Abstract
In the ongoing battle against cancer, the natural world provides promising inspiration for designing novel therapeutic strategies. The field of comparative oncology offers a valuable source of such inspiration. By combining evolutionary biology, ecology, veterinary medicine and clinical oncology, comparative oncology aims to better understand cancer, especially by highlighting taxa that are strongly resistant or susceptible to cancer and to identify the molecular and cellular mechanisms underlying the remarkable cancer resistance of some taxa. Such studies hold profound implications for human cancer research and treatment, and increase the probability of detecting therapeutic avenues that are non-toxic to healthy cells and tissues. This Perspective underscores the importance of comparative oncology, emphasizes its relevance, and showcases recent breakthroughs in identifying natural cancer resistance mechanisms and opportunities for clinical translation. We advocate for a better integration of cancer research on non-conventional model species into oncology and we urge enhanced cooperation between clinicians and comparative oncologists to advance cancer prevention or treatment strategies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
References
Scharrer, B. & Lochhead, M. S. Tumors in the invertebrates: a review. Cancer Res. 10, 403â419 (1950).
Smith, E. F. Further evidence that crown gall of plants is cancer. Science 43, 871â889 (1916).
Siegel, R. L., Kratzer, T. B., Giaquinto, A. N., Sung, H. & Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 75, 10â45 (2025).
Rothschild, B. M., Tanke, D. H., Helbling, M. & Martin, L. D. Epidemiologic study of tumors in dinosaurs. Naturwissenschaften 90, 495â500 (2003).
Rothschild, B. M., Witzke, B. J. & Hershkovitz, I. Metastatic cancer in the Jurassic. Lancet 354, 398 (1999).
de S Barbosa, F. H., de O Porpino, K., Rothschild, B. M., da Silva, R. C. & Capone, D. First cancer in an extinct quaternary non-human mammal. Hist. Biol. 33, 2878â2882 (2021).
Haridy, Y. et al. Triassic cancer â osteosarcoma in a 240-million-year-old stem-turtle. JAMA Oncol. 5, 425 (2019).
Odes, E. J. et al. Earliest hominin cancer: 1.7-million-year-old osteosarcoma from Swartkrans cave, South Africa. South Afr. J. Sci. 112, 7â8 (2016).
Breasted, J. H. The Edwin Smith Surgical Papyrus (Univ. Chicago Press, 1930).
Aufderheide, A. C. The Scientific Study of Mummies https://www.camwere bridge.org/fr/academic/subjects/life-sciences/biological-anthropology-and-primatology/scientific-study-mummies (Cambridge Univ. Press, 2003).
David, A. R. & Zimmerman, M. R. Cancer: an old disease, a new disease or something in between? Nat. Rev. Cancer 10, 728â733 (2010).
Capasso, L. Antiquity of cancer. Artic. Int. J. Cancer https://doi.org/10.1002/ijc.20610 (2005).
Aktipis, C. A. et al. Cancer across the tree of life: cooperation and cheating in multicellularity. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140219 (2015).
Robert, J. Comparative study of tumorigenesis and tumor immunity in invertebrates and nonmammalian vertebrates. Dev. Comp. Immunol. 34, 915â925 (2010).
Vincze, O. et al. Cancer risk across mammals. Nature 601, 264â267 (2022).
Madsen, T. et al. in Ecology and Evolution of Cancer 11â46 https://doi.org/10.1016/B978-0-12-804310-3.00002-8 (Elsevier, 2017).
Boddy, A. M. et al. Lifetime cancer prevalence and life history traits in mammals. Evol., Med., Public. Health 2020, 187â195 (2020).
Compton, Z. T. et al. Cancer prevalence across vertebrates. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-24-0573 (2024).
Effron, M., Griner, L. & Benirschke, K. Nature and rate of neoplasia found in captive wild mammals, birds, and reptiles at necropsy. J. Natl Cancer Inst. 59, 185â198 (1977).
Bilder, D., Ong, K., Hsi, T.-C., Adiga, K. & Kim, J. Tumourâhost interactions through the lens of Drosophila. Nat. Rev. Cancer 21, 687â700 (2021).
Gonzalez, C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat. Rev. Cancer 13, 172â183 (2013).
Gateff, E. Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200, 1448â1459 (1978).
Boutry, J. et al. Spontaneously occurring tumors in different wild-derived strains of hydra. Sci. Rep. 13, 7449 (2023).
Domazet-Lošo, T. et al. Naturally occurring tumours in the basal metazoan Hydra. Nat. Commun. 5, 4222 (2014).
Metzger, M. J., Reinisch, C., Sherry, J. & Goff, S. P. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161, 255â263 (2015).
Bilder, D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev. 18, 1909â1925 (2004).
Sharpe, J. L., Morgan, J., Nisbet, N., Campbell, K. & Casali, A. Modelling cancer metastasis in Drosophila melanogaster. Cells 12, 677 (2023).
Peto, R. in Origins of Human Cancer (eds Hiatt, H., Watson, J. & Winsten, J.) 45, 1403â1428 (Cold Spring Harbor Laboratory, 1977).
Nunney, L. Lineage selection and the evolution of multistage carcinogenesis. Proc. R. Soc. B Biol. Sci. 266, 493â498 (1999).
Hua, R. et al. Experimental evidence for cancer resistance in a bat species. Nat. Commun. 15, 1401 (2024).
Seluanov, A., Gladyshev, V. N., Vijg, J. & Gorbunova, V. Mechanisms of cancer resistance in long-lived mammals. Nat. Rev. Cancer 18, 433â441 (2018).
Marongiu, F. & DeGregori, J. The sculpting of somatic mutational landscapes by evolutionary forces and their impacts on aging-related disease. Mol. Oncol. 16, 3238â3258 (2022).
Marongiu, F., Cheri, S. & Laconi, E. Cell competition, cooperation, and cancer. Neoplasia 23, 1029â1036 (2021).
Fortunato, A., Fleming, A., Aktipis, A. & Maley, C. C. Upregulation of DNA repair genes and cell extrusion underpin the remarkable radiation resistance of trichoplax adhaerens. PLoS Biol. 19, e3001471 (2021).
Seluanov, A. et al. Telomerase activity coevolves with body mass not lifespan. Aging Cell 6, 45â52 (2007).
Gomes, N. M. V. et al. Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 10, 761â768 (2011).
Seluanov, A. et al. Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan. Aging Cell 7, 813â823 (2008).
Abegglen, L. M. et al. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. JAMA 314, 1850 (2015).
Zhao, Y. et al. Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nat. Immunol. 22, 1219â1230 (2021).
Firsanov, D. et al. DNA repair and anti-cancer mechanisms in the longest-living mammal: the bowhead whale. Preprint at https://doi.org/10.1101/2023.05.07.539748 (2023).
Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991â998 (2002).
Hiam-Galvez, K. J., Allen, B. M. & Spitzer, M. H. Systemic immunity in cancer. Nat. Rev. Cancer 21, 345â359 (2021).
Bruni, D., Angell, H. K. & Galon, J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662â680 (2020).
Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973â983 (1996).
Lemaitre, J.-F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. R. Soc. B Biol. Sci. 282, 20150209â20150209 (2015).
Pastor-Pareja, J. C., Wu, M. & Xu, T. An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis. Model. Mech. 1, 144â154 (2008).Â
Parvy, J.-P. et al. The antimicrobial peptide defensin cooperates with tumour necrosis factor to drive tumour cell death in Drosophila. eLife 8, e45061 (2019).
Burnet, F. M. The concept of immunological surveillance. Prog. Exp. Tumor Res. 13, 1â27 (1970).
Demaria, O. et al. Harnessing innate immunity in cancer therapy. Nature 574, 45â56 (2019).
Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650â1659 (1986).
Liu, W. et al. Large-scale across species transcriptomic analysis identifies genetic selection signatures associated with longevity in mammals. EMBO J. 42, e112740 (2023).
Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 517â524 (2022).
Liu, M. H. et al. DNA mismatch and damage patterns revealed by single-molecule sequencing. Nature 630, 752â761 (2024).
Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371â384 (2018).
AbdulJabbar, K. et al. Bridging clinic and wildlife care with AI-powered pan-species computational pathology. Nat. Commun. 14, 2408 (2023).
Nakamura, S. & Yoshimori, T. Autophagy and longevity. Mol. Cell 41, 65â72 (2018).
Wilhelm, T. & Richly, H. Autophagy during ageing â from Dr Jekyll to Mr Hyde. FEBS J. 285, 2367â2376 (2018).
Singletary, K. & Milner, J. Diet, autophagy, and cancer: a review. Cancer Epidemiol. Biomark. Prev. 17, 1596â1610 (2008).
White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer 12, 401â410 (2012).
Tian, X. et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499, 346â349 (2013).
Zhang, Z. et al. Increased hyaluronan by naked mole-rat Has2 improves healthspan in mice. Nature 621, 196â205 (2023).
Yang, S.-C. et al. Inhibition of DNMT1 potentiates antitumor immunity in oral squamous cell carcinoma. Int. Immunopharmacol. 111, 109113 (2022).
Sulak, M. et al. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife 5, e11994 (2016).
Tollis, M. et al. Elephant genomes reveal accelerated evolution in mechanisms underlying disease defenses. Mol. Biol. Evol. 38, 3606â3620 (2021).
Nunney, L. Cancer suppression and the evolution of multiple retrogene copies of TP53 in elephants: a re-evaluation. Evol. Appl. 15, 891â901 (2022).
Preston, A. J. et al. Elephant TP53âRETROGENE 9 induces transcription-independent apoptosis at the mitochondria. Cell Death Discov. 9, 1â11 (2023).
Abegglen, L. M. et al. Abstract 45: elephant p53 protects mice from carcinogen induced death. Cancer Res. 83, 45 (2023).
Noble, K., Rohaj, A., Abegglen, L. M. & Schiffman, J. D. Cancer therapeutics inspired by defense mechanisms in the animal kingdom. Evol. Appl. 13, 1681â1700 (2020).
Wu, D. & Prives, C. Relevance of the p53âMDM2 axis to aging. Cell Death Differ. 25, 169â179 (2018).
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646â674 (2011).
Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).
Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31â46 (2022).
Khalturin, K., Becker, M., Rinkevich, B. & Bosch, T. C. G. Urochordates and the origin of natural killer cells: identification of a CD94/NKR-P1-related receptor in blood cells of Botryllus. Proc. Natl Acad. Sci. USA 100, 622â627 (2003).
Jenson, J. M. & Chen, Z. J. cGAS goes viral: a conserved immune defense system from bacteria to humans. Mol. Cell 84, 120â130 (2024).
Kwon, J. & Bakhoum, S. F. The cytosolic DNA-sensing cGASâSTING pathway in cancer. Cancer Discov. 10, 26â39 (2020).
Baines, C. et al. Linking pollution and cancer in aquatic environments: a review. Environ. Int. 149, 106391 (2021).
McAloose, D. & Newton, A. L. Wildlife cancer: a conservation perspective. Nat. Rev. Cancer 9, 517â526 (2009).
Pesavento, P. A., Agnew, D., Keel, M. K. & Woolard, K. D. Cancer in wildlife: patterns of emergence. Nat. Rev. Cancer 18, 646â661 (2018).
Jepson, P. D. & Law, R. J. Persistent pollutants, persistent threats. Science 352, 1388â1389 (2016).
Pradeu, T. et al. Reuniting philosophy and science to advance cancer research. Biol. Rev. Camb. Philos. Soc. 98, 1668â1686 (2023).
Koh, J. et al. ABCB1 protects bat cells from DNA damage induced by genotoxic compounds. Nat. Commun. 10, 2820 (2019).
Baker, N. E. Emerging mechanisms of cell competition. Nat. Rev. Genet. 21, 683â697 (2020).
Siddle, H. V. et al. Reversible epigenetic down-regulation of MHC molecules by devil facial tumour disease illustrates immune escape by a contagious cancer. Proc. Natl Acad. Sci. USA 110, 5103â5108 (2013).
Murgia, C., Pritchard, J. K., Kim, S. Y., Fassati, A. & Weiss, R. A. Clonal origin and evolution of a transmissible cancer. Cell 126, 477â487 (2006).
Garrido, F. & Aptsiauri, N. Cancer immune escape: MHC expression in primary tumours versus metastases. Immunology 158, 255â266 (2019).
Acknowledgements
We are grateful for the financial support from the Gordon and Betty Moore Foundation (no. GBMF9021 to T.P.), Agence Nationale de la Recherche (COVER ANR-23-CE02-0019 to M.G.), Région Nouvelle-Aquitaine (Chaire dâexcellence âCancer et Biodiversitéâ to M.G.); National Scientific Research Fund (OTKA K143421 to O.V.); the NIH (R01AG066544 to J.D. and U54 CA217376, U2C CA233254, R21 CA257980, R01 CA140657 to C.C.M.); US National Institute on Aging, Impetus Grant, and the Milky Way Research Foundation (to to V.G.) and the US National Institute on Aging and Hevolution Foundation (to A.S.).
Author information
Authors and Affiliations
Contributions
All authors researched data for the article. O.V., D.B., A.C., J.D., V.G., C.C.M., J.D.S., A.S., M.G. and T.P. contributed substantially to discussion of the content. All authors wrote the article. O.V., D.B., A.C., J.D., V.G., C.C.M., J.D.S., A.S., M.G. and T.P. reviewed and/or edited the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
J.D.S. reports being a cofounder and shareholder of Peel Therapeutics outside the submitted work. All other authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Cancer thanks Peter Adams and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Vincze, O., Spada, B., Bilder, D. et al. Advancing cancer research via comparative oncology. Nat Rev Cancer 25, 740â748 (2025). https://doi.org/10.1038/s41568-025-00841-8
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41568-025-00841-8


