Abstract
Octocorals are metazoans that prolifically produce terpenoid natural products, rivaling the chemical diversity of plants and microbes. We recently established that these cnidarians uniformly express terpene cyclases and that their encoding genes often reside within putative biosynthetic gene clusters (BGCs). Here we report the discovery and characterization of a widespread gene cluster family for briarane diterpenoid biosynthesis. We sequence five genomes from evolutionarily distinct families of briarane-producing octocorals, revealing a conserved five-gene cluster. Expressing these genes in heterologous hosts, we reconstitute the biosynthesis of cembrene B γ-lactone, an established molecule that contains the lactone structural feature distinctive of briarane diterpenoids. The discovery of the genomic basis of briarane biosynthesis establishes that animals also use gene cluster families to produce specialized metabolites. Furthermore, the presence of BGCs in octocorals proves that the formation and maintenance of BGCs related to specialized metabolite biosynthesis is a more widespread phenomenon than previously realized.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
The feature-based molecular network parameters used and raw data are available through MASSIVE (MSV000094792). NCBI BioSample accession numbers for the genomes generated in this paper are as follows: R.âkoellikeri (SAMN40621396), B.âasbestinum (SAMN40621398), D.âgemmacea (SAMN40621399), E.âcaribaeorum (SAMN41659149) and S.âelongata (SAMN40621397). NMR and EI-MS spectra of characterized compounds are available in Supplementary Information. Sequence Read Archive accession numbers for raw sequencing reads generated in this study are available in Supplementary Table 4. Genbank accession numbers for annotated BGC-containing contigs are available in Supplementary Table 5. A list of all protein sequences used in the study is available in Supplementary Note 1. The sources of all CYPs used for phylogenetic analysis are available in Supplementary Table 6. X-ray diffraction data are available from the CCDC (2371467). The conserved domain database webtool used to explore genomic neighborhoods can be accessed online (https://www.ncbi.nlm.nih.gov/cdd/).
References
Medema, M. H., de Rond, T. & Moore, B. S. Mining genomes to illuminate the specialized chemistry of life. Nat. Rev. Genet. 22, 553â571 (2021).
Torres, J. P. & Schmidt, E. W. The biosynthetic diversity of the animal world. J. Biol. Chem. 294, 17684â17692 (2019).
Poth, D., Wollenberg, K. C., Vences, M. & Schulz, S. Volatile amphibian pheromones: macrolides from mantellid frogs from Madagascar. Angew. Chem. Int. Ed. Engl. 51, 2187â2190 (2012).
Chinta, S. P. et al. The sex pheromone of the wasp spider Argiope bruennichi. Angew. Chem. Int. Ed. Engl. 49, 2033â2036 (2010).
Masello, J. F., Lubjuhn, T. & Quillfeldt, P. Is the structural and psittacofulvin-based coloration of wild burrowing parrots Cyanoliseus patagonus condition dependent? J. Avian Biol. 39, 653â662 (2008).
Anderson, H. A., Mathieson, J. W. & Thomson, R. H. Distribution of spinochrome pigments in echinoids. Comp. Biochem. Physiol. 28, 333â345 (1969).
Butcher, R. A., Fujita, M., Schroeder, F. C. & Clardy, J. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3, 420â422 (2007).
Dettner, K. & Schwinger, G. Defensive secretions of three oxytelinae rove beetles (Coleoptera: Staphylinidae). J. Chem. Ecol. 8, 1411â1420 (1982).
Olivera, B. M. et al. Peptide neurotoxins from fish-hunting cone snails. Science 230, 1338â1343 (1985).
Chevrette, M. G. et al. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat. Prod. Rep. 37, 566â599 (2020).
Rokas, A., Mead, M. E., Steenwyk, J. L., Raja, H. A. & Oberlies, N. H. Biosynthetic gene clusters and the evolution of fungal chemodiversity. Nat. Prod. Rep. 37, 868â878 (2020).
Nützmann, H.-W., Scazzocchio, C. & Osbourn, A. Metabolic gene clusters in eukaryotes. Annu. Rev. Genet. 52, 159â183 (2018).
Steele, T. S. et al. Domoic acid biosynthesis in the red alga Chondria armata suggests a complex evolutionary history for toxin production. Proc. Natl Acad. Sci. USA 119, e2117407119 (2022).
Smit, S. J. & Lichman, B. R. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat. Prod. Rep. 39, 1465â1482 (2022).
RyngajÅÅo, M., Boruta, T. & BizukojÄ, M. Complete genome sequence of lovastatin producer Aspergillus terreus ATCC 20542 and evaluation of genomic diversity among A. terreus strains. Appl. Microbiol. Biotechnol. 105, 1615â1627 (2021).
Li, Y. et al. Subtelomeric assembly of a multi-gene pathway for antimicrobial defense compounds in cereals. Nat. Commun. 12, 2563 (2021).
Itkin, M. et al. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341, 175â179 (2013).
Nützmann, H.-W., Huang, A. & Osbourn, A. Plant metabolic clustersâfrom genetics to genomics. N. Phytol. 211, 771â789 (2016).
Osborn, A. R. et al. De novo synthesis of a sunscreen compound in vertebrates. eLife 4, e05919 (2015).
Roelofs, D. et al. A functional isopenicillin N synthase in an animal genome. Mol. Biol. Evol. 30, 541â548 (2013).
Faddeeva-Vakhrusheva, A. et al. Coping with living in the soil: the genome of the parthenogenetic springtail Folsomia candida. BMC Genom. 18, 493 (2017).
Feng, L., Gordon, M. T., Liu, Y., Basso, K. B. & Butcher, R. A. Mapping the biosynthetic pathway of a hybrid polyketideânonribosomal peptide in a metazoan. Nat. Commun. 12, 4912 (2021).
de Rosa, R. et al. Hox genes in brachiopods and priapulids and protostome evolution. Nature 399, 772â776 (1999).
Storz, J. F., Opazo, J. C. & Hoffmann, F. G. Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Mol. Phylogenet. Evol. 66, 469â478 (2013).
Kitchen, S. A. et al. The genomic and cellular basis of biosynthetic innovation in rove beetles. Cell 187, 3563â3584 (2024).
Turcu, A. F., Rege, J., Auchus, R. J. & Rainey, W. E. 11-Oxygenated androgens in health and disease. Nat. Rev. Endocrinol. 16, 284â296 (2020).
Tan, D.-X. et al. On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J. Pineal Res. 61, 27â40 (2016).
Burkhardt, I., de Rond, T., Chen, P. Y.-T. & Moore, B. S. Ancient plant-like terpene biosynthesis in corals. Nat. Chem. Biol. 18, 664â669 (2022).
Scesa, P. D., Lin, Z. & Schmidt, E. W. Ancient defensive terpene biosynthetic gene clusters in the soft corals. Nat. Chem. Biol. 18, 659â663 (2022).
Moon, N. G. & Harned, A. M. Synthetic explorations of the briarane jungle: progress in developing a synthetic route to a common family of diterpenoid natural products. R. Soc. Open Sci. 5, 172280 (2018).
La, M.-P. et al. Briarane diterpenoids from the gorgonian Dichotella gemmacea. Mar. Drugs 12, 6178â6189 (2014).
Barsby, T. & Kubanek, J. Isolation and structure elucidation of feeding deterrent diterpenoids from the sea pansy, Renilla reniformis. J. Nat. Prod. 68, 511â516 (2005).
Fenical, W. & Pawlik, J. R. Defensive properties of secondary metabolites from the Caribbean gorgonian coral Erythropodium caribaeorum. Mar. Ecol. Prog. Ser. 75, 1â8 (1991).
Harvell, C. D. et al. Local and geographic variation in the defensive chemistry of a West Indian gorgonian coral (Briareum asbestinum). Mar. Ecol. Prog. Ser. 93, 165â173 (1993).
Ksebati, M. B. & Schmitz, F. J. Diterpenes from a soft coral, Minabea sp., from Truk Lagoon. Bull. Soc. Chim. Belg. 95, 835â851 (1986).
Wratten, S. J. & Faulkner, D. J. Some diterpenes from the sea pen Stylatula sp. Tetrahedron 35, 1907â1912 (1979).
Yang, J. et al. Briarane-type diterpenoids from the China gorgonian coral Subergorgia reticulata. Biochem. Syst. Ecol. 35, 770â773 (2007).
Williams, G. C. Living genera of sea pens (Coelenterata: Octocorallia: Pennatulacea): illustrated key and synopses. Zool. J. Linn. Soc. 113, 93â140 (1995).
Keifer, P. A., Rinehart, K. L. & Hooper, I. R. Renillafoulins, antifouling diterpenes from the sea pansy Renilla reniformis (Octocorallia). J. Org. Chem. 51, 4450â4454 (1986).
Hendrickson, R. L. & Cardellina, J. H. Structure and stereochemistry of insecticidal diterpenes from the sea pen. Tetrahedron 42, 6565â6570 (1986).
Nurco, D. J., Conklin, D. E., Shapiro, N. S. & Tran, E. The absolute structure of ptilosarcenone 2.5-hydrate, a diterpenoid briarane from the orange sea pen Ptilosarcus gurneyi (Gray). Acta Crystallogr. E Struct. Rep. Online 67, o181âo182 (2010).
Li, C. et al. Bioactive (3Z,5E)-11,20-epoxybriara-3,5-dien-7,18-olide diterpenoids from the South China Sea gorgonian Dichotella gemmacea. Mar. Drugs 9, 1403â1418 (2011).
Pordesimo, E. O., Schmitz, F. J., Ciereszko, L. S., Hossain, M. B. & Van der Helm, D. New briarein diterpenes from the Caribbean gorgonians Erythropodium caribaeorum and Briareum sp. J. Org. Chem. 56, 2344â2357 (1991).
Molina, S. L. et al. Metabolic profiling of the soft coral Erythropodium caribaeorum (Alcyonacea: Anthothelidae) from the Colombian Caribbean reveals different chemotypes. Mar. Drugs 18, 4 (2020).
Jiang, J. B. et al. A hybrid de novo assembly of the sea pansy (Renilla muelleri) genome. GigaScience 8, giz026 (2019).
Ledoux, J.-B. et al. Chromosome-level genome assembly and annotation of Corallium rubrum: a Mediterranean coral threatened by overharvesting and climate change. Genome Biol. Evol. 17, evae253 (2025).
Corominas, M. et al. The Catalan initiative for the Earth BioGenome Project: contributing local data to global biodiversity genomics. NAR Genom. Bioinform. 6, lqae075 (2024).
Hu, M., Zheng, X., Fan, C.-M. & Zheng, Y. Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia. Nature 582, 534â538 (2020).
Ip, J. C.-H., Ho, M.-H., Chan, B. K. K. & Qiu, J.-W. A draft genome assembly of reef-building octocoral Heliopora coerulea. Sci. Data 10, 381 (2023).
Pankov, K. V. et al. The cytochrome P450 (CYP) superfamily in cnidarians. Sci. Rep. 11, 9834 (2021).
DeJong, J. M. et al. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol. Bioeng 93, 212â224 (2006).
Pompon, D., Louerat, B., Bronine, A. and Urban, P. in Methods in Enzymology Vol. 272 (eds Johnson, E. F. & Waterman, M. R.) 51â64 (Academic, 1996).
Ro, D.-K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940â943 (2006).
Rudolf, J. D. & Chang, C.-Y. Terpene synthases in disguise: enzymology, structure, and opportunities of non-canonical terpene synthases. Nat. Prod. Rep. 37, 425â463 (2020).
McFadden, C. S., van Ofwegen, L. P. & Quattrini, A. M. Revisionary systematics of Octocorallia (Cnidaria: Anthozoa) guided by phylogenomics. Bull. Soc. Syst. Biol. 1, 8735 (2022).
He, J., Xin, P., Ma, X., Chu, J. & Wang, G. Gibberellin metabolism in flowering plants: an update and perspectives. Front. Plant Sci. 11, 532 (2020).
Cleves, P. A., Strader, M. E., Bay, L. K., Pringle, J. R. & Matz, M. V. CRISPR/Cas9-mediated genome editing in a reef-building coral. Proc. Natl Acad. Sci. USA 115, 5235â5240 (2018).
Lyu, C. et al. CMNPD: a comprehensive marine natural products database towards facilitating drug discovery from the ocean. Nucleic Acids Res. 49, D509âD515 (2021).
Burkhardt, I., Dürr, L., Grayson, N. E. & Moore, B. S. in Methods in Enzymology Vol. 699 (ed. Rudolf, J.) 343â371 (Academic, 2024)
Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2, e107 (2023).
Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764â770 (2011).
Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202â2204 (2017).
De Coster, W. & Rademakers, R. NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics 39, btad311 (2023).
Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540â546 (2019).
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094â3100 (2018).
Vaser, R., SoviÄ, I., Nagarajan, N. & Å ikiÄ, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737â746 (2017).
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).
Cheng, H. et al. Haplotype-resolved assembly of diploid genomes without parental data. Nat. Biotechnol. 40, 1332â1335 (2022).
Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647â4654 (2021).
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072â1075 (2013).
Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-seq data. Nat. Biotechnol. 29, 644â652 (2011).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114â2120 (2014).
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinformatics 70, e102 (2020).
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907â915 (2019).
Wang, J. et al. The conserved domain database in 2023. Nucleic Acids Res. 51, D384âD388 (2022).
Solovyev, V., Kosarev, P., Seledsov, I. & Vorobyev, D. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 7, S10 (2006).
Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200âW204 (2018).
Gilchrist, C. L. M. & Chooi, Y.-H. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473â2475 (2021).
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841â842 (2010).
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150â3152 (2012).
Lassmann, T., Frings, O. & Sonnhammer, E. L. L. Kalign2: high-performance multiple alignment of protein and nucleotide sequences allowing external features. Nucleic Acids Res. 37, 858â865 (2009).
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587â589 (2017).
Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78âW82 (2024).
Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918â920 (2012).
Schmid, R. et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 41, 447â449 (2023).
Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905â908 (2020).
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498â2504 (2003).
Scesa, P. D. & Schmidt, E. W. Biomimetic approach to diverse coral diterpenes from a biosynthetic scaffold. Angew. Chem. Int. Ed. Engl. 62, e202311406 (2023).
AlcaÃno, J. et al. Functional characterization of the Xanthophyllomyces dendrorhous farnesyl pyrophosphate synthase and geranylgeranyl pyrophosphate synthase encoding genes that are involved in the synthesis of isoprenoid precursors. PLoS ONE 9, e96626 (2014).
Sambrook, J. & Russell, D. W. Preparation and transformation of competent E.âcoli using calcium chloride. Cold Spring Harb. Protoc. 2006, pdb.prot3932 (2006).
Synthetic Complete (SC) medium. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.rec090589 (2016).
Acknowledgements
We thank P. Zerofski (Scripps Institution of Oceanography) for collecting R.âkoellikeri and S.âelongata, J. Sprung (Two Little Fishes) for the D.âgemmacea tissue and J. Garrabou for the C.ârubrum tissue. For her help in species identification, we would like to recognize C. S. McFadden (Harvey Mudd College). For coral images, we thank C. S. McFadden for D.âgemmacea, F. Zuberer (CNRS) for C.ârubrum, P. Webster (@underwaterpat) for S.âelongata and J. Simpson (Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology) for B.âasbestinum and E.âcaribaeorum. We thank T. Damiani (IOCB Prague) and A. M. C. Rodriguez (UC San Diego) for their assistance with feature-based molecular networking. Chemical isolation and elucidation of the R.âkoellikeri briarane diterpene was aided by A. Bogdanov (Scripps Institution of Oceanography). We thank N. M. Lacerna (University of Utah) for aid with gel electrophoresis. This work was supported by the NIH (R01-GM146224 to B.S.M., R35-GM148283 to E.W.S, and K99-GM148783 to P.D.S.), a Margaret A. Davidson Graduate Fellowship to N.E.G (NERRS NA22NOS4200050), a National Science Foundation Graduate Research Fellowship to M.L.M., Tang Genomics Fund to T.P.M. and Fundaço para a Ciência e a Tecnologia funds (UIDB/04423/2020, UIDP/04423/2020 and 2021.00855.CEECIND) to J.-B.L. X-ray diffraction research reported in this publication was performed by R. T. Vanderlinden (U. Utah) and supported by the Office of the Director, NIH under award S10OD030326. NMR data collection at UC San Diego (the Scripps Institution of Oceanography and Biomolecular NMR Facilities) was assisted by B. Duggan. Additional NMR data were obtained at the University of Utah Health Sciences NMR Core. GCâMS data were obtained at the University of Utah Health Sciences Proteomics Core by Q. Pearce.
Author information
Authors and Affiliations
Contributions
Conceptualization, P.D.S., I.B., E.W.S. and B.S.M. Data creation, N.E.G., P.D.S., M.L.M. and I.B. Formal analysis and validation, N.E.G., P.D.S., I.B., J.G.-G. and T.A. Funding acquisition, P.D.S., J.-B.L., T.P.M., E.W.S. and B.S.M. Investigation and methodology, N.E.G., P.D.S., M.L.M. and I.B. Project administration, P.D.S., I.B., E.W.S. and B.S.M. Resources, J.-B.L., T.P.M., E.W.S. and B.S.M. Writingâoriginal draft, N.E.G., P.D.S., I.B. and B.S.M. Writingâreview and editing, all authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Chemical Biology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Stylatula elongata species identification.
To accurately differentiate between two visually similar southern California sea pen species, Stylatula elongata and Virgularia sp., we examined the presence or absence of sclerites at the base of the polyp leaves. Sclerites are microscopic carbonate structures that provide structural support and serve as important taxonomic markers in octocorals. We imaged these sclerites at 10x magnification to assess their morphology and distribution. The observed sclerites, measuring approximately 0.5â1.5âmm in length, confirmed the identification of the specimen as Stylatula elongata, as this species is known to possess these structures, whereas Virgularia lacks them. The figure illustrates the presence of the sclerites in our sample tissue, providing critical diagnostic evidence for species determination.
Extended Data Fig. 2 The briarane terpenoid-containing complete molecular network.
Feature-based molecular networking (FBMN) was used to visualize relationships among metabolites detected in liquid chromatography-tandem mass spectrometry (LC-MS/MS) data from crude extracts of the six focal coral species analyzed in this study. Each node in the network represents a molecular feature, while edges indicate spectral similarity, grouping structurally related metabolites into clusters. The boxed region specifically highlights the briarane diterpene network, as shown in Fig. 2c, distinguishing this family of metabolites within the broader chemical space.
Extended Data Fig. 3 Full to scale synteny of the briarane BGCs in Scleralcyonacea corals.
Full, to-scale micro synteny representation of the briarane biosynthetic gene clusters (BGCs) identified in briarane producing octocoral. Annotated arrows indicate genes within the BGCs, with intron sequences included. Gene lengths and intergenic gaps are shown to scale, providing an accurate depiction of cluster organization. The total length of the contig containing the BGC is displayed in black adjacent to each contig, while the specific BGC-containing region depicted in the figure is indicated in parentheses. This visualization highlights the conserved and variable elements of briarane BGCs across coral species, offering insights into their genetic architecture and potential biosynthetic capabilities.
Extended Data Fig. 4 %ID matrices for all syntenic briarane BGC genes.
Heat maps illustrating the percent identity (% ID) across five biosynthetic gene cluster (BGC) genes identified in the focal Scleralcyonacea corals. Each row represents a gene from a specific coral species analyzed in this study. Percent identity is color-coded, with red indicating the highest sequence similarity and blue representing the lowest. This visualization provides a comparative overview of sequence conservation and divergence among BGC genes, offering insights into the evolutionary relationships and potential functional variations in briarane biosynthesis across coral species.
Extended Data Fig. 5 LCMS for co-expression of cembrene A, B, and C synthases with cembrene 19-hydroxylase Ecar cbCYPb.
EIC trace monitored at m/z 271.2. Co-expressed TC genes are as follows: Top) Basb caTC; Middle) Stro ccTC; Bottom) Basb cbTC. Oxidized products are only produced in the presence of cembrene B.
Supplementary information
Supplementary Information
Supplementary Tables 1â10, Figs. 1â15 and Notes 1â10.
Supplementary Data 1
Crystallographic information file for diol (13).
Supplementary Data 2
Validation summary of the corresponding.cif for diol (13).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Grayson, N.E., Scesa, P.D., Moore, M.L. et al. A widespread metabolic gene cluster family in metazoans. Nat Chem Biol 21, 1509â1518 (2025). https://doi.org/10.1038/s41589-025-01927-y
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41589-025-01927-y