Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Mechanisms, challenges and opportunities for FLASH radiotherapy in cancer

Abstract

FLASH radiotherapy has the potential to improve both patient quality of life and outcomes by delivering radiation at ultrahigh dose rates to effectively target tumours while sparing healthy tissues. However, the differential sensitivity of healthy tissues versus tumours to FLASH radiotherapy remains unexplained. In this Perspective, we hypothesize that FLASH radiotherapy distinguishes healthy tissues from tumours based on subtle functional and structural biological differences. We identify commonalities present in the various healthy tissues that are spared by FLASH radiotherapy that might be lost during tumorigenesis. We also propose that a specific class of proteins, termed long-lived proteins, define a critical radiolytic target that are present in nearly every healthy tissue that is FLASH radiotherapy resistant yet are absent in tumours. We extend this structural hypothesis further by suggesting that tumour and extracellular matrix rigidity affects sensitivity to changes in radiotherapy dose rate, where more rigid and dense desmoplastic tumours are more sensitive to FLASH radiotherapy than those possessing more elasticity. Substantiating these concepts experimentally may provide a new and generalized mechanism of action of radiation effects and may therefore inform clinical trial designs by identifying those tumour subclasses expected to exhibit optimal responses to FLASH radiotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The relative timescale of measured radiation events involving physical, chemical and biological processes.
Fig. 2: The temporal and biological dynamics of radiation response.
Fig. 3: The differential toxicity effects induced by FLASH and conventional dose rate radiotherapy in healthy tissues and tumours.

References

  1. Jaffray, D. A. et al. Global task force on radiotherapy for cancer control. Lancet Oncol. 16, 1144–1146 (2015).

    Article  PubMed  Google Scholar 

  2. Mahvi, D. A., Liu, R., Grinstaff, M. W., Colson, Y. L. & Raut, C. P. Local cancer recurrence: the realities, challenges, and opportunities for new therapies. CA Cancer J. Clin. 68, 488–505 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. Williams, C. P. et al. Importance of quality-of-life priorities and preferences surrounding treatment decision making in patients with cancer and oncology clinicians. Cancer 126, 3534–3541 (2020).

    Article  PubMed  Google Scholar 

  4. Favaudon, V. et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 6, 245ra293 (2014).

    Article  Google Scholar 

  5. Inada, T., Nishio, H., Amino, S., Abe, K. & Saito, K. High dose-rate dependence of early skin reaction in mouse. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 38, 139–145 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Hendry, J. H., Moore, J. V., Hodgson, B. W. & Keene, J. P. The constant low oxygen concentration in all the target cells for mouse tail radionecrosis. Radiat. Res. 92, 172–181 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Limoli, C. L. & Vozenin, M.-C. Reinventing radiobiology in the light of FLASH radiotherapy. Annu. Rev. Cancer Biol. https://doi.org/10.1146/annurev-cancerbio-061421-022217 (2023).

  8. Vozenin, M. C. et al. FLASH: New intersection of physics, chemistry, biology, and cancer medicine. Rev. Mod. Phys. 96, 1–50 (2024).

    Article  Google Scholar 

  9. Loo, B. W. Jr et al. Navigating the critical translational questions for implementing FLASH in the clinic. Semin. Radiat. Oncol. 34, 351–364 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bourhis, J. et al. Treatment of a first patient with FLASH-radiotherapy. Radiother. Oncol. 139, 18–22 (2019).

    Article  PubMed  Google Scholar 

  11. Gaide, O. et al. Comparison of ultra-high versus conventional dose rate radiotherapy in a patient with cutaneous lymphoma. Radiother. Oncol. https://doi.org/10.1016/j.radonc.2021.12.045 (2022).

  12. Mascia, A. E. et al. Proton FLASH radiotherapy for the treatment of symptomatic bone metastases: the FAST-01 nonrandomized trial. JAMA Oncol. 9, 62–69 (2023).

    Article  PubMed  Google Scholar 

  13. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05524064 (2025).

  14. Daugherty, E. C. et al. FLASH radiotherapy for the treatment of symptomatic bone metastases in the thorax (FAST-02): protocol for a prospective study of a novel radiotherapy approach. Radiat. Oncol. 19, 34 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04986696 (2023).

  16. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05724875 (2025).

  17. Kinj, R. et al. Randomized phase II selection trial of FLASH and conventional radiotherapy for patients with localized cutaneous squamous cell carcinoma or basal cell carcinoma: a study protocol. Clin. Transl. Radiat. Oncol. 45, 100743 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Allignet, B. et al. Long-term outcomes after definitive radiotherapy with modern techniques for unresectable soft tissue sarcoma. Radiother. Oncol. 173, 55–61 (2022).

    Article  PubMed  Google Scholar 

  19. Timmerman, R. D., Herman, J. & Cho, L. C. Emergence of stereotactic body radiation therapy and its impact on current and future clinical practice. J. Clin. Oncol. 32, 2847–2854 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Andratschke, N. et al. European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus on re-irradiation: definition, reporting, and clinical decision making. Lancet Oncol. 23, e469–e478 (2022).

    Article  PubMed  Google Scholar 

  21. Verginadis, I. I. et al. FLASH proton reirradiation, with or without hypofractionation, reduces chronic toxicity in the normal murine intestine, skin, and bone. Radiother. Oncol. 205, 110744 (2025).

    Article  CAS  PubMed  Google Scholar 

  22. Clarke, M. et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366, 2087–2106 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Barrios, C. H., Reinert, T. & Werutsky, G. Global breast cancer research: moving forward. Am. Soc. Clin. Oncol. Educ. Book 38, 441–450 (2018).

    Article  PubMed  Google Scholar 

  24. Kacem, H. et al. Comparing radiolytic production of H2O2 and development of zebrafish embryos after ultra high dose rate exposure with electron and transmission proton beams. Radiother. Oncol. 175, 197–202 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Blain, G. et al. Proton irradiations at ultra-high dose rate vs. conventional dose rate: strong impact on hydrogen peroxide yield. Radiat. Res. 198, 318–324 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Kacem, H. et al. Modification of the microstructure of the CERN- CLEAR-VHEE beam at the picosecond scale modifies ZFE morphogenesis but has no impact on hydrogen peroxide production. Radiother. Oncol. 209, 110942 (2025).

    Article  CAS  PubMed  Google Scholar 

  27. Anderson, A. R. & Hart, E. J. Radiation chemistry of water with pulsed high intensity electron beams. J. Phys. Chem. 66, 70–75 (1962).

    Article  CAS  Google Scholar 

  28. Sehested, K., Rasmussen, O. L. & Fricke, H. Rate constants of OH with HO2,O2−, and H2O2+ from hydrogen peroxide formation in pulse-irradiated oxygenated water. J. Phys. Chem. 72, 626–631 (1968).

    Article  CAS  Google Scholar 

  29. Milligan, J. R., Aguilera, J. A. & Ward, J. F. Variation of single-strand break yield with scavenger concentration for plasmid DNA irradiated in aqueous solution. Radiat. Res. 133, 151 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Milligan, J. R., Arnold, A. D. & Ward, J. F. The effect of superhelical density on the yield of single-strand breaks in γ-irradiated plasmid DNA. Radiat. Res. 132, 69 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Kunz, L. V. et al. Plasmid DNA strand breaks are dose rate independent at clinically relevant proton doses and under biological conditions. Radiat. Res. 203, 214−222 (2024).

    Google Scholar 

  32. Perstin, A., Poirier, Y., Sawant, A. & Tambasco, M. Quantifying the DNA-damaging effects of FLASH irradiation with plasmid DNA. Int. J. Radiat. Oncol. Biol. Phys. https://doi.org/10.1016/j.ijrobp.2022.01.049 (2022).

  33. Wanstall, H. C. et al. VHEE FLASH sparing effect measured at CLEAR, CERN with DNA damage of pBR322 plasmid as a biological endpoint. Sci. Rep. 14, 14803 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Froidevaux, P. et al. FLASH irradiation does not induce lipid peroxidation in lipids micelles and liposomes. Radiat. Phys. Chem. https://doi.org/10.1016/j.radphyschem.2022.110733 (2023).

  35. Grilj, V. et al. Average dose rate is the primary determinant of lipid peroxidation in liposome membranes exposed to pulsed electron FLASH beam. Radiat. Phys. Chem. https://doi.org/10.1016/j.radphyschem.2024.111887 (2024).

  36. Portier, L. et al. Differential remodeling of the oxylipin pool after FLASH versus conventional dose-rate irradiation in vitro and in vivo. Int. J. Radiat. Oncol. Biol. Phys. 119, 1481–1492 (2024).

    Article  PubMed  Google Scholar 

  37. Gupta, S. et al. A novel platform for evaluating dose rate effects on oxidative damage to peptides: toward a high-throughput method to characterize the mechanisms underlying the FLASH effect. Radiat. Res. 200, 523–530 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinez-Rovira, I. et al. Infrared microspectroscopy to elucidate the underlying biomolecular mechanisms of FLASH radiotherapy. Radiother. Oncol. 196, 110238 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Jansen, J. et al. Ex vivo brain MRI to assess conventional and FLASH brain irradiation effects. Radiother. Oncol. 208, 110894 (2025).

    Article  PubMed  Google Scholar 

  40. Montay-Gruel, P. et al. Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. Proc. Natl Acad. Sci. USA 116, 10943–10951 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Allen, B. D. et al. Elucidating the neurological mechanism of the FLASH effect in juvenile mice exposed to hypofractionated radiotherapy. Neuro. Oncol. https://doi.org/10.1093/neuonc/noac248 (2022).

  42. Hall, E. J. & Giaccia, A. J. Radiobiology for the Radiologist 7th edn (Wolters Kluwer Health/Lippincott Williams & Wilkins, 2012).

  43. Joiner, M. C. & van der Kogel, A. J. Basic Clinical Radiobiology 6th edn (CRC, 2025).

  44. Balentova, S. & Adamkov, M. Molecular, cellular and functional effects of radiation-induced brain injury: a review. Int. J. Mol. Sci. 16, 27796–27815 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yarnold, J. & Brotons, M. C. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 97, 149–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Verginadis, I. I. et al. Radiotherapy toxicities: mechanisms, management, and future directions. Lancet 405, 338–352 (2025).

    Article  PubMed  Google Scholar 

  47. Levy, K. et al. Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Sci. Rep. 10, 21600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Diffenderfer, E. S. et al. Design, implementation, and in vivo validation of a novel proton FLASH radiation therapy system. Int. J. Radiat. Oncol. Biol. Phys. 106, 440–448 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ruan, J. L. et al. Irradiation at ultra-high (FLASH) dose rates reduces acute normal tissue toxicity in the mouse gastrointestinal system. Int. J. Radiat. Oncol. Biol. Phys. 111, 1250–1261 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kim, M. M. et al. Comparison of FLASH proton entrance and the spread-out bragg peak dose regions in the sparing of mouse intestinal crypts and in a pancreatic tumor model. Cancers https://doi.org/10.3390/cancers13164244 (2021).

  51. Singers Sorensen, B. et al. In vivo validation and tissue sparing factor for acute damage of pencil beam scanning proton FLASH. Radiother. Oncol. 167, 109–115 (2022).

    Article  PubMed  Google Scholar 

  52. Montay-Gruel, P. et al. Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100Gy/s. Radiother. Oncol. 124, 365–369 (2017).

    Article  PubMed  Google Scholar 

  53. Bohlen, T. T. et al. Normal tissue sparing by FLASH as a function of single fraction dose: a quantitative analysis. Int. J. Radiat. Oncol. Biol. Phys. https://doi.org/10.1016/j.ijrobp.2022.05.038 (2022).

  54. Horst, F. et al. Dose and dose rate dependence of the tissue sparing effect at ultra-high dose rate studied for proton and electron beams using the zebrafish embryo model. Radiother. Oncol. 194, 110197 (2024).

    Article  CAS  PubMed  Google Scholar 

  55. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Fouillade, C. et al. FLASH irradiation spares lung progenitor cells and limits the incidence of radio-induced senescence. Clin. Cancer Res. 26, 1497–1506 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Velalopoulou, A. et al. FLASH proton radiotherapy spares normal epithelial and mesenchymal tissues while preserving sarcoma response. Cancer Res. 81, 4808–4821 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, K. et al. FLASH proton radiation therapy mitigates inflammatory and fibrotic pathways and preserves cardiac function in a preclinical mouse model of radiation-induced heart disease. Int. J. Radiat. Oncol. Biol. Phys. 119, 1234–1247 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Alaghband, Y. et al. Neuroprotection of radiosensitive juvenile mice by ultra-high dose rate FLASH irradiation. Cancers https://doi.org/10.3390/cancers12061671 (2020).

  60. Montay-Gruel, P. et al. X-rays can trigger the FLASH effect: ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiother. Oncol. 129, 582–588 (2018).

    Article  PubMed  Google Scholar 

  61. Montay-Gruel, P. et al. Hypofractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clin. Cancer Res. 27, 775–784 (2021).

    Article  PubMed  Google Scholar 

  62. Alexander, T. C. et al. Behavioral effects of focal irradiation in a juvenile murine model. Radiat. Res. 189, 605–617 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chambers, S. M. et al. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol. 5, e201 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Booth, L. N. & Brunet, A. The aging epigenome. Mol. Cell 62, 728–744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Montay-Gruel, P. et al. Ultra-high-dose-rate FLASH irradiation limits reactive gliosis in the brain. Radiat. Res. 194, 636–645 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Simmons, D. A. et al. Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiother. Oncol. 139, 4–10 (2019).

    Article  PubMed  Google Scholar 

  68. Kacem, H., Almeida, A., Cherbuin, N. & Vozenin, M. C. Understanding the FLASH effect to unravel the potential of ultra-high dose rate irradiation. Int. J. Radiat. Biol. 98, 506–516 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Allen, B. D. et al. Maintenance of tight junction integrity in the absence of vascular dilation in the brain of mice exposed to ultra-high-dose-rate FLASH irradiation. Radiat. Res. 194, 625–635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Barghouth, P. G. et al. FLASH-RT does not affect chromosome translocations and junction structures beyond that of CONV-RT dose-rates. Radiother. Oncol. 188, 109906 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Withers, H. R. in Advances in Radiation Biology Vol. 5 (eds Lett, J. T. & Adler, H.) 241–271 (Academic, 1975).

  72. Royce, T. J. et al. Tumor control probability modeling and systematic review of the literature of stereotactic body radiation therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 110, 227–236 (2021).

    Article  PubMed  Google Scholar 

  73. Chabi, S. et al. Ultra-high-dose-rate FLASH and conventional-dose-rate irradiation differentially affect human acute lymphoblastic leukemia and normal hematopoiesis. Int. J. Radiat. Oncol. Biol. Phys. 109, 819–829 (2021).

    Article  PubMed  Google Scholar 

  74. Leavitt, R. J. et al. Acute hypoxia does not alter tumor sensitivity to FLASH radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. https://doi.org/10.1016/j.ijrobp.2024.02.015 (2024).

  75. Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S. & Scott, O. C. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 26, 638–648 (1953).

    Article  CAS  PubMed  Google Scholar 

  76. Wilson, J. D., Hammond, E. M., Higgins, G. S. & Petersson, K. Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool’s gold? Front. Oncol. 9, 1563 (2019).

    Article  PubMed  Google Scholar 

  77. Jansen, J. et al. Does FLASH deplete oxygen? Experimental evaluation for photons, protons, and carbon ions. Med. Phys. 48, 3982–3990 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. El Khatib, M. et al. Ultrafast tracking of oxygen dynamics during proton FLASH. Int. J. Radiat. Oncol. Biol. Phys. 113, 624–634 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cao, X. et al. Quantification of oxygen depletion during FLASH irradiation in vitro and in vivo. Int. J. Radiat. Oncol. Biol. Phys. 111, 240–248 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Grilj, V. et al. In vivo measurements of change in tissue oxygen level during irradiation reveal novel dose rate dependence. Radiother. Oncol. 201, 110539 (2024).

    Article  CAS  PubMed  Google Scholar 

  81. Jin, J.-Y. et al. Ultra-high dose rate effect on circulating immune cells: a potential mechanism for FLASH effect? Radiother. Oncol. 149, 55–62 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Iturri, L. et al. Proton FLASH radiation therapy and immune infiltration: evaluation in an orthotopic glioma rat model. Int. J. Radiat. Oncol. Biol. Phys. 116, 655–665 (2023).

    Article  PubMed  Google Scholar 

  83. Almeida, A. et al. Dosimetric and biologic intercomparison between electron and proton FLASH beams. Radiother. Oncol. 190, 109953 (2024).

    Article  CAS  PubMed  Google Scholar 

  84. Almeida, A. et al. Antitumor effect by either FLASH or conventional dose rate irradiation involves equivalent immune responses. Int. J. Radiat. Oncol. Biol. Phys. 118, 1110–1122 (2024).

    Article  PubMed  Google Scholar 

  85. Padilla, O. et al. Immune response following FLASH and conventional radiation in diffuse midline glioma. Int. J. Radiat. Oncol. Biol. Phys. 119, 1248–1260 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cunningham, S. et al. FLASH proton pencil beam scanning irradiation minimizes radiation-induced leg contracture and skin toxicity in mice. Cancers https://doi.org/10.3390/cancers13051012 (2021).

  87. Ni, H. et al. FLASH radiation reprograms lipid metabolism and macrophage immunity and sensitizes medulloblastoma to CAR-T cell therapy. Nat. Cancer https://doi.org/10.1038/s43018-025-00905-6 (2025).

  88. Geraghty, A. C. et al. Immunotherapy-related cognitive impairment after CAR T cell therapy in mice. Cell 188, 3238–3258.e3225 (2025).

    Article  CAS  PubMed  Google Scholar 

  89. Kim, Y.-E. et al. Effects of ultra-high doserate FLASH irradiation on the tumor microenvironment in Lewis lung carcinoma: role of myosin light chain. Int. J. Radiat. Oncol. Biol. Phys. 109, 1440–1453 (2021).

    Article  PubMed  Google Scholar 

  90. Yang, L. et al. Pathophysiological responses in rat and mouse models of radiation-induced brain injury. Mol. Neurobiol. 54, 1022–1032 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Toyama, B. H. & Hetzer, M. W. Protein homeostasis: live long, won’t prosper. Nat. Rev. Mol. Cell Biol. 14, 55–61 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Toyama, B. H. et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154, 971–982 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Krishna, S. et al. Identification of long-lived proteins in the mitochondria reveals increased stability of the electron transport chain. Dev. Cell 56, 2952–2965.e2959 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Savas, J. N., Toyama, B. H., Xu, T., Yates, J. R. 3rd & Hetzer, M. W. Extremely long-lived nuclear pore proteins in the rat brain. Science 335, 942 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Toyama, B. H. et al. Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. J. Cell Biol. 218, 433–444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Arrojo, E. D. R. et al. Age mosaicism across multiple scales in adult tissues. Cell Metab. 30, 343–351.e343 (2019).

    Article  Google Scholar 

  97. Bomba-Warczak, E. & Savas, J. N. Long-lived mitochondrial proteins and why they exist. Trends Cell Biol. 32, 646–654 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Limoli, C. L., Laposa, R. & Cleaver, J. E. DNA replication arrest in XP variant cells after UV exposure is diverted into an Mre11-dependent recombination pathway by the kinase inhibitor wortmannin. Mutat. Res. 510, 121–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Straub, M. et al. Distinct nitrogen isotopic compositions of healthy and cancerous tissue in mice brain and head and neck micro-biopsies. BMC Cancer 21, 805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Carlos, A. R. & Allamand, V. Editorial: extracellular matrix in homeostasis and cancer. Front. Genet. 13, 1107969 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Cambria, E. et al. Linking cell mechanical memory and cancer metastasis. Nat. Rev. Cancer 24, 216–228 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Toulemonde, M., Surdutovich, E. & Solov’yov, A. V. Temperature and pressure spikes in ion-beam cancer therapy. Phys. Rev. E 80, 031913 (2009).

    Article  Google Scholar 

  103. Bjegovic, K. et al. 4D in vivo dosimetry for a FLASH electron beam using radiation-induced acoustic imaging. Phys. Med. Biol. https://doi.org/10.1088/1361-6560/ad4950 (2024).

  104. Lascaud, J. & Parodi, K. On the potential biological impact of radiation-induced acoustic emissions during ultra-high dose rate electron radiotherapy: a preliminary study. Phys. Med. Biol. https://doi.org/10.1088/1361-6560/acb9ce (2023).

  105. Rohrer Bley, C. et al. Dose- and volume-limiting late toxicity of FLASH radiotherapy in cats with squamous cell carcinoma of the nasal planum and in mini pigs. Clin. Cancer Res. 28, 3814–3823 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lascaud, J., Radler, M., Rohrer Bley, C., Vozenin, M. C. & Parodi, K. Retrospective study on the resonance of thermoacoustic emissions and their possible biological implications in cats treated with electron FLASH beams. Phys. Med. Biol. https://doi.org/10.1088/1361-6560/adb679 (2025).

  107. Abolfath, R., Baikalov, A., Bartzsch, S., Afshordi, N. & Mohan, R. The effect of non-ionizing excitations on the diffusion of ion species and inter-track correlations in FLASH ultra-high dose rate radiotherapy. Phys. Med. Biol. https://doi.org/10.1088/1361-6560/ac69a6 (2022).

  108. Novak, U. & Kaye, A. H. Extracellular matrix and the brain: components and function. J. Clin. Neurosci. 7, 280–290 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Dunsmore, S. E. & Rannels, D. E. Extracellular matrix biology in the lung. Am. J. Physiol. 270, L3–L27 (1996).

    CAS  PubMed  Google Scholar 

  110. Hussey, G. S., Keane, T. J. & Badylak, S. F. The extracellular matrix of the gastrointestinal tract: a regenerative medicine platform. Nat. Rev. Gastroenterol. Hepatol. 14, 540–552 (2017).

    Article  PubMed  Google Scholar 

  111. Feng, X. et al. Targeting extracellular matrix stiffness for cancer therapy. Front. Immunol. 15, 1467602 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huang, J. et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct. Target. Ther. 6, 153 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Tinganelli, W. et al. FLASH with carbon ions: tumor control, normal tissue sparing, and distal metastasis in a mouse osteosarcoma model. Radiother. Oncol. 175, 185–190 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Liljedahl, E. et al. Long-term anti-tumor effects following both conventional radiotherapy and FLASH in fully immunocompetent animals with glioblastoma. Sci. Rep. 12, 12285 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Attygalle, A. D. et al. The 5th edition of the World health organization classification of mature lymphoid and stromal tumors — an overview and update. Leuk. Lymphoma 65, 413–429 (2024).

    Article  PubMed  Google Scholar 

  116. Gao, F. et al. First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays. Radiother. Oncol. 166, 44–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Barty, C. P. J. et al. Design, construction, and test of compact, distributed-charge, X-band accelerator systems that enable image-guided, VHEE FLASH radiotherapy. Front. Phys. 12, 1472759 (2024).

    Article  Google Scholar 

  118. Behjati, S. et al. Mutational signatures of ionizing radiation in second malignancies. Nat. Commun. 7, 12605 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vozenin, M. C., Bourhis, J. & Durante, M. Towards clinical translation of FLASH radiotherapy. Nat. Rev. Clin. Oncol. 19, 791–803 (2022).

    Article  PubMed  Google Scholar 

  120. Sorensen, B. S. et al. Pencil beam scanning proton FLASH maintains tumor control while normal tissue damage is reduced in a mouse model. Radiother. Oncol. 175, 178–184 (2022).

    Article  PubMed  Google Scholar 

  121. Sorensen, B. S. et al. Proton FLASH: impact of dose rate and split dose on acute skin toxicity in a murine model. Int. J. Radiat. Oncol. Biol. Phys. 120, 265–275 (2024).

    Article  PubMed  Google Scholar 

  122. Mascia, A. et al. Impact of multiple beams on the FLASH effect in soft tissue and skin in mice. Int. J. Radiat. Oncol. Biol. Phys. 118, 253–261 (2024).

    Article  PubMed  Google Scholar 

  123. Bohlen, T. T. et al. The minimal FLASH sparing effect needed to compensate the increase of radiobiological damage due to hypofractionation for late-reacting tissues. Med. Phys. 49, 7672–7682 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Limoli, C. L. et al. The sparing effect of FLASH-RT on synaptic plasticity is maintained in mice with standard fractionation. Radiother. Oncol. 186, 109767 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chowdhury, P. et al. Proton FLASH radiotherapy ameliorates radiation-induced salivary gland dysfunction and oral mucositis and increases survival in a mouse model of head and neck cancer. Mol. Cancer Ther. 23, 877–889 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Alaghband, Y. et al. Uncovering the protective neurologic mechanisms of hypofractionated FLASH radiotherapy. Cancer Res. Commun. 3, 725–737 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank V. Favaudon (Inserm), M. Hetzer (ISTA), J. Lascaud (LMU), R. Abolfath (Howard U) and A. Durham (HUG) for fruitful scientific discussions as well as the junior fellows in our teams A. Almeida (Unige) and O. Drayson (UCI) for their support in preparing figures.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Marie-Catherine Vozenin.

Ethics declarations

Competing interests

M.-C.V. declares one research grant from Varian, Siemens Healthineers dedicated to FLASH preclinical research, one research grant from IBA dedicated to FLASH preclinical research and one research grant from Roche dedicated to radio-immunotherapy. P.M.-G. and P.T. declare no competing interests. C.L.L. declares receiving consulting fees from IBA dedicated to FLASH developments.

Peer review

Peer review information

Nature Reviews Cancer thanks Loredana Marcu and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Acoustic cavitation

The formation, growth and implosive collapse of bubbles in a liquid due to pressure fluctuations induced by sound waves, typically ultrasound.

Acoustic oscillation

The periodic variation in pressure, particle velocity and other acoustic quantities in a medium as a sound wave propagates through it.

Desmoplastic tumour

A tumour that develops fibrous connective tissue and adhesions that increase stiffness.

DNA damage response

A series of cellular signalling events following DNA damage to promote repair.

Dosimetric tools

Devices and methods used to measure and quantify the amount of radiation delivered to a specific area, ensuring accuracy and safety in radiotherapy and other radiation applications.

Extracellular matrix

A cellular stromal components composed of macromolecules (that is, proteins, carbohydrates and lipids) and minerals, which provide structural and biochemical support to cells.

Fibrosis

Progressive and chronic alteration of a tissue due to pathological wound healing characterized by the replacement of a normal parenchymal tissue by connective tissue.

Free radical recombination

A chemical reaction in which two free radicals combine to form a stable, non-radical molecule.

Ionizing radiation

Particles or electromagnetic waves with sufficient energy to induce the ionization of atoms it interacts with, and in the context of external beam radiotherapy, these are often X-rays, protons, electrons or carbon ions.

Isodose

An equivalent dose given by two different irradiation modalities.

Proteostasis

The biological processes involved in the synthesis, folding, trafficking and degradation of proteins required for the proper maintenance of cellular functions.

Radiation chemistry

The study of the chemical effects and reactions induced by the absorption of ionizing radiation in matter.

Radiobiology

A branch of science studying the interactions of ionizing radiation with biological tissues and organisms.

Radiolytic oxygen depletion

The consumption of oxygen by radiation-induced chemical reactions in aqueous systems, producing ROS and reducing overall oxygen level.

Radioresistance

Intrinsic or adaptive capacity of cells, tissues, organs or organisms to overcome the detrimental effects of ionizing radiation.

Therapeutic index

The measurement of treatment efficacy relative to its side effects.

Tumour clamping

An experimental procedure used to restrict blood flow to a tumour, inducing hypoxic or ischaemic conditions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vozenin, MC., Montay-Gruel, P., Tsoutsou, P. et al. Mechanisms, challenges and opportunities for FLASH radiotherapy in cancer. Nat Rev Cancer (2025). https://doi.org/10.1038/s41568-025-00878-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41568-025-00878-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing