Nature Biotechnology Nature Biotechnology is a monthly journal publishing new concepts in biological technology of relevance to bioengineering, medicine, energy, agriculture, food and the environment. It has a magazine covering the commercial, political, ethical, legal and societal aspects of this research. http://feeds.nature.com/nbt/rss/current Nature Publishing Group en © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Biotechnology © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. [email protected]
  • Nature Biotechnology https://www.nature.com/uploads/product/nbt/rss.png http://feeds.nature.com/nbt/rss/current <![CDATA[Tissue and cellular spatiotemporal dynamics in colon aging]]> https://www.nature.com/articles/s41587-025-02830-6 <![CDATA[

    Nature Biotechnology, Published online: 22 October 2025; doi:10.1038/s41587-025-02830-6

    cSplotch compares spatial transcriptomics data across ages and regions of mouse colon tissue.]]> <![CDATA[Tissue and cellular spatiotemporal dynamics in colon aging]]> Aidan C. DalyFrancesco CambuliTarmo ÄijöBritta LötstedtNemanja Despot MarjanovicSara FernandezOlena KuksenkoMatthew Smith-ErbDaniel DomovicNicholas Van WittenbergheEugene DrokhlyanskyGabriel K. GriffinHemali PhatnaniRichard BonneauAviv RegevSanja Vickovic doi:10.1038/s41587-025-02830-6 Nature Biotechnology, Published online: 2025-10-22; | doi:10.1038/s41587-025-02830-6 2025-10-22 Nature Biotechnology 10.1038/s41587-025-02830-6 https://www.nature.com/articles/s41587-025-02830-6 <![CDATA[AlphaDIA enables DIA transfer learning for feature-free proteomics]]> https://www.nature.com/articles/s41587-025-02791-w <![CDATA[

    Nature Biotechnology, Published online: 21 October 2025; doi:10.1038/s41587-025-02791-w

    An open-source platform for data-independent acquisition proteomics adapts predicted libraries to experimental settings.]]>
    <![CDATA[AlphaDIA enables DIA transfer learning for feature-free proteomics]]> Georg WallmannPatricia SkowronekVincenth BrennsteinerMikhail LebedevMarvin ThielertSophia SteigerwaldMohamed KotbOscar DespardTim HeymannXie-Xuan ZhouMaximilian T. StraussConstantin AmmarSander WillemsMagnus SchwörerWen-Feng ZengMatthias Mann doi:10.1038/s41587-025-02791-w Nature Biotechnology, Published online: 2025-10-21; | doi:10.1038/s41587-025-02791-w 2025-10-21 Nature Biotechnology 10.1038/s41587-025-02791-w https://www.nature.com/articles/s41587-025-02791-w
    <![CDATA[Integrated epigenetic and genetic programming of primary human T cells]]> https://www.nature.com/articles/s41587-025-02856-w <![CDATA[

    Nature Biotechnology, Published online: 21 October 2025; doi:10.1038/s41587-025-02856-w

    Multiplexed editing in primary human T cells generates enhanced immune cell therapies.]]>
    <![CDATA[Integrated epigenetic and genetic programming of primary human T cells]]> Laine GoudyAlvin HaAshir A. BorahJennifer M. UmhoeferLauren ChowCarinna TranAidan WintersAlexis TalbotRosmely HernandezZhongmei LiSanjana SubramanyaAbolfazl ArabNupura KaleJae Hyun J. LeeJoseph J. MuldoonChang LiuRalf SchmidtPhilip SantangeloJulia CarnevaleJustin EyquemBrian R. ShyAlex MarsonLuke A. Gilbert doi:10.1038/s41587-025-02856-w Nature Biotechnology, Published online: 2025-10-21; | doi:10.1038/s41587-025-02856-w 2025-10-21 Nature Biotechnology 10.1038/s41587-025-02856-w https://www.nature.com/articles/s41587-025-02856-w
    <![CDATA[Editor’s pick: Constructive Bio]]> https://www.nature.com/articles/s41587-025-02850-2 <![CDATA[

    Nature Biotechnology, Published online: 20 October 2025; doi:10.1038/s41587-025-02850-2

    Each year, Nature Biotechnology highlights companies that received sizeable early-stage funding in the previous year. Constructive Bio is using synthetic E. coli and non-canonical amino acids to encode peptides and proteins for a range of applications.]]>
    <![CDATA[Editor’s pick: Constructive Bio]]> Charles Schmidt doi:10.1038/s41587-025-02850-2 Nature Biotechnology, Published online: 2025-10-20; | doi:10.1038/s41587-025-02850-2 2025-10-20 Nature Biotechnology 10.1038/s41587-025-02850-2 https://www.nature.com/articles/s41587-025-02850-2
    <![CDATA[Tumor-on-chip models of CAR-T cell therapy]]> https://www.nature.com/articles/s41587-025-02819-1 <![CDATA[

    Nature Biotechnology, Published online: 17 October 2025; doi:10.1038/s41587-025-02819-1

    Two seminal studies report a bioengineering approach to modeling CAR-T cell therapy of solid human tumors.]]>
    <![CDATA[Tumor-on-chip models of CAR-T cell therapy]]> Gordana Vunjak-Novakovic doi:10.1038/s41587-025-02819-1 Nature Biotechnology, Published online: 2025-10-17; | doi:10.1038/s41587-025-02819-1 2025-10-17 Nature Biotechnology 10.1038/s41587-025-02819-1 https://www.nature.com/articles/s41587-025-02819-1
    <![CDATA[A tumor-on-a-chip for in vitro study of CAR-T cell immunotherapy in solid tumors]]> https://www.nature.com/articles/s41587-025-02845-z <![CDATA[

    Nature Biotechnology, Published online: 17 October 2025; doi:10.1038/s41587-025-02845-z

    The interactions of CAR-T cells and solid tumors are modeled on a chip.]]>
    <![CDATA[A tumor-on-a-chip for in vitro study of CAR-T cell immunotherapy in solid tumors]]> Haijiao LiuEstela Noguera-OrtegaXuanqi DongWon Dong LeeJeehan ChangSezin Aday AydinYumei LiYonghee ShinXinyi ShiMaria LiousiaMarina C. MartinezJoshua J. BrotmanSoyeon KimZeyu ChenAnni WangZirui OuJungwook PaekJu Young ParkAidi LiuHaonan HuZebin XiaoDora Maria RaccaSe-jeong KimG. Scott WorthenWei GuoEllen PuréTaewook KangJoshua D. RabinowitzE. John WherryEdmund K. MoonSteven M. AlbeldaDan Dongeun Huh doi:10.1038/s41587-025-02845-z Nature Biotechnology, Published online: 2025-10-17; | doi:10.1038/s41587-025-02845-z 2025-10-17 Nature Biotechnology 10.1038/s41587-025-02845-z https://www.nature.com/articles/s41587-025-02845-z
    <![CDATA[Improving somatic variant calling with long-read technologies and public datasets]]> https://www.nature.com/articles/s41587-025-02860-0 <![CDATA[

    Nature Biotechnology, Published online: 16 October 2025; doi:10.1038/s41587-025-02860-0

    Challenges in somatic variant calling include a lack of long-read variant callers and of publicly available benchmarking datasets. We developed DeepSomatic, a somatic variant caller for short- and long-read technologies, and created seven somatic variant benchmarks derived from cancer cell lines, which we make available as a public database: CASTLE-panel.]]>
    <![CDATA[Improving somatic variant calling with long-read technologies and public datasets]]> doi:10.1038/s41587-025-02860-0 Nature Biotechnology, Published online: 2025-10-16; | doi:10.1038/s41587-025-02860-0 2025-10-16 Nature Biotechnology 10.1038/s41587-025-02860-0 https://www.nature.com/articles/s41587-025-02860-0
    <![CDATA[Accurate somatic small variant discovery for multiple sequencing technologies with DeepSomatic]]> https://www.nature.com/articles/s41587-025-02839-x <![CDATA[

    Nature Biotechnology, Published online: 16 October 2025; doi:10.1038/s41587-025-02839-x

    Somatic small variants in cancer genomes are identified in both short-read and long-read data.]]>
    <![CDATA[Accurate somatic small variant discovery for multiple sequencing technologies with DeepSomatic]]> Jimin ParkDaniel E. CookPi-Chuan ChangAlexey KolesnikovLucas BrambrinkJuan Carlos MierJoshua GardnerBrandy McNultySamuel SaccoAyse G. KeskusAsher BryantTanveer AhmadJyoti ShettyYongmei ZhaoBao TranGiuseppe NarzisiAdrienne HellandByunggil YooIrina PushelLisa A. LansdonChengpeng BiAdam WalterMargaret GibsonTomi PastinenRebecca ReimanSharvari MankameT. Rhyker Ranallo-BenavidezChristine BrownNicolas RobineFloris P. BarthelMidhat S. FarooqiKaren H. MigaAndrew CarrollMikhail KolmogorovBenedict PatenKishwar Shafin doi:10.1038/s41587-025-02839-x Nature Biotechnology, Published online: 2025-10-16; | doi:10.1038/s41587-025-02839-x 2025-10-16 Nature Biotechnology 10.1038/s41587-025-02839-x https://www.nature.com/articles/s41587-025-02839-x