Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Pooled CRISPR screens with joint single-nucleus chromatin accessibility and transcriptome profiling

Abstract

Pooled single-cell CRISPR screens have profiled either gene expression or chromatin accessibility but not both modalities. Here we develop MultiPerturb-seq, a high-throughput CRISPR screening platform with joint single-nucleus chromatin accessibility, transcriptome and guide RNA capture using combinatorial indexing combined with droplet microfluidics to scale throughput and integrate all three modalities. We identify key differentiation genes in a rare pediatric cancer and establish ZNHIT1 as a potential target for cancer reprogramming therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MultiPerturb-seq combines single-cell RNA-seq and single-cell ATAC-seq with pooled CRISPR perturbations for high-throughput functional genomics.
Fig. 2: MultiPerturb-seq identifies genetic perturbations that trigger differentiation in AT/RT.
Fig. 3: ZNHIT1 loss drives AT/RT cell-cycle arrest and differentiation through decreased H2A.Z deposition.

Similar content being viewed by others

Data availability

MultiPerturb-seq data can be downloaded from BioProject (accession number PRJNA1160410). The human genome hg38 (GRCh38.p14) was from the University of California, Santa Cruz Genome Browser (https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz). The joint human (hg38, GENCODE v32/Ensembl98) and mouse (mm10, GENCODE vM23/Ensembl98) genome (2020-A) was from 10x Genomics (https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-and-mm10-2020-A.tar.gz). Reference developmental and adult atlases were downloaded from https://apps.kaessmannlab.org/evodevoapp/ (ref. 29), https://descartes.brotmanbaty.org/ (ref. 35) and http://catlas.org/humanbrain/ (ref. 36). Data from previously published studies were from the Sequence Read Archive or Gene Expression Omnibus: CRISPR-sciATAC6 (PRJNA674902), scifiRNA-seq11 (PRJNA713314), sci-CAR-seq16 (PRJNA481032), SNARE-seq17 (PRJNA520914), Paired-seq18 (PRJNA539985) and SHARE-seq15 (PRJNA588784).

Code availability

Code for data processing and visualization is available from GitLab (https://gitlab.com/sanjanalab/mps).

References

  1. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

  2. Replogle, J. M. et al. Mapping information-rich genotype–phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575.e28 (2022).

  3. Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet. 53, 332–341 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Rubin, A. J. et al. Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks. Cell 176, 361–376.e17 (2019).

  6. Liscovitch-Brauer, N. et al. Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens. Nat. Biotechnol. 39, 1270–1277 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pierce, S. E., Granja, J. M. & Greenleaf, W. J. High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of regulatory networks in cancer. Nat. Commun. 12, 2969 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Cheng, Y. et al. Perturb-tracing enables high-content screening of multiscale, global 3D genome regulators. Biophys. J. 123, 83a (2024).

    Article  Google Scholar 

  9. Morris, J. A., Sun, J. S. & Sanjana, N. E. Next-generation forward genetic screens: uniting high-throughput perturbations with single-cell analysis. Trends Genet. 40, 118–133 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang, M. E. et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72, 567–572 (1988).

    Article  PubMed  CAS  Google Scholar 

  11. Datlinger, P. et al. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing. Nat. Methods 18, 635–642 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37, 916–924 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhang, H. et al. txci-ATAC-seq: a massive-scale single-cell technique to profile chromatin accessibility. Genome Biol. 25, 78 (2024).

  14. Morris, J. A. et al. Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR screens. Science 380, eadh7699 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116.e20 (2020).

  16. Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhu, C. et al. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat. Struct. Mol. Biol. 26, 1063–1070 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hill, A. J. et al. On the design of CRISPR-based single-cell molecular screens. Nat. Methods 15, 271–274 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jackson, E. M. et al. Genomic analysis using high-density single nucleotide polymorphism-based oligonucleotide arrays and multiplex ligation-dependent probe amplification provides a comprehensive analysis of INI1/SMARCB1 in malignant rhabdoid tumors. Clin. Cancer Res. 15, 1923–1930 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Reddy, A. T. et al. Efficacy of high-dose chemotherapy and three-dimensional conformal radiation for atypical teratoid/rhabdoid tumor: a report from the Children’s Oncology Group Trial ACNS0333. J. Clin. Oncol. 38, 1175–1185 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wilson, B. G. et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18, 316–328 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wang, X. et al. BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors. Nat. Commun. 10, 1881 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nakayama, R. T. et al. SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat. Genet. 49, 1613–1623 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Langer, L. F., Ward, J. M. & Archer, T. K. Tumor suppressor SMARCB1 suppresses super-enhancers to govern hESC lineage determination. eLife 8, e45672 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jessa, S. et al. Stalled developmental programs at the root of pediatric brain tumors. Nat. Genet. 51, 1702–1713 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Cardoso-Moreira, M. et al. Gene expression across mammalian organ development. Nature 571, 505–509 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lacomme, M., Liaubet, L., Pituello, F. & Bel-Vialar, S. NEUROG2 drives cell cycle exit of neuronal precursors by specifically repressing a subset of cyclins acting at the G1 and S phases of the cell cycle. Mol. Cell. Biol. 32, 2596–2607 (2012).

  31. Bayat, H. et al. CRISPR/Cas9-mediated deletion of a GA-repeat in human GPM6B leads to disruption of neural cell differentiation from NT2 cells. Sci. Rep. 14, 2136 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Jovanovic, V. M. et al. A defined roadmap of radial glia and astrocyte differentiation from human pluripotent stem cells. Stem Cell Rep. 18, 1701–1720 (2023).

    Article  CAS  Google Scholar 

  33. Chuang, Y. Y. et al. Role of synaptojanin 2 in glioma cell migration and invasion. Cancer Res. 64, 8271–8275 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. Wang, X. et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat. Genet. 49, 289–295 (2017).

    Article  PubMed  CAS  Google Scholar 

  35. Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhang, K. et al. A single-cell atlas of chromatin accessibility in the human genome. Cell 184, 5985–6001.e19 (2021).

  37. Moore, J. E. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhao, B. et al. Znhit1 controls intestinal stem cell maintenance by regulating H2A.Z incorporation. Nat. Commun. 10, 1071 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Viner-Breuer, R., Yilmaz, A., Benvenisty, N. & Goldberg, M. The essentiality landscape of cell cycle related genes in human pluripotent and cancer cells. Cell Div. 14, 15 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Divvela, S. S. K., Saberi, D. & Brand-Saberi, B. Atoh8 in development and disease. Biology 11, 136 (2022).

  41. Valdés-Mora, F. et al. Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer. Genome Res. 22, 307–321 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sanson, K. R. et al. Optimized libraries for CRISPR–Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 5416 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

  45. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

  47. Picelli, S. et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 24, 2033–2040 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Xu, W. et al. ISSAAC-seq enables sensitive and flexible multimodal profiling of chromatin accessibility and gene expression in single cells. Nat. Methods 19, 1243–1249 (2022).

    Article  PubMed  CAS  Google Scholar 

  50. Nørholm, M. H. H. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol. 10, 21 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Grandi, F. C., Modi, H., Kampman, L. & Corces, M. R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 17, 1518–1552 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Preissl, S. et al. Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation. Nat. Neurosci. 21, 432–439 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Adey, A. C. Tagmentation-based single-cell genomics. Genome Res. 31, 1693–1705 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Replogle, J. M. et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat. Biotechnol. 38, 954–961 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhu, Y. Y., Machleder, E. M., Chenchik, A., Li, R. & Siebert, P. D. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30, 892–897 (2001).

    Article  PubMed  CAS  Google Scholar 

  56. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    Article  PubMed  CAS  Google Scholar 

  57. Bagnoli, J. W. et al. Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. Nat. Commun. 9, 2937 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Di, L. et al. RNA sequencing by direct tagmentation of RNA/DNA hybrids. Proc. Natl Acad. Sci. USA 117, 2886–2893 (2020).

  59. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  PubMed  CAS  Google Scholar 

  62. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  PubMed  CAS  Google Scholar 

  63. Griffiths, J. A., Richard, A. C., Bach, K., Lun, A. T. L. & Marioni, J. C. Detection and removal of barcode swapping in single-cell RNA-seq data. Nat. Commun. 9, 2667 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Amezquita, R. A. et al. Orchestrating single-cell analysis with Bioconductor. Nat. Methods 17, 137–145 (2020).

    Article  PubMed  CAS  Google Scholar 

  65. Levenshtein, V. I. Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 10, 707–710 (1966).

    Google Scholar 

  66. Barry, T., Mason, K., Roeder, K. & Katsevich, E. Robust differential expression testing for single-cell CRISPR screens at low multiplicity of infection. Genome Biol. 25, 124 (2024).

  67. Xu, S. et al. Using clusterProfiler to characterize multiomics data. Nat. Protoc. https://doi.org/10.1038/s41596-024-01020-z (2024).

    Article  PubMed  Google Scholar 

  68. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Riemondy, K. et al. valr: reproducible genome interval analysis in R. F1000Res. 6, 1025 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dharia, N. V. et al. A first-generation pediatric cancer dependency map. Nat. Genet. 53, 529–538 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fiskin, E. et al. Single-cell profiling of proteins and chromatin accessibility using PHAGE-ATAC. Nat. Biotechnol. 40, 374–381 (2022).

    Article  PubMed  CAS  Google Scholar 

  75. Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics 22, 433 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the entire Sanjana laboratory for their support and advice. We also thank P. Smibert, C. Zhu and S. Hao for sharing their single-cell expertise, X. Chen and S. Teichman for single-cell schematics and the NYU Biology Genomics Core for sequencing resources. A.C. is supported by the Swedish Research Council. Z.Z.G. is supported by the National Institutes of Health (NIH) T32 training grant (grant no. GM136573). E.K. is partially supported by the National Science Foundation (NSF) (DMS-2113072 and DMS-2310654). N.D. is supported by the NIH–Office of the Director (R03OD034499). N.D. and J.P.G. are supported by the Ty Louis Campbell Foundation. N.E.S. is supported by the NIH–National Human Genome Research Institute (DP2HG010099 and R01HG012790), NIH–National Cancer Institute (R01CA218668 and R01CA279135), NIH–National Institute of Allergy and Infectious Diseases (R01AI176601), NIH–National Heart, Lung, and Blood Institute (R01HL168247), the Simons Foundation for Autism Research (Genomics of ASD 896724), the MacMillan Center for the Study of the Non-coding Cancer Genome and New York University and New York Genome Center funds.

Author information

Authors and Affiliations

Authors

Contributions

R.E.Y. and N.E.S. designed the study. R.E.Y., N.D. and N.E.S. designed the CRISPR library. R.E.Y. performed MultiPerturb-seq experiments and led the analysis. X.X. and A.C. assisted with the pooled screen. N.E.S., E.K., I.R., Z.Z.G., X.W., M.F. and S.F. performed additional data analysis. R.E.Y., L.K., X.W., R.S., X.X., J.C. and A.C. performed arrayed validation. S.G., N.D., J.P.G. and N.E.S. supervised the study. R.E.Y. and N.E.S. wrote the paper with input from all authors.

Corresponding author

Correspondence to Neville E. Sanjana.

Ethics declarations

Competing interests

The New York Genome Center and New York University have applied for patents related to the work in this article. N.E.S. is an adviser to Qiagen and a cofounder and adviser of TruEdit Bio and OverT Bio. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Protocol.

Reporting Summary

Supplementary Tables 1–6

Supplementary Tables 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, R.E., Corman, A., Katgara, L. et al. Pooled CRISPR screens with joint single-nucleus chromatin accessibility and transcriptome profiling. Nat Biotechnol 43, 1628–1634 (2025). https://doi.org/10.1038/s41587-024-02475-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41587-024-02475-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer