Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A widespread metabolic gene cluster family in metazoans

Abstract

Octocorals are metazoans that prolifically produce terpenoid natural products, rivaling the chemical diversity of plants and microbes. We recently established that these cnidarians uniformly express terpene cyclases and that their encoding genes often reside within putative biosynthetic gene clusters (BGCs). Here we report the discovery and characterization of a widespread gene cluster family for briarane diterpenoid biosynthesis. We sequence five genomes from evolutionarily distinct families of briarane-producing octocorals, revealing a conserved five-gene cluster. Expressing these genes in heterologous hosts, we reconstitute the biosynthesis of cembrene B γ-lactone, an established molecule that contains the lactone structural feature distinctive of briarane diterpenoids. The discovery of the genomic basis of briarane biosynthesis establishes that animals also use gene cluster families to produce specialized metabolites. Furthermore, the presence of BGCs in octocorals proves that the formation and maintenance of BGCs related to specialized metabolite biosynthesis is a more widespread phenomenon than previously realized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene clustering trends across eukaryotes.
Fig. 2: Distribution of briarane diterpenoids in the phylum Octocorallia.
Fig. 3: Genome-guided discovery of a conserved octocoral BGC family.
Fig. 4: Biochemical validation of clustered biosynthesis genes across syntenic homologs.
Fig. 5: Proposed biosynthetic pathway for briarane production and estimated time points for the evolution of the briarane BGC.

Similar content being viewed by others

Data availability

The feature-based molecular network parameters used and raw data are available through MASSIVE (MSV000094792). NCBI BioSample accession numbers for the genomes generated in this paper are as follows: R. koellikeri (SAMN40621396), B. asbestinum (SAMN40621398), D. gemmacea (SAMN40621399), E. caribaeorum (SAMN41659149) and S. elongata (SAMN40621397). NMR and EI-MS spectra of characterized compounds are available in Supplementary Information. Sequence Read Archive accession numbers for raw sequencing reads generated in this study are available in Supplementary Table 4. Genbank accession numbers for annotated BGC-containing contigs are available in Supplementary Table 5. A list of all protein sequences used in the study is available in Supplementary Note 1. The sources of all CYPs used for phylogenetic analysis are available in Supplementary Table 6. X-ray diffraction data are available from the CCDC (2371467). The conserved domain database webtool used to explore genomic neighborhoods can be accessed online (https://www.ncbi.nlm.nih.gov/cdd/).

References

  1. Medema, M. H., de Rond, T. & Moore, B. S. Mining genomes to illuminate the specialized chemistry of life. Nat. Rev. Genet. 22, 553–571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Torres, J. P. & Schmidt, E. W. The biosynthetic diversity of the animal world. J. Biol. Chem. 294, 17684–17692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Poth, D., Wollenberg, K. C., Vences, M. & Schulz, S. Volatile amphibian pheromones: macrolides from mantellid frogs from Madagascar. Angew. Chem. Int. Ed. Engl. 51, 2187–2190 (2012).

    Article  PubMed  Google Scholar 

  4. Chinta, S. P. et al. The sex pheromone of the wasp spider Argiope bruennichi. Angew. Chem. Int. Ed. Engl. 49, 2033–2036 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Masello, J. F., Lubjuhn, T. & Quillfeldt, P. Is the structural and psittacofulvin-based coloration of wild burrowing parrots Cyanoliseus patagonus condition dependent? J. Avian Biol. 39, 653–662 (2008).

    Article  Google Scholar 

  6. Anderson, H. A., Mathieson, J. W. & Thomson, R. H. Distribution of spinochrome pigments in echinoids. Comp. Biochem. Physiol. 28, 333–345 (1969).

    Article  CAS  PubMed  Google Scholar 

  7. Butcher, R. A., Fujita, M., Schroeder, F. C. & Clardy, J. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3, 420–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Dettner, K. & Schwinger, G. Defensive secretions of three oxytelinae rove beetles (Coleoptera: Staphylinidae). J. Chem. Ecol. 8, 1411–1420 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Olivera, B. M. et al. Peptide neurotoxins from fish-hunting cone snails. Science 230, 1338–1343 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Chevrette, M. G. et al. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat. Prod. Rep. 37, 566–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Rokas, A., Mead, M. E., Steenwyk, J. L., Raja, H. A. & Oberlies, N. H. Biosynthetic gene clusters and the evolution of fungal chemodiversity. Nat. Prod. Rep. 37, 868–878 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nützmann, H.-W., Scazzocchio, C. & Osbourn, A. Metabolic gene clusters in eukaryotes. Annu. Rev. Genet. 52, 159–183 (2018).

    Article  PubMed  Google Scholar 

  13. Steele, T. S. et al. Domoic acid biosynthesis in the red alga Chondria armata suggests a complex evolutionary history for toxin production. Proc. Natl Acad. Sci. USA 119, e2117407119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smit, S. J. & Lichman, B. R. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat. Prod. Rep. 39, 1465–1482 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ryngajłło, M., Boruta, T. & Bizukojć, M. Complete genome sequence of lovastatin producer Aspergillus terreus ATCC 20542 and evaluation of genomic diversity among A. terreus strains. Appl. Microbiol. Biotechnol. 105, 1615–1627 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li, Y. et al. Subtelomeric assembly of a multi-gene pathway for antimicrobial defense compounds in cereals. Nat. Commun. 12, 2563 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Itkin, M. et al. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341, 175–179 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Nützmann, H.-W., Huang, A. & Osbourn, A. Plant metabolic clusters—from genetics to genomics. N. Phytol. 211, 771–789 (2016).

    Article  Google Scholar 

  19. Osborn, A. R. et al. De novo synthesis of a sunscreen compound in vertebrates. eLife 4, e05919 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Roelofs, D. et al. A functional isopenicillin N synthase in an animal genome. Mol. Biol. Evol. 30, 541–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Faddeeva-Vakhrusheva, A. et al. Coping with living in the soil: the genome of the parthenogenetic springtail Folsomia candida. BMC Genom. 18, 493 (2017).

    Article  Google Scholar 

  22. Feng, L., Gordon, M. T., Liu, Y., Basso, K. B. & Butcher, R. A. Mapping the biosynthetic pathway of a hybrid polyketide–nonribosomal peptide in a metazoan. Nat. Commun. 12, 4912 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Rosa, R. et al. Hox genes in brachiopods and priapulids and protostome evolution. Nature 399, 772–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Storz, J. F., Opazo, J. C. & Hoffmann, F. G. Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Mol. Phylogenet. Evol. 66, 469–478 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Kitchen, S. A. et al. The genomic and cellular basis of biosynthetic innovation in rove beetles. Cell 187, 3563–3584 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Turcu, A. F., Rege, J., Auchus, R. J. & Rainey, W. E. 11-Oxygenated androgens in health and disease. Nat. Rev. Endocrinol. 16, 284–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tan, D.-X. et al. On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J. Pineal Res. 61, 27–40 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Burkhardt, I., de Rond, T., Chen, P. Y.-T. & Moore, B. S. Ancient plant-like terpene biosynthesis in corals. Nat. Chem. Biol. 18, 664–669 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scesa, P. D., Lin, Z. & Schmidt, E. W. Ancient defensive terpene biosynthetic gene clusters in the soft corals. Nat. Chem. Biol. 18, 659–663 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moon, N. G. & Harned, A. M. Synthetic explorations of the briarane jungle: progress in developing a synthetic route to a common family of diterpenoid natural products. R. Soc. Open Sci. 5, 172280 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. La, M.-P. et al. Briarane diterpenoids from the gorgonian Dichotella gemmacea. Mar. Drugs 12, 6178–6189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barsby, T. & Kubanek, J. Isolation and structure elucidation of feeding deterrent diterpenoids from the sea pansy, Renilla reniformis. J. Nat. Prod. 68, 511–516 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Fenical, W. & Pawlik, J. R. Defensive properties of secondary metabolites from the Caribbean gorgonian coral Erythropodium caribaeorum. Mar. Ecol. Prog. Ser. 75, 1–8 (1991).

    Article  CAS  Google Scholar 

  34. Harvell, C. D. et al. Local and geographic variation in the defensive chemistry of a West Indian gorgonian coral (Briareum asbestinum). Mar. Ecol. Prog. Ser. 93, 165–173 (1993).

    Article  CAS  Google Scholar 

  35. Ksebati, M. B. & Schmitz, F. J. Diterpenes from a soft coral, Minabea sp., from Truk Lagoon. Bull. Soc. Chim. Belg. 95, 835–851 (1986).

    Article  CAS  Google Scholar 

  36. Wratten, S. J. & Faulkner, D. J. Some diterpenes from the sea pen Stylatula sp. Tetrahedron 35, 1907–1912 (1979).

    Article  CAS  Google Scholar 

  37. Yang, J. et al. Briarane-type diterpenoids from the China gorgonian coral Subergorgia reticulata. Biochem. Syst. Ecol. 35, 770–773 (2007).

    Article  CAS  Google Scholar 

  38. Williams, G. C. Living genera of sea pens (Coelenterata: Octocorallia: Pennatulacea): illustrated key and synopses. Zool. J. Linn. Soc. 113, 93–140 (1995).

    Article  Google Scholar 

  39. Keifer, P. A., Rinehart, K. L. & Hooper, I. R. Renillafoulins, antifouling diterpenes from the sea pansy Renilla reniformis (Octocorallia). J. Org. Chem. 51, 4450–4454 (1986).

    Article  CAS  Google Scholar 

  40. Hendrickson, R. L. & Cardellina, J. H. Structure and stereochemistry of insecticidal diterpenes from the sea pen. Tetrahedron 42, 6565–6570 (1986).

    Article  CAS  Google Scholar 

  41. Nurco, D. J., Conklin, D. E., Shapiro, N. S. & Tran, E. The absolute structure of ptilosarcenone 2.5-hydrate, a diterpenoid briarane from the orange sea pen Ptilosarcus gurneyi (Gray). Acta Crystallogr. E Struct. Rep. Online 67, o181–o182 (2010).

    Article  Google Scholar 

  42. Li, C. et al. Bioactive (3Z,5E)-11,20-epoxybriara-3,5-dien-7,18-olide diterpenoids from the South China Sea gorgonian Dichotella gemmacea. Mar. Drugs 9, 1403–1418 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pordesimo, E. O., Schmitz, F. J., Ciereszko, L. S., Hossain, M. B. & Van der Helm, D. New briarein diterpenes from the Caribbean gorgonians Erythropodium caribaeorum and Briareum sp. J. Org. Chem. 56, 2344–2357 (1991).

    Article  CAS  Google Scholar 

  44. Molina, S. L. et al. Metabolic profiling of the soft coral Erythropodium caribaeorum (Alcyonacea: Anthothelidae) from the Colombian Caribbean reveals different chemotypes. Mar. Drugs 18, 4 (2020).

    Article  CAS  Google Scholar 

  45. Jiang, J. B. et al. A hybrid de novo assembly of the sea pansy (Renilla muelleri) genome. GigaScience 8, giz026 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ledoux, J.-B. et al. Chromosome-level genome assembly and annotation of Corallium rubrum: a Mediterranean coral threatened by overharvesting and climate change. Genome Biol. Evol. 17, evae253 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Corominas, M. et al. The Catalan initiative for the Earth BioGenome Project: contributing local data to global biodiversity genomics. NAR Genom. Bioinform. 6, lqae075 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu, M., Zheng, X., Fan, C.-M. & Zheng, Y. Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia. Nature 582, 534–538 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ip, J. C.-H., Ho, M.-H., Chan, B. K. K. & Qiu, J.-W. A draft genome assembly of reef-building octocoral Heliopora coerulea. Sci. Data 10, 381 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pankov, K. V. et al. The cytochrome P450 (CYP) superfamily in cnidarians. Sci. Rep. 11, 9834 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. DeJong, J. M. et al. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol. Bioeng 93, 212–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Pompon, D., Louerat, B., Bronine, A. and Urban, P. in Methods in Enzymology Vol. 272 (eds Johnson, E. F. & Waterman, M. R.) 51–64 (Academic, 1996).

  53. Ro, D.-K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Rudolf, J. D. & Chang, C.-Y. Terpene synthases in disguise: enzymology, structure, and opportunities of non-canonical terpene synthases. Nat. Prod. Rep. 37, 425–463 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McFadden, C. S., van Ofwegen, L. P. & Quattrini, A. M. Revisionary systematics of Octocorallia (Cnidaria: Anthozoa) guided by phylogenomics. Bull. Soc. Syst. Biol. 1, 8735 (2022).

    Google Scholar 

  56. He, J., Xin, P., Ma, X., Chu, J. & Wang, G. Gibberellin metabolism in flowering plants: an update and perspectives. Front. Plant Sci. 11, 532 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cleves, P. A., Strader, M. E., Bay, L. K., Pringle, J. R. & Matz, M. V. CRISPR/Cas9-mediated genome editing in a reef-building coral. Proc. Natl Acad. Sci. USA 115, 5235–5240 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lyu, C. et al. CMNPD: a comprehensive marine natural products database towards facilitating drug discovery from the ocean. Nucleic Acids Res. 49, D509–D515 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Burkhardt, I., Dürr, L., Grayson, N. E. & Moore, B. S. in Methods in Enzymology Vol. 699 (ed. Rudolf, J.) 343–371 (Academic, 2024)

  60. Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2, e107 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. De Coster, W. & Rademakers, R. NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics 39, btad311 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cheng, H. et al. Haplotype-resolved assembly of diploid genomes without parental data. Nat. Biotechnol. 40, 1332–1335 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-seq data. Nat. Biotechnol. 29, 644–652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinformatics 70, e102 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, J. et al. The conserved domain database in 2023. Nucleic Acids Res. 51, D384–D388 (2022).

    Article  PubMed Central  Google Scholar 

  76. Solovyev, V., Kosarev, P., Seledsov, I. & Vorobyev, D. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 7, S10 (2006).

    Article  PubMed Central  Google Scholar 

  77. Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gilchrist, C. L. M. & Chooi, Y.-H. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473–2475 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lassmann, T., Frings, O. & Sonnhammer, E. L. L. Kalign2: high-performance multiple alignment of protein and nucleotide sequences allowing external features. Nucleic Acids Res. 37, 858–865 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schmid, R. et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 41, 447–449 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Scesa, P. D. & Schmidt, E. W. Biomimetic approach to diverse coral diterpenes from a biosynthetic scaffold. Angew. Chem. Int. Ed. Engl. 62, e202311406 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Alcaíno, J. et al. Functional characterization of the Xanthophyllomyces dendrorhous farnesyl pyrophosphate synthase and geranylgeranyl pyrophosphate synthase encoding genes that are involved in the synthesis of isoprenoid precursors. PLoS ONE 9, e96626 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sambrook, J. & Russell, D. W. Preparation and transformation of competent E. coli using calcium chloride. Cold Spring Harb. Protoc. 2006, pdb.prot3932 (2006).

    Article  Google Scholar 

  92. Synthetic Complete (SC) medium. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.rec090589 (2016).

Download references

Acknowledgements

We thank P. Zerofski (Scripps Institution of Oceanography) for collecting R. koellikeri and S. elongata, J. Sprung (Two Little Fishes) for the D. gemmacea tissue and J. Garrabou for the C. rubrum tissue. For her help in species identification, we would like to recognize C. S. McFadden (Harvey Mudd College). For coral images, we thank C. S. McFadden for D. gemmacea, F. Zuberer (CNRS) for C. rubrum, P. Webster (@underwaterpat) for S. elongata and J. Simpson (Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology) for B. asbestinum and E. caribaeorum. We thank T. Damiani (IOCB Prague) and A. M. C. Rodriguez (UC San Diego) for their assistance with feature-based molecular networking. Chemical isolation and elucidation of the R. koellikeri briarane diterpene was aided by A. Bogdanov (Scripps Institution of Oceanography). We thank N. M. Lacerna (University of Utah) for aid with gel electrophoresis. This work was supported by the NIH (R01-GM146224 to B.S.M., R35-GM148283 to E.W.S, and K99-GM148783 to P.D.S.), a Margaret A. Davidson Graduate Fellowship to N.E.G (NERRS NA22NOS4200050), a National Science Foundation Graduate Research Fellowship to M.L.M., Tang Genomics Fund to T.P.M. and Fundaço para a Ciência e a Tecnologia funds (UIDB/04423/2020, UIDP/04423/2020 and 2021.00855.CEECIND) to J.-B.L. X-ray diffraction research reported in this publication was performed by R. T. Vanderlinden (U. Utah) and supported by the Office of the Director, NIH under award S10OD030326. NMR data collection at UC San Diego (the Scripps Institution of Oceanography and Biomolecular NMR Facilities) was assisted by B. Duggan. Additional NMR data were obtained at the University of Utah Health Sciences NMR Core. GC–MS data were obtained at the University of Utah Health Sciences Proteomics Core by Q. Pearce.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, P.D.S., I.B., E.W.S. and B.S.M. Data creation, N.E.G., P.D.S., M.L.M. and I.B. Formal analysis and validation, N.E.G., P.D.S., I.B., J.G.-G. and T.A. Funding acquisition, P.D.S., J.-B.L., T.P.M., E.W.S. and B.S.M. Investigation and methodology, N.E.G., P.D.S., M.L.M. and I.B. Project administration, P.D.S., I.B., E.W.S. and B.S.M. Resources, J.-B.L., T.P.M., E.W.S. and B.S.M. Writing—original draft, N.E.G., P.D.S., I.B. and B.S.M. Writing—review and editing, all authors.

Corresponding authors

Correspondence to Immo Burkhardt, Eric W. Schmidt or Bradley S. Moore.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Stylatula elongata species identification.

To accurately differentiate between two visually similar southern California sea pen species, Stylatula elongata and Virgularia sp., we examined the presence or absence of sclerites at the base of the polyp leaves. Sclerites are microscopic carbonate structures that provide structural support and serve as important taxonomic markers in octocorals. We imaged these sclerites at 10x magnification to assess their morphology and distribution. The observed sclerites, measuring approximately 0.5–1.5 mm in length, confirmed the identification of the specimen as Stylatula elongata, as this species is known to possess these structures, whereas Virgularia lacks them. The figure illustrates the presence of the sclerites in our sample tissue, providing critical diagnostic evidence for species determination.

Extended Data Fig. 2 The briarane terpenoid-containing complete molecular network.

Feature-based molecular networking (FBMN) was used to visualize relationships among metabolites detected in liquid chromatography-tandem mass spectrometry (LC-MS/MS) data from crude extracts of the six focal coral species analyzed in this study. Each node in the network represents a molecular feature, while edges indicate spectral similarity, grouping structurally related metabolites into clusters. The boxed region specifically highlights the briarane diterpene network, as shown in Fig. 2c, distinguishing this family of metabolites within the broader chemical space.

Extended Data Fig. 3 Full to scale synteny of the briarane BGCs in Scleralcyonacea corals.

Full, to-scale micro synteny representation of the briarane biosynthetic gene clusters (BGCs) identified in briarane producing octocoral. Annotated arrows indicate genes within the BGCs, with intron sequences included. Gene lengths and intergenic gaps are shown to scale, providing an accurate depiction of cluster organization. The total length of the contig containing the BGC is displayed in black adjacent to each contig, while the specific BGC-containing region depicted in the figure is indicated in parentheses. This visualization highlights the conserved and variable elements of briarane BGCs across coral species, offering insights into their genetic architecture and potential biosynthetic capabilities.

Extended Data Fig. 4 %ID matrices for all syntenic briarane BGC genes.

Heat maps illustrating the percent identity (% ID) across five biosynthetic gene cluster (BGC) genes identified in the focal Scleralcyonacea corals. Each row represents a gene from a specific coral species analyzed in this study. Percent identity is color-coded, with red indicating the highest sequence similarity and blue representing the lowest. This visualization provides a comparative overview of sequence conservation and divergence among BGC genes, offering insights into the evolutionary relationships and potential functional variations in briarane biosynthesis across coral species.

Extended Data Fig. 5 LCMS for co-expression of cembrene A, B, and C synthases with cembrene 19-hydroxylase Ecar cbCYPb.

EIC trace monitored at m/z 271.2. Co-expressed TC genes are as follows: Top) Basb caTC; Middle) Stro ccTC; Bottom) Basb cbTC. Oxidized products are only produced in the presence of cembrene B.

Extended Data Table 1 Basic assembly statistics for octocoral genomes
Extended Data Table 2 Long and short read sequencing statistics across all in house genomes

Supplementary information

Supplementary Information

Supplementary Tables 1–10, Figs. 1–15 and Notes 1–10.

Reporting Summary

Supplementary Data 1

Crystallographic information file for diol (13).

Supplementary Data 2

Validation summary of the corresponding.cif for diol (13).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grayson, N.E., Scesa, P.D., Moore, M.L. et al. A widespread metabolic gene cluster family in metazoans. Nat Chem Biol 21, 1509–1518 (2025). https://doi.org/10.1038/s41589-025-01927-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41589-025-01927-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing