Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Advancing cancer research via comparative oncology

Abstract

In the ongoing battle against cancer, the natural world provides promising inspiration for designing novel therapeutic strategies. The field of comparative oncology offers a valuable source of such inspiration. By combining evolutionary biology, ecology, veterinary medicine and clinical oncology, comparative oncology aims to better understand cancer, especially by highlighting taxa that are strongly resistant or susceptible to cancer and to identify the molecular and cellular mechanisms underlying the remarkable cancer resistance of some taxa. Such studies hold profound implications for human cancer research and treatment, and increase the probability of detecting therapeutic avenues that are non-toxic to healthy cells and tissues. This Perspective underscores the importance of comparative oncology, emphasizes its relevance, and showcases recent breakthroughs in identifying natural cancer resistance mechanisms and opportunities for clinical translation. We advocate for a better integration of cancer research on non-conventional model species into oncology and we urge enhanced cooperation between clinicians and comparative oncologists to advance cancer prevention or treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diverse cancer-resistance mechanisms of organisms across the tree of life.

Similar content being viewed by others

References

  1. Scharrer, B. & Lochhead, M. S. Tumors in the invertebrates: a review. Cancer Res. 10, 403–419 (1950).

    PubMed  CAS  Google Scholar 

  2. Smith, E. F. Further evidence that crown gall of plants is cancer. Science 43, 871–889 (1916).

    Article  PubMed  CAS  Google Scholar 

  3. Siegel, R. L., Kratzer, T. B., Giaquinto, A. N., Sung, H. & Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 75, 10–45 (2025).

    PubMed  PubMed Central  Google Scholar 

  4. Rothschild, B. M., Tanke, D. H., Helbling, M. & Martin, L. D. Epidemiologic study of tumors in dinosaurs. Naturwissenschaften 90, 495–500 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. Rothschild, B. M., Witzke, B. J. & Hershkovitz, I. Metastatic cancer in the Jurassic. Lancet 354, 398 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. de S Barbosa, F. H., de O Porpino, K., Rothschild, B. M., da Silva, R. C. & Capone, D. First cancer in an extinct quaternary non-human mammal. Hist. Biol. 33, 2878–2882 (2021).

    Article  Google Scholar 

  7. Haridy, Y. et al. Triassic cancer — osteosarcoma in a 240-million-year-old stem-turtle. JAMA Oncol. 5, 425 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Odes, E. J. et al. Earliest hominin cancer: 1.7-million-year-old osteosarcoma from Swartkrans cave, South Africa. South Afr. J. Sci. 112, 7–8 (2016).

    Google Scholar 

  9. Breasted, J. H. The Edwin Smith Surgical Papyrus (Univ. Chicago Press, 1930).

  10. Aufderheide, A. C. The Scientific Study of Mummies https://www.camwere bridge.org/fr/academic/subjects/life-sciences/biological-anthropology-and-primatology/scientific-study-mummies (Cambridge Univ. Press, 2003).

  11. David, A. R. & Zimmerman, M. R. Cancer: an old disease, a new disease or something in between? Nat. Rev. Cancer 10, 728–733 (2010).

    Article  PubMed  CAS  Google Scholar 

  12. Capasso, L. Antiquity of cancer. Artic. Int. J. Cancer https://doi.org/10.1002/ijc.20610 (2005).

    Article  Google Scholar 

  13. Aktipis, C. A. et al. Cancer across the tree of life: cooperation and cheating in multicellularity. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140219 (2015).

    Article  Google Scholar 

  14. Robert, J. Comparative study of tumorigenesis and tumor immunity in invertebrates and nonmammalian vertebrates. Dev. Comp. Immunol. 34, 915–925 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Vincze, O. et al. Cancer risk across mammals. Nature 601, 264–267 (2022).

    Article  Google Scholar 

  16. Madsen, T. et al. in Ecology and Evolution of Cancer 11–46 https://doi.org/10.1016/B978-0-12-804310-3.00002-8 (Elsevier, 2017).

  17. Boddy, A. M. et al. Lifetime cancer prevalence and life history traits in mammals. Evol., Med., Public. Health 2020, 187–195 (2020).

    Article  PubMed  Google Scholar 

  18. Compton, Z. T. et al. Cancer prevalence across vertebrates. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-24-0573 (2024).

  19. Effron, M., Griner, L. & Benirschke, K. Nature and rate of neoplasia found in captive wild mammals, birds, and reptiles at necropsy. J. Natl Cancer Inst. 59, 185–198 (1977).

    Article  PubMed  CAS  Google Scholar 

  20. Bilder, D., Ong, K., Hsi, T.-C., Adiga, K. & Kim, J. Tumour–host interactions through the lens of Drosophila. Nat. Rev. Cancer 21, 687–700 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gonzalez, C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat. Rev. Cancer 13, 172–183 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. Gateff, E. Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200, 1448–1459 (1978).

    Article  PubMed  CAS  Google Scholar 

  23. Boutry, J. et al. Spontaneously occurring tumors in different wild-derived strains of hydra. Sci. Rep. 13, 7449 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Domazet-Lošo, T. et al. Naturally occurring tumours in the basal metazoan Hydra. Nat. Commun. 5, 4222 (2014).

    Article  PubMed  Google Scholar 

  25. Metzger, M. J., Reinisch, C., Sherry, J. & Goff, S. P. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161, 255–263 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bilder, D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev. 18, 1909–1925 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. Sharpe, J. L., Morgan, J., Nisbet, N., Campbell, K. & Casali, A. Modelling cancer metastasis in Drosophila melanogaster. Cells 12, 677 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Peto, R. in Origins of Human Cancer (eds Hiatt, H., Watson, J. & Winsten, J.) 45, 1403–1428 (Cold Spring Harbor Laboratory, 1977).

  29. Nunney, L. Lineage selection and the evolution of multistage carcinogenesis. Proc. R. Soc. B Biol. Sci. 266, 493–498 (1999).

    Article  CAS  Google Scholar 

  30. Hua, R. et al. Experimental evidence for cancer resistance in a bat species. Nat. Commun. 15, 1401 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Seluanov, A., Gladyshev, V. N., Vijg, J. & Gorbunova, V. Mechanisms of cancer resistance in long-lived mammals. Nat. Rev. Cancer 18, 433–441 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Marongiu, F. & DeGregori, J. The sculpting of somatic mutational landscapes by evolutionary forces and their impacts on aging-related disease. Mol. Oncol. 16, 3238–3258 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Marongiu, F., Cheri, S. & Laconi, E. Cell competition, cooperation, and cancer. Neoplasia 23, 1029–1036 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Fortunato, A., Fleming, A., Aktipis, A. & Maley, C. C. Upregulation of DNA repair genes and cell extrusion underpin the remarkable radiation resistance of trichoplax adhaerens. PLoS Biol. 19, e3001471 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Seluanov, A. et al. Telomerase activity coevolves with body mass not lifespan. Aging Cell 6, 45–52 (2007).

    Article  PubMed  CAS  Google Scholar 

  36. Gomes, N. M. V. et al. Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 10, 761–768 (2011).

    Article  PubMed  CAS  Google Scholar 

  37. Seluanov, A. et al. Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan. Aging Cell 7, 813–823 (2008).

    Article  PubMed  CAS  Google Scholar 

  38. Abegglen, L. M. et al. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. JAMA 314, 1850 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhao, Y. et al. Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nat. Immunol. 22, 1219–1230 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Firsanov, D. et al. DNA repair and anti-cancer mechanisms in the longest-living mammal: the bowhead whale. Preprint at https://doi.org/10.1101/2023.05.07.539748 (2023).

  41. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. Hiam-Galvez, K. J., Allen, B. M. & Spitzer, M. H. Systemic immunity in cancer. Nat. Rev. Cancer 21, 345–359 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bruni, D., Angell, H. K. & Galon, J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).

    Article  PubMed  CAS  Google Scholar 

  44. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  PubMed  CAS  Google Scholar 

  45. Lemaitre, J.-F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. R. Soc. B Biol. Sci. 282, 20150209–20150209 (2015).

    Article  Google Scholar 

  46. Pastor-Pareja, J. C., Wu, M. & Xu, T. An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis. Model. Mech. 1, 144–154 (2008). 

    Article  PubMed  PubMed Central  Google Scholar 

  47. Parvy, J.-P. et al. The antimicrobial peptide defensin cooperates with tumour necrosis factor to drive tumour cell death in Drosophila. eLife 8, e45061 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Burnet, F. M. The concept of immunological surveillance. Prog. Exp. Tumor Res. 13, 1–27 (1970).

    Article  PubMed  CAS  Google Scholar 

  49. Demaria, O. et al. Harnessing innate immunity in cancer therapy. Nature 574, 45–56 (2019).

    Article  PubMed  CAS  Google Scholar 

  50. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  PubMed  CAS  Google Scholar 

  51. Liu, W. et al. Large-scale across species transcriptomic analysis identifies genetic selection signatures associated with longevity in mammals. EMBO J. 42, e112740 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 517–524 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Liu, M. H. et al. DNA mismatch and damage patterns revealed by single-molecule sequencing. Nature 630, 752–761 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  PubMed  CAS  Google Scholar 

  55. AbdulJabbar, K. et al. Bridging clinic and wildlife care with AI-powered pan-species computational pathology. Nat. Commun. 14, 2408 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Nakamura, S. & Yoshimori, T. Autophagy and longevity. Mol. Cell 41, 65–72 (2018).

    CAS  Google Scholar 

  57. Wilhelm, T. & Richly, H. Autophagy during ageing — from Dr Jekyll to Mr Hyde. FEBS J. 285, 2367–2376 (2018).

    Article  PubMed  CAS  Google Scholar 

  58. Singletary, K. & Milner, J. Diet, autophagy, and cancer: a review. Cancer Epidemiol. Biomark. Prev. 17, 1596–1610 (2008).

    Article  CAS  Google Scholar 

  59. White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer 12, 401–410 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Tian, X. et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499, 346–349 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zhang, Z. et al. Increased hyaluronan by naked mole-rat Has2 improves healthspan in mice. Nature 621, 196–205 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Yang, S.-C. et al. Inhibition of DNMT1 potentiates antitumor immunity in oral squamous cell carcinoma. Int. Immunopharmacol. 111, 109113 (2022).

    Article  PubMed  CAS  Google Scholar 

  63. Sulak, M. et al. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife 5, e11994 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tollis, M. et al. Elephant genomes reveal accelerated evolution in mechanisms underlying disease defenses. Mol. Biol. Evol. 38, 3606–3620 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Nunney, L. Cancer suppression and the evolution of multiple retrogene copies of TP53 in elephants: a re-evaluation. Evol. Appl. 15, 891–901 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Preston, A. J. et al. Elephant TP53–RETROGENE 9 induces transcription-independent apoptosis at the mitochondria. Cell Death Discov. 9, 1–11 (2023).

    Article  Google Scholar 

  67. Abegglen, L. M. et al. Abstract 45: elephant p53 protects mice from carcinogen induced death. Cancer Res. 83, 45 (2023).

    Article  Google Scholar 

  68. Noble, K., Rohaj, A., Abegglen, L. M. & Schiffman, J. D. Cancer therapeutics inspired by defense mechanisms in the animal kingdom. Evol. Appl. 13, 1681–1700 (2020).

    Article  Google Scholar 

  69. Wu, D. & Prives, C. Relevance of the p53–MDM2 axis to aging. Cell Death Differ. 25, 169–179 (2018).

    Article  PubMed  CAS  Google Scholar 

  70. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  PubMed  CAS  Google Scholar 

  71. Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  PubMed  CAS  Google Scholar 

  73. Khalturin, K., Becker, M., Rinkevich, B. & Bosch, T. C. G. Urochordates and the origin of natural killer cells: identification of a CD94/NKR-P1-related receptor in blood cells of Botryllus. Proc. Natl Acad. Sci. USA 100, 622–627 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Jenson, J. M. & Chen, Z. J. cGAS goes viral: a conserved immune defense system from bacteria to humans. Mol. Cell 84, 120–130 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kwon, J. & Bakhoum, S. F. The cytosolic DNA-sensing cGAS–STING pathway in cancer. Cancer Discov. 10, 26–39 (2020).

    Article  PubMed  CAS  Google Scholar 

  76. Baines, C. et al. Linking pollution and cancer in aquatic environments: a review. Environ. Int. 149, 106391 (2021).

    Article  PubMed  CAS  Google Scholar 

  77. McAloose, D. & Newton, A. L. Wildlife cancer: a conservation perspective. Nat. Rev. Cancer 9, 517–526 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Pesavento, P. A., Agnew, D., Keel, M. K. & Woolard, K. D. Cancer in wildlife: patterns of emergence. Nat. Rev. Cancer 18, 646–661 (2018).

    Article  PubMed  CAS  Google Scholar 

  79. Jepson, P. D. & Law, R. J. Persistent pollutants, persistent threats. Science 352, 1388–1389 (2016).

    Article  PubMed  CAS  Google Scholar 

  80. Pradeu, T. et al. Reuniting philosophy and science to advance cancer research. Biol. Rev. Camb. Philos. Soc. 98, 1668–1686 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Koh, J. et al. ABCB1 protects bat cells from DNA damage induced by genotoxic compounds. Nat. Commun. 10, 2820 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Baker, N. E. Emerging mechanisms of cell competition. Nat. Rev. Genet. 21, 683–697 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Siddle, H. V. et al. Reversible epigenetic down-regulation of MHC molecules by devil facial tumour disease illustrates immune escape by a contagious cancer. Proc. Natl Acad. Sci. USA 110, 5103–5108 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Murgia, C., Pritchard, J. K., Kim, S. Y., Fassati, A. & Weiss, R. A. Clonal origin and evolution of a transmissible cancer. Cell 126, 477–487 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Garrido, F. & Aptsiauri, N. Cancer immune escape: MHC expression in primary tumours versus metastases. Immunology 158, 255–266 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the Gordon and Betty Moore Foundation (no. GBMF9021 to T.P.), Agence Nationale de la Recherche (COVER ANR-23-CE02-0019 to M.G.), Région Nouvelle-Aquitaine (Chaire d’excellence ‘Cancer et Biodiversité’ to M.G.); National Scientific Research Fund (OTKA K143421 to O.V.); the NIH (R01AG066544 to J.D. and U54 CA217376, U2C CA233254, R21 CA257980, R01 CA140657 to C.C.M.); US National Institute on Aging, Impetus Grant, and the Milky Way Research Foundation (to to V.G.) and the US National Institute on Aging and Hevolution Foundation (to A.S.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. O.V., D.B., A.C., J.D., V.G., C.C.M., J.D.S., A.S., M.G. and T.P. contributed substantially to discussion of the content. All authors wrote the article. O.V., D.B., A.C., J.D., V.G., C.C.M., J.D.S., A.S., M.G. and T.P. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Orsolya Vincze or Thomas Pradeu.

Ethics declarations

Competing interests

J.D.S. reports being a cofounder and shareholder of Peel Therapeutics outside the submitted work. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Peter Adams and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincze, O., Spada, B., Bilder, D. et al. Advancing cancer research via comparative oncology. Nat Rev Cancer 25, 740–748 (2025). https://doi.org/10.1038/s41568-025-00841-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-025-00841-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer