (2023).

    Article  Google Scholar 

  62. Yang, Q. et al. Evaluation of two chemoenzymatic glycan remodeling approaches to generate site-specific antibody–drug conjugates. Antibodies 12, 71 (2023).

  63. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  64. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  65. Coumans, R. G. E. et al. A platform for the generation of site-specific antibody–drug conjugates that allows for selective reduction of engineered cysteines. Bioconjug. Chem. 31, 2136–2146 (2020).

    Article  CAS  Google Scholar 

  66. Yu, W., Weber, D. J. & MacKerell, A. D. J. Integrated covalent drug design workflow using site identification by ligand competitive saturation. J. Chem. Theory Comput. 19, 3007–3021 (2023).

    Article  CAS  PubMed Central  Google Scholar 

  67. Harris, R. C., Liu, R. & Shen, J. Predicting reactive cysteines with implicit-solvent-based continuous constant pH molecular dynamics in amber. J. Chem. Theory Comput. 16, 3689–3698 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  68. Aho, N. et al. Scalable constant pH molecular dynamics in GROMACS. J. Chem. Theory Comput. 18, 6148–6160 (2022).

    Article  CAS  PubMed Central  Google Scholar 

  69. Gokcan, H. & Isayev, O. Prediction of protein pKa with representation learning. Chem. Sci. 13, 2462–2474 (2022).

    Article  CAS  PubMed Central  Google Scholar 

  70. Cai, Z. et al. Basis for accurate protein pKa prediction with machine learning. J. Chem. Inf. Model. 63, 2936–2947 (2023).

    Article  CAS  Google Scholar 

  71. Gupta, N. et al. Computationally designed antibody–drug conjugates self-assembled via affinity ligands. Nat. Biomed. Eng. 3, 917–929 (2019).

    Article  CAS  Google Scholar 

  72. Nadkarni, D. V. et al. Impact of drug conjugation and loading on target antigen binding and cytotoxicity in cysteine antibody–drug conjugates. Mol. Pharm. 18, 889–897 (2021).

    CAS  Google Scholar 

  73. Lyon, R. P. et al. Reducing hydrophobicity of homogeneous antibody–drug conjugates improves pharmacokinetics and therapeutic index. Nat. Biotechnol. 33, 733–735 (2015).

    Article  CAS  Google Scholar 

  74. Maria Castellanos, M., Steven, H., David, G. & Joseph, C. Characterization of the NISTmAb reference material using small-angle scattering and molecular simulation: part I: dilute protein structures. Anal. Bioanal. Chem. 410, 2141–2159 (2018).

  75. Gallagher, D. T., Karageorgos, I., Hudgens, J. W. & Galvin, C. V. Data on crystal organization in the structure of the Fab fragment from the NIST reference antibody, RM 8671. Data Brief 16, 29–36 (2018).

    CAS  Google Scholar 

  76. Gallagher, D. T., Galvin, C. V. & Karageorgos, I. Structure of the Fc fragment of the NIST reference antibody RM8671. Acta Crystallogr. F Struct. Biol. Commun. 74, 524–529 (2018).

    CAS  Google Scholar 

  77. Barreca, M. et al. Antibody–drug conjugates for lymphoma patients: preclinical and clinical evidences. Explor. Target. Antitumor Ther. 3, 763–794 (2022).

    CAS  Google Scholar 

  78. Connors, J. M., Ansell, S. M., Fanale, M., Park, S. I. & Younes, A. Five-year follow-up of brentuximab vedotin combined with ABVD or AVD for advanced-stage classical Hodgkin lymphoma. Blood 130, 1375–1377 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  79. Tian, C. et al. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 16, 528–552 (2020).

    Article  Google Scholar 

  80. Robertson, M. J., Tirado-Rives, J. & Jorgensen, W. L. Improved peptide and protein torsional energetics with the OPLS-AA force field. J. Chem. Theory Comput. 11, 3499–3509 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  81. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article  CAS  Google Scholar 

  82. Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  83. Dodda, L. S., Cabeza de Vaca, I., Tirado-Rives, J. & Jorgensen, W. L. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 45, W331–W336 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  84. Orr, A. A., Sharif, S., Wang, J. & MacKerell, A. D. J. Preserving the integrity of empirical force fields. J. Chem. Inf. Model. 62, 3825–3831 (2022).

    Article  CAS  PubMed Central  Google Scholar 

  85. Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  86. Salomon-Ferrer, R., Case, D. A. & Walker, R. C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 198–210 (2013).

    Article  CAS  Google Scholar 

  87. Wang, Y., Harrison, C. B., Schulten, K. & McCammon, J. A. Implementation of accelerated molecular dynamics in NAMD. Comput. Sci. Discov. 4, 015002 (2011).

  88. Eastman, P. et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).

    Article  PubMed Central  Google Scholar 

  89. Fernández-Quintero, M. L., Georges, G., Varga, J. M. & Liedl, K. R. Ensembles in solution as a new paradigm for antibody structure prediction and design. mAbs 13, 1923122 (2021).

    Article  PubMed Central  Google Scholar 

  90. Koirala, K. et al. In Computational Drug Discovery and Design (eds Gore, M. & Jagtap, U. B.) 187–202 (Springer, 2024).

  91. Lemkul, J. A., Huang, J., Roux, B. & MacKerell, A. D. J. An empirical polarizable force field based on the classical Drude oscillator model: development history and recent applications. Chem. Rev. 116, 4983–5013 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  92. Strickley, R. G. & Lambert, W. J. A review of formulations of commercially available antibodies. J. Pharm. Sci. 110, 2590–2608 (2021).

    Article  CAS  Google Scholar 

  93. Ekins, S. et al. Progress in predicting human ADME parameters in silico. J. Pharmacol. Toxicol. Methods 44, 251–272 (2000).

    Article  CAS  Google Scholar 

  94. Ekins, S., Honeycutt, J. D. & Metz, J. T. Evolving molecules using multi-objective optimization: applying to ADME/Tox. Drug Discov. Today 15, 451–460 (2010).

    Article  CAS  Google Scholar 

  95. Ma, L. et al. Research on prediction of human oral bioavailability of drugs based on improved deep forest. J. Mol. Graph. Model. 133, 108851 (2024).

    Article  CAS  Google Scholar 

  96. Lettieri, M., Rodda, M. & Carlucci, V. Machine learning in early prediction of metabolism of drugs. Methods Mol. Biol. 2834, 275–291 (2025).

    Article  Google Scholar 

  97. Ren, J. N. et al. FGTN: fragment-based graph transformer network for predicting reproductive toxicity. Arch. Toxicol. 98, 4077–4092 (2024).

    Article  CAS  Google Scholar 

  98. Pamonsupornwichit, T. et al. Engineering affinity of humanized ScFv targeting CD147 antibody: a combined approach of mCSM-AB2 and molecular dynamics simulations. J. Mol. Graph. Model. 133, 108884 (2024).

    Article  CAS  Google Scholar 

  99. Lee, B. & Richards, F. M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  100. Yang, M., Huang, J., Simon, R., Wang, L. X. & MacKerell, A. D. J. Conformational heterogeneity of the HIV envelope glycan shield. Sci. Rep. 7, 4435 (2017).

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support was from NIH R35 GM131710, and computational support was from the University of Maryland Computer-Aided Drug Design Center.

Author information

Authors and Affiliations

Authors

Contributions

A.A.O. modeled the monoclonal antibody and ADCs and performed and analyzed SILCS simulations. A.C. created ADC mutants and performed and analyzed canonical MD simulations. A.D.M. Jr conceptualized and supervised the entire project and wrote the first draft with all authors involved in revising the manuscript.

Corresponding author

Correspondence to Alexander D. MacKerell Jr..

Ethics declarations

Competing interests

A.D.M. Jr is a cofounder and the CSO of SilcsBio LLC. A.A.O. was employed by SilcsBio LLC. A.C. has no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Yutaka Matsuda and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Supplementary Notes 1–5, Supplementary Scheme and Supplementary References

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Croitoru, A., Orr, A.A. & MacKerell, A.D. Harnessing computational technologies to facilitate antibody–drug conjugate development. Nat Chem Biol 21, 1138–1147 (2025). https://doi.org/10.1038/s41589-025-01950-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41589-025-01950-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research