Philosophers
Mortimer Adler Rogers Albritton Alexander of Aphrodisias Samuel Alexander William Alston Anaximander G.E.M.Anscombe Anselm Louise Antony Thomas Aquinas Aristotle David Armstrong Harald Atmanspacher Robert Audi Augustine J.L.Austin A.J.Ayer Alexander Bain Mark Balaguer Jeffrey Barrett William Barrett William Belsham Henri Bergson George Berkeley Isaiah Berlin Richard J. Bernstein Bernard Berofsky Robert Bishop Max Black Susanne Bobzien Emil du Bois-Reymond Hilary Bok Laurence BonJour George Boole Émile Boutroux Daniel Boyd F.H.Bradley C.D.Broad Michael Burke Jeremy Butterfield Lawrence Cahoone C.A.Campbell Joseph Keim Campbell Rudolf Carnap Carneades Nancy Cartwright Gregg Caruso Ernst Cassirer David Chalmers Roderick Chisholm Chrysippus Cicero Tom Clark Randolph Clarke Samuel Clarke Anthony Collins Antonella Corradini Diodorus Cronus Jonathan Dancy Donald Davidson Mario De Caro Democritus Daniel Dennett Jacques Derrida René Descartes Richard Double Fred Dretske John Dupré John Earman Laura Waddell Ekstrom Epictetus Epicurus Austin Farrer Herbert Feigl Arthur Fine John Martin Fischer Frederic Fitch Owen Flanagan Luciano Floridi Philippa Foot Alfred Fouilleé Harry Frankfurt Richard L. Franklin Bas van Fraassen Michael Frede Gottlob Frege Peter Geach Edmund Gettier Carl Ginet Alvin Goldman Gorgias Nicholas St. John Green H.Paul Grice Ian Hacking Ishtiyaque Haji Stuart Hampshire W.F.R.Hardie Sam Harris William Hasker R.M.Hare Georg W.F. Hegel Martin Heidegger Heraclitus R.E.Hobart Thomas Hobbes David Hodgson Shadsworth Hodgson Baron d'Holbach Ted Honderich Pamela Huby David Hume Ferenc Huoranszki Frank Jackson William James Lord Kames Robert Kane Immanuel Kant Tomis Kapitan Walter Kaufmann Jaegwon Kim William King Hilary Kornblith Christine Korsgaard Saul Kripke Thomas Kuhn Andrea Lavazza Christoph Lehner Keith Lehrer Gottfried Leibniz Jules Lequyer Leucippus Michael Levin Joseph Levine George Henry Lewes C.I.Lewis David Lewis Peter Lipton C. Lloyd Morgan John Locke Michael Lockwood Arthur O. Lovejoy E. Jonathan Lowe John R. Lucas Lucretius Alasdair MacIntyre Ruth Barcan Marcus Tim Maudlin James Martineau Nicholas Maxwell Storrs McCall Hugh McCann Colin McGinn Michael McKenna Brian McLaughlin John McTaggart Paul E. Meehl Uwe Meixner Alfred Mele Trenton Merricks John Stuart Mill Dickinson Miller G.E.Moore Thomas Nagel Otto Neurath Friedrich Nietzsche John Norton P.H.Nowell-Smith Robert Nozick William of Ockham Timothy O'Connor Parmenides David F. Pears Charles Sanders Peirce Derk Pereboom Steven Pinker U.T.Place Plato Karl Popper Porphyry Huw Price H.A.Prichard Protagoras Hilary Putnam Willard van Orman Quine Frank Ramsey Ayn Rand Michael Rea Thomas Reid Charles Renouvier Nicholas Rescher C.W.Rietdijk Richard Rorty Josiah Royce Bertrand Russell Paul Russell Gilbert Ryle Jean-Paul Sartre Kenneth Sayre T.M.Scanlon Moritz Schlick John Duns Scotus Arthur Schopenhauer John Searle Wilfrid Sellars David Shiang Alan Sidelle Ted Sider Henry Sidgwick Walter Sinnott-Armstrong Peter Slezak J.J.C.Smart Saul Smilansky Michael Smith Baruch Spinoza L. Susan Stebbing Isabelle Stengers George F. Stout Galen Strawson Peter Strawson Eleonore Stump Francisco Suárez Richard Taylor Kevin Timpe Mark Twain Peter Unger Peter van Inwagen Manuel Vargas John Venn Kadri Vihvelin Voltaire G.H. von Wright David Foster Wallace R. Jay Wallace W.G.Ward Ted Warfield Roy Weatherford C.F. von Weizsäcker William Whewell Alfred North Whitehead David Widerker David Wiggins Bernard Williams Timothy Williamson Ludwig Wittgenstein Susan Wolf Scientists David Albert Michael Arbib Walter Baade Bernard Baars Jeffrey Bada Leslie Ballentine Marcello Barbieri Gregory Bateson Horace Barlow John S. Bell Mara Beller Charles Bennett Ludwig von Bertalanffy Susan Blackmore Margaret Boden David Bohm Niels Bohr Ludwig Boltzmann Emile Borel Max Born Satyendra Nath Bose Walther Bothe Jean Bricmont Hans Briegel Leon Brillouin Stephen Brush Henry Thomas Buckle S. H. Burbury Melvin Calvin Donald Campbell Sadi Carnot Anthony Cashmore Eric Chaisson Gregory Chaitin Jean-Pierre Changeux Rudolf Clausius Arthur Holly Compton John Conway Jerry Coyne John Cramer Francis Crick E. P. Culverwell Antonio Damasio Olivier Darrigol Charles Darwin Richard Dawkins Terrence Deacon Lüder Deecke Richard Dedekind Louis de Broglie Stanislas Dehaene Max Delbrück Abraham de Moivre Bernard d'Espagnat Paul Dirac Hans Driesch John Eccles Arthur Stanley Eddington Gerald Edelman Paul Ehrenfest Manfred Eigen Albert Einstein George F. R. Ellis Hugh Everett, III Franz Exner Richard Feynman R. A. Fisher David Foster Joseph Fourier Philipp Frank Steven Frautschi Edward Fredkin Augustin-Jean Fresnel Benjamin Gal-Or Howard Gardner Lila Gatlin Michael Gazzaniga Nicholas Georgescu-Roegen GianCarlo Ghirardi J. Willard Gibbs James J. Gibson Nicolas Gisin Paul Glimcher Thomas Gold A. O. Gomes Brian Goodwin Joshua Greene Dirk ter Haar Jacques Hadamard Mark Hadley Patrick Haggard J. B. S. Haldane Stuart Hameroff Augustin Hamon Sam Harris Ralph Hartley Hyman Hartman Jeff Hawkins John-Dylan Haynes Donald Hebb Martin Heisenberg Werner Heisenberg John Herschel Basil Hiley Art Hobson Jesper Hoffmeyer Don Howard John H. Jackson William Stanley Jevons Roman Jakobson E. T. Jaynes Pascual Jordan Eric Kandel Ruth E. Kastner Stuart Kauffman Martin J. Klein William R. Klemm Christof Koch Simon Kochen Hans Kornhuber Stephen Kosslyn Daniel Koshland Ladislav Kovàč Leopold Kronecker Rolf Landauer Alfred Landé Pierre-Simon Laplace Karl Lashley David Layzer Joseph LeDoux Gerald Lettvin Gilbert Lewis Benjamin Libet David Lindley Seth Lloyd Werner Loewenstein Hendrik Lorentz Josef Loschmidt Alfred Lotka Ernst Mach Donald MacKay Henry Margenau Owen Maroney David Marr Humberto Maturana James Clerk Maxwell Ernst Mayr John McCarthy Warren McCulloch N. David Mermin George Miller Stanley Miller Ulrich Mohrhoff Jacques Monod Vernon Mountcastle Emmy Noether Donald Norman Travis Norsen Alexander Oparin Abraham Pais Howard Pattee Wolfgang Pauli Massimo Pauri Wilder Penfield Roger Penrose Steven Pinker Colin Pittendrigh Walter Pitts Max Planck Susan Pockett Henri Poincaré Daniel Pollen Ilya Prigogine Hans Primas Zenon Pylyshyn Henry Quastler Adolphe Quételet Pasco Rakic Nicolas Rashevsky Lord Rayleigh Frederick Reif Jürgen Renn Giacomo Rizzolati A.A. Roback Emil Roduner Juan Roederer Jerome Rothstein David Ruelle David Rumelhart Robert Sapolsky Tilman Sauer Ferdinand de Saussure Jürgen Schmidhuber Erwin Schrödinger Aaron Schurger Sebastian Seung Thomas Sebeok Franco Selleri Claude Shannon Charles Sherrington Abner Shimony Herbert Simon Dean Keith Simonton Edmund Sinnott B. F. Skinner Lee Smolin Ray Solomonoff Roger Sperry John Stachel Henry Stapp Tom Stonier Antoine Suarez Leo Szilard Max Tegmark Teilhard de Chardin Libb Thims William Thomson (Kelvin) Richard Tolman Giulio Tononi Peter Tse Alan Turing C. S. Unnikrishnan Nico van Kampen Francisco Varela Vlatko Vedral Vladimir Vernadsky Mikhail Volkenstein Heinz von Foerster Richard von Mises John von Neumann Jakob von Uexküll C. H. Waddington John B. Watson Daniel Wegner Steven Weinberg Paul A. Weiss Herman Weyl John Wheeler Jeffrey Wicken Wilhelm Wien Norbert Wiener Eugene Wigner E. O. Wilson Günther Witzany Stephen Wolfram H. Dieter Zeh Semir Zeki Ernst Zermelo Wojciech Zurek Konrad Zuse Fritz Zwicky Presentations Biosemiotics Free Will Mental Causation James Symposium |
How a Common Cause, a Constant of the Motion, and Spherical Symmetry Can Explain Einstein's "Spooky Action at a Distance"
Abstract
Whether a calcium cascade or a spontaneous parametric down-conversion, at initial entanglement the spins of two particles are projected into a singlet state whose wave function is spherically symmetric with total spin zero. It has no preferred spatial direction. As the particles travel to the distant measurement devices the spherical symmetry and total spin zero are conserved in the absence of environmental interactions and is a constant of the motion. We can picture the two particle spins as at all times perfectly opposite, because otherwise they would be violating the fundamental law conserving angular momentum. As long as the two measurement devices are set at the same pre-agreed upon arbitrary angle, their planar symmetry and the wave function spherical symmetry ensure that measurements will produce perfectly correlated results.
The Arguments Against a Common Cause
The basic argument against a common cause that creates a definite spin direction in the initial entanglement is that the spin direction chosen for final measurement is arbitrary, so it's nearly impossible to be that initial spin direction. Initial spins in any fixed direction φ could not produce the perfect correlations seen in the arbitrary direction θ agreed upon for the experiments. Measurements would be degraded by the "law of Malus" cos²(θ-φ).
David Bohm gave the earliest and best known (but mistaken) criticism of a common cause explanation. He said that the electron spins would need to have pre-determined values in all three x, y, z directions at initial entanglement, but that this is impossible.
Only one spin component can have a definite value, say sz. When sz has the value ℏ, the other two components sy and sx are indeterminate.
Bohm and his colleague Yakir Aharonov wrote in 1957 that in classical mechanics, the molecule could have all three components of the spin well-defined, but this is impossible for quantum mechanics, since at most one component of the spin can be well-defined...
If this were a classical system, there would be no difficulty in interpreting the above results, because all components of the spin of each particle are well defined at each instant of time. Thus, in the molecule, each component of the spin of particle A has, from the very beginning, a value opposite to that of the same component of B; and this relationship does not change when the atom disintegrates. In other words, the two spin vectors are correlated. Hence, the measurement of any component of the spin of A permits us to conclude also that the same component of B is opposite in value. The possibility of obtaining knowledge of the spin of particle B in this way evidently does not imply any interaction of the apparatus with particle B or any interaction between A and B. In quantum theory, a difficulty arises, in the interpretation of the above experiment, because only one component of the spin of each particle can have a definite value at a given time. Thus, if the x component is definite, then the y and z components are indeterminate and we may regard them more or less as in a kind of random fluctuation.John Clauser and Abner Shimony published a variation of Bohm's criticisms of a common cause in 1978. Suppose that one measures the spin of particle 1 along the x axis. The outcome is not predetermined by the description [wave function] Ψ12. But from it, one can predict that if particle 1 is found to have its spin parallel to the x axis, then particle 2 will be found to have its spin antiparallel to the x axis if the x component of its spin is also measured. Thus, an experimenter can arrange the apparatus in such a way that he can predict the value of the x component of spin of particle 2 presumably without interacting with it (if there is no action-at-a-distance). Likewise, he can arrange the apparatus so that he can predict any other component of the spin of particle 2. The conclusion of the argument is that all components of spin of each particle are definite, which of course is not so in the quantum-mechanical description. Hence, a hidden-variables theory seems to be required.N David Mermin made a similar argument for photons in 1988, claiming that in the absence of spooky actions, it appears that both photons must have definite polarizations along every conceivable direction... Both photons must have had definite polarizations along α. Furthermore, since the conclusion that one photon has a definite polarization along the direction α does not require an actual measurement of the polarization of the other along that direction (again, in the absence of spooky connections), and since not measuring polarization along a direction α is the same as not measuring it along any other direction, we are led to conclude that both photons must have definite polarizations along every conceivable direction.
Arguments For Momentum Conservation and a Constant of the Motion
Eugene Wigner wrote in 1963
If a measurement of the momentum of one of the particles is carried out — the possibility of this is never questioned — and gives the result p, the state vector of the other particle suddenly becomes a (slightly damped) plane wave with the momentum -p. This statement is synonymous with the statement that a measurement of the momentum of the second particle would give the result -p, as follows from the conservation law for linear momentum. The same conclusion can be arrived at also by a formal calculation of the possible results of a joint measurement of the momenta of the two particles.In 2004, C.S.Unnikrishnan of the Tata Institute of Fundamental Research in Mumbai, India wrote Bell’s inequalities can be obeyed only by violating a conservation law.Although Wigner and Unnikrishnan are explicit that the correlations are the result of conservation of spin angular momentum, the other great physicists who discovered nonlocality and entanglement, Bohm, Bell, and even Einstein himself, were using conservation of momentum implicitly with statements like these: "Then, because the total spin is still zero, it can immediately be concluded that the same component of the spin of the other particle (B) is opposite to that of A,"
The Critical Importance of Spherical Symmetry
The spherical symmetry of the two-particle wave function ensures that if measurements are made symmetrically (viz, at the same angle in the same central plane) the two spins will be exactly opposite and the total spin zero of the particles conserved. If the two measurement angles (or planes) differ by θ, the correlations will be reduced by cos2θ, but this is not because overall angular momentum is not strictly conserved! The lost angular momentum of one particle is gained by the massive measurement device at the divergent angle.
This author discovered the spherical symmetry of the two-particle wave function while working on his Ph.D. thesis The Continuous Spectrum of the Hydrogen Quasi-Molecule at Harvard in 1968. The hydrogen "quasi-molecule" is two hydrogen atoms absorbing and emitting light while they are colliding and separating. Their lowest energy molecular state is a spherically symmetric 1Σg singlet state.
These molecular orbitals are spheres with the electrons equally likely to appear at any point, though if both could be found they would most likely be located opposite one another because of their mutual repulsion. The total spin angular momentum is zero.
As the hydrogen atoms "separate," the quasi-molecular wave function remains rotationally symmetric around the molecular axis. The total spin angular momentum remains zero at all times, unless the atoms are disturbed by the environment or a measurement is made. This is exactly like David Bohm's 1952 proposal for a hidden variables experiment with a hydrogen molecule that dissociates into two hydrogen atoms.
The Discovery of Nonlocality (But No Action at a Distance!)
Between 1905 and 1927 Albert Einstein had concerns about instantaneous interactions or "influences" between his light quanta and light waves. By 1933 his concerns were about two particles that he thought had been long "separated." In 1935 his colleagues Boris Podolsky and Nathan Rosen formulated the EPR paradox. In 1947 Einstein called it "spooky action at a distance." Such events are today called "nonlocal" or "entangled." There is no superluminal and physically causal action at a distance.
Today hundreds of experiments with two entangled particles confirm that measurements made at arbitrarily large separations show the two particles' properties are perfectly correlated, even though the individual particle properties are found to be random, an unusual combination of determined and indeterministic.
Widely separated events, happening simultaneously in a frame of reference that includes the entanglement preparation at the center between the particles, can give the mistaken impression of one event influencing the other at speeds much greater than the velocity of light.
Despite Einstein's great physical insight, and despite his deep understanding of conservation principles and mathematical and geometrical symmetries, he may have introduced a false asymmetry into a symmetric situation.
In the 1935 Einstein-Podolsky-Rosen paper, the properties measured were momentum and position, which are continuous variables. Since David Bohm in 1952, the entangled property studied is spin angular momentum, which has discrete values much easier to measure precisely.
Bohm proposed "hidden variables" might be found traveling along "locally" with the particles to explain their perfect correlations. No working physical model for such hidden variables has been found.
Entanglement experiments are usually described with two widely separated experiments at points A and B with experimenters, Alice and Bob, typically located symmetrically about the center C where the two particles are initially entangled.
<16px>←→16px> &hbar &hbar &hbar &hbar&hbar>>![]() ![]() >>> >>>>>>>> >> ![]() ![]() &hbar ![]() ![]() &hbar
ℏℏℏ >> >>>>>.
>> |