Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual dynamic helical poly(disulfide)s with conformational adaptivity and configurational recyclability

Abstract

The structural dynamics of biopolymers, such as proteins and DNA, feature the unique combination of simultaneous conformational adaptivity and configurational reversibility. However, it remains challenging to design a synthetic system featuring dynamic covalent bonds with secondary structural folding and full recycling capabilities. Here we present a synthetic covalent polymer, constructed from biologically relevant units (amino acids and disulfides), that can reversibly adapt between disordered and helical conformations and can recycle itself to the original small molecules. This dual dynamic feature arises from the subtle synergy of noncovalent bonds (H bonds) and dynamic covalent bonds within a coupled chemical equilibrium, of which thermodynamics is found to follow a nonlinear van’t Hoff equation with nonzero heat capacity change. The covalent polymers show conformational dynamics between structured helices and disordered coils and the ability to convert back to the original monomers. This system demonstrates how dual dynamic function can control helical and recyclable polymer formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterization of dynamic covalent helical polymers.
Fig. 2: Dipeptide-stabilized helical polymers.
Fig. 3: Thermodynamic analysis.
Fig. 4: Reconfigurable helical polymers.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and the Supplementary Information.

References

  1. Berg, J. M., Tymoczko, J. L. & Stryer, L. Biochemistry 5th edn (W. H. Freeman, 2002).

  2. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  3. Krieg, E., Bastings, M. M. C., Besenius, P. & Rybtchinski, B. Supramolecular polymers in aqueous media. Chem. Rev. 116, 2414–2477 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Cornelissen, J. J. et al. β-Helical polymers from isocyanopeptides. Science 293, 676–680 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Kouwer, P. H. et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 493, 651–655 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Hu, Y. et al. Single crystals of mechanically entwined helical covalent polymers. Nat. Chem. 13, 660–665 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Kumar, P., Paterson, N. G., Clayden, J. & Woolfson, D. N. De novo design of discrete, stable 310-helix peptide assemblies. Nature 607, 387–392 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Nakano, T. & Okamoto, Y. Synthetic helical polymers: conformation and function. Chem. Rev. 101, 4013–4038 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Yashima, E., Maeda, K., Iida, H., Furusho, Y. & Nagai, K. Helical polymers: synthesis, structures, and functions. Chem. Rev. 109, 6102–6211 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Freire, F., Quinoa, E. & Riguera, R. Supramolecular assemblies from poly(phenylacetylene)s. Chem. Rev. 116, 1242–1271 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Leigh, T. & Fernandez-Trillo, P. Helical polymers for biological and medical applications. Nat. Rev. Chem. 4, 291–310 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Fouquey, C., Lehn, J. M. & Levelut, A. M. Molecular recognition directed self‐assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv. Mater. 2, 254–257 (1990).

    Article  CAS  Google Scholar 

  13. Hirschberg, J. K. et al. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 407, 167–170 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Kang, J. et al. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646–651 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Leeuwen, T., Heideman, G. H., Zhao, D., Wezenberg, S. J. & Feringa, B. L. In situ control of polymer helicity with a non-covalently bound photoresponsive molecular motor dopant. Chem. Commun. 53, 6393–6396 (2017).

    Article  CAS  Google Scholar 

  18. Pijper, D. & Feringa, B. L. Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. Angew. Chem. Int. Ed. 46, 3693–3696 (2007).

    Article  CAS  Google Scholar 

  19. Xu, F. et al. Dynamic control of a multistate chiral supramolecular polymer in water. J. Am. Chem. Soc. 144, 6019–6027 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lehn, J. M. Dynamers: dynamic molecular and supramolecular polymers. Prog. Polym. Sci. 30, 814–831 (2005).

    Article  CAS  Google Scholar 

  21. Bang, E. K., Lista, M., Sforazzini, G., Sakai, N. & Matile, S. Poly(disulfide)s. Chem. Sci. 3, 1752–1763 (2012).

    Article  CAS  Google Scholar 

  22. Zhang, Q., Qu, D. H., Feringa, B. L. & Tian, H. Disulfide-mediated reversible polymerization toward intrinsically dynamic smart materials. J. Am. Chem. Soc. 144, 2022–2033 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Meyer, B. Solid allotropes of sulfur. Chem. Rev. 64, 429–451 (1964).

    Article  CAS  Google Scholar 

  24. Zhang, Q. et al. Dual closed-loop chemical recycling of synthetic polymers by intrinsically reconfigurable poly (disulfides). Matter 4, 1352–1364 (2021).

    Article  CAS  Google Scholar 

  25. Zhang, Q. et al. Stereodivergent chirality transfer by noncovalent control of disulfide bonds. J. Am. Chem. Soc. 144, 4376–4382 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Q., Toyoda, R., Pfeifer, L. & Feringa, B. L. Architecture-controllable single-crystal helical self-assembly of small-molecule disulfides with dynamic chirality. J. Am. Chem. Soc. 145, 6976–6985 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, Y., Jia, Y., Wu, Q. & Moore, J. S. Architecture-controlled ring-opening polymerization for dynamic covalent poly(disulfide)s. J. Am. Chem. Soc. 141, 17075–17080 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Neubert, L. A. & Carmack, M. Circular dichroism of disulfides with dihedral angles of 0, 30, and 60. deg. in the 400−185 nm spectral region. J. Am. Chem. Soc. 96, 943–945 (1974).

    Article  CAS  Google Scholar 

  29. Gellman, S. H., Dado, G. P., Liang, G. B. & Adams, B. R. Conformation-directing effects of a single intramolecular amide-amide hydrogen bond: variable-temperature NMR and IR studies on a homologous diamide series. J. Am. Chem. Soc. 113, 1164–1173 (1991).

    Article  CAS  Google Scholar 

  30. Cheng, P. N., Pham, J. D. & Nowick, J. S. The supramolecular chemistry of β-sheets. J. Am. Chem. Soc. 135, 5477–5492 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yano, K. et al. Nematic-to-columnar mesophase transition by in situ supramolecular polymerization. Science 363, 161–165 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Prabhu, N. V. & Sharp, K. A. Heat capacity in proteins. Annu. Rev. Phys. Chem. 56, 521–548 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Stauffer, D. A., Barrans, R. E. Jr & Dougherty, D. A. Concerning the thermodynamics of molecular recognition in aqueous and organic media. Evidence for significant heat capacity effects. J. Org. Chem. 55, 2762–2767 (1990).

    Article  CAS  Google Scholar 

  35. Anslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry (University Science Books, 2006).

  36. Deechongkit, S. et al. Context-dependent contributions of backbone hydrogen bonding to β-sheet folding energetics. Nature 430, 101–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Jin, Y. et al. (Re-)Directing oligomerization of a single building block into two specific dynamic covalent foldamers through pH. J. Am. Chem. Soc. 145, 2822–2829 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Endo, K. & Yamanaka, T. Copolymerization of lipoic acid with 1,2-dithiane and characterization of the copolymer as an interlocked cyclic polymer. Macromolecules 13, 4038–4043 (2006).

    Article  Google Scholar 

  39. Black, S. P., Sanders, J. K. & Stefankiewicz, A. R. Disulfide exchange: exposing supramolecular reactivity through dynamic covalent chemistry. Chem. Soc. Rev. 43, 1861–1872 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, X. & Waymouth, R. M. 1,2-Dithiolane-derived dynamic, covalent materials: cooperative self-assembly and reversible cross-linking. J. Am. Chem. Soc. 139, 3822–3833 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 22588101, 22025503, 22220102004 and 22475070), Shanghai Municipal Science and Technology Major Project (grant no. 2018SHZDZX03), the Fundamental Research Funds for the Central Universities, the Program of Introducing Talents of Discipline to Universities (grant no. B16017), Science and Technology Commission of Shanghai Municipality (grant no. 24DX1400200) and the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (grant no. SN-ZJU-SIAS-006). B.L.F. acknowledges the financial support from the European Research Council (advanced grant no. 694345 to B.L.F.) and the Dutch Ministry of Education, Culture and Science (Gravitation program no. 024.001.035). Q.Z. acknowledges the funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie actions grant (no. 101025041). V.P.N. acknowledges funding from UEFISCDI (grant no. PN-III-P4-ID-PCE-2020-2783-P, contract no. PCE 2/2022). We thank Y. Ke and the staff members of the Small Angle Neutron Scattering (https://cstr.cn/31113.02.CSNS.SANS) at the China Spallation Neutron Source (https://cstr.cn/31113.02.CSNS) for providing technical support and assistance in data collection and analysis. We thank N. Li and the staff members of BL19U2 beamline (https://cstr.cn/31129.02.NFPS.BL19U2) at the National Facility for Protein Science in Shanghai (https://cstr.cn/31129.02.NFPS), for providing technical support and assistance in data collection and analysis. We thank B. Sun, Y. Qiu, J. Wang and Y. Wang for their assistance on dynamic and static light scattering experiments. We thank J. Fan, Y. Shan, C. Shi, B. Wang, Y. Feng, J. Baas, C. Ye, A. J. J. Woortman, K. Loos, W. Roos, M. C. A. Stuart, Z. Zheng, J. Aizenberg and R. J. M. Nolte for their assistance with experiments or discussions of this research. This manuscript is dedicated in memory of Roeland J. M. Nolte (1944−2024).

Author information

Authors and Affiliations

Authors

Contributions

Q.Z., D.-H.Q. and B.L.F. conceived the project. D.-H.Q. and B.L.F. supervised the research. Q.Z. carried out the synthesis, characterizations and data acquisition. Q.Z., V.P.N. and W.J.B. performed vibrational circular dichroism experiments and related simulations. V.P.N. carried out DFT calculations. Q.Z., B.L.F., D.-H.Q., V.P.N., W.J.B. and H.T. analysed the data and prepared the manuscript.

Corresponding authors

Correspondence to Qi Zhang, Da-Hui Qu or Ben L. Feringa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and methods, Supplementary Figs. 1–44 and references.

Supplementary Data 1

DFT-optimized conformers of monomers and polymers.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Nicu, V.P., Buma, W.J. et al. Dual dynamic helical poly(disulfide)s with conformational adaptivity and configurational recyclability. Nat. Chem. 17, 1462–1468 (2025). https://doi.org/10.1038/s41557-025-01947-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01947-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing