Nature Chemistry Nature Chemistry is a monthly journal dedicated to publishing high-quality papers that describe the most significant and cutting-edge research in all areas of chemistry. As well as reflecting the traditional core subjects of analytical, inorganic, organic and physical chemistry, the journal features a broad range of chemical research including, but not limited to, bioinorganic and bioorganic chemistry, catalysis, computational and theoretical chemistry, environmental chemistry, green chemistry, medicinal chemistry, organometallic chemistry, polymer chemistry, supramolecular chemistry and surface chemistry. Other multidisciplinary topics such as nanotechnology, chemical biology and materials chemistry are also featured. http://feeds.nature.com/nchem/rss/current Nature Publishing Group en © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Chemistry © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. [email protected]
  • Nature Chemistry https://www.nature.com/uploads/product/nchem/rss.png http://feeds.nature.com/nchem/rss/current <![CDATA[The human story of benzene]]> https://www.nature.com/articles/s41557-025-01976-9 <![CDATA[

    Nature Chemistry, Published online: 23 October 2025; doi:10.1038/s41557-025-01976-9

    The discovery of benzene two centuries ago marked a turning point in chemistry. From contributing to the development of chemical bonding concepts, to its practical use in the chemical industry, the story of this ring-shaped molecule is a combination of curiosity, science, and human kindness.]]> <![CDATA[The human story of benzene]]> Judy I. Wu doi:10.1038/s41557-025-01976-9 Nature Chemistry, Published online: 2025-10-23; | doi:10.1038/s41557-025-01976-9 2025-10-23 Nature Chemistry 10.1038/s41557-025-01976-9 https://www.nature.com/articles/s41557-025-01976-9 <![CDATA[Azetidine amino acid biosynthesis by non-haem iron-dependent enzymes]]> https://www.nature.com/articles/s41557-025-01958-x <![CDATA[

    Nature Chemistry, Published online: 21 October 2025; doi:10.1038/s41557-025-01958-x

    Azetidine is a four-membered aza-cycle important in medicinal and organic chemistry. This study describes a mechanism of azetidine amino acid biosynthesis from l-isoleucine or l-valine by two non-haem Fe enzymes, PolF and PolE, in the polyoxin antifungal biosynthetic pathway.]]>
    <![CDATA[Azetidine amino acid biosynthesis by non-haem iron-dependent enzymes]]> Yanan DuAnyarat ThanapipatsiriJesús J. Blancas CortezXavier E. Salas-SoláChi-Yun LinAmie K. BoalCarsten KrebsJ. Martin Bollinger JrKenichi Yokoyama doi:10.1038/s41557-025-01958-x Nature Chemistry, Published online: 2025-10-21; | doi:10.1038/s41557-025-01958-x 2025-10-21 Nature Chemistry 10.1038/s41557-025-01958-x https://www.nature.com/articles/s41557-025-01958-x
    <![CDATA[Copper-catalysed asymmetric cross-coupling reactions tolerant of highly reactive radicals]]> https://www.nature.com/articles/s41557-025-01970-1 <![CDATA[

    Nature Chemistry, Published online: 20 October 2025; doi:10.1038/s41557-025-01970-1

    Achieving generality in asymmetric catalysis with highly reactive radicals is a challenge. Now it is shown that a sequential copper-catalysed approach enables the efficient, enantioselective cross-coupling of over 50 diverse radicals, providing unified access to C-, P- and S-chiral products and advancing the asymmetric synthesis of challenging molecular architectures.]]>
    <![CDATA[Copper-catalysed asymmetric cross-coupling reactions tolerant of highly reactive radicals]]> Li-Wen FanJun-Bin TangLi-Lei WangZeng GaoJi-Ren LiuYu-Shuai ZhangDai-Lei YuanLi QinYu TianZhi-Chao ChenFu LiuJin-Min XiangPei-Jie HuangWei-Long LiuChen-Yu XiaoCheng LuanZhong-Liang LiXin HongZhe DongQiang-Shuai GuXin-Yuan Liu doi:10.1038/s41557-025-01970-1 Nature Chemistry, Published online: 2025-10-20; | doi:10.1038/s41557-025-01970-1 2025-10-20 Nature Chemistry 10.1038/s41557-025-01970-1 https://www.nature.com/articles/s41557-025-01970-1
    <![CDATA[A recursive enzymatic competition network capable of multitask molecular information processing]]> https://www.nature.com/articles/s41557-025-01981-y <![CDATA[

    Nature Chemistry, Published online: 17 October 2025; doi:10.1038/s41557-025-01981-y

    Designing enzymatic reaction networks capable of mimicking the complexity of biological information processing is challenging. Now, an in chemico reservoir sensor based on a recursive enzymatic competition network has been designed that can process diverse physical and chemical inputs and perform several information-processing tasks.]]>
    <![CDATA[A recursive enzymatic competition network capable of multitask molecular information processing]]> Souvik GhoshMathieu G. BaltussenAnna C. KnoxRianne HaijeQuentin DuezAnastasia T. TsitsimeliMan Him ChakJonathon E. BevesWilhelm T. S. Huck doi:10.1038/s41557-025-01981-y Nature Chemistry, Published online: 2025-10-17; | doi:10.1038/s41557-025-01981-y 2025-10-17 Nature Chemistry 10.1038/s41557-025-01981-y https://www.nature.com/articles/s41557-025-01981-y
    <![CDATA[Light-driven direct air capture of CO<sub>2</sub>]]> https://www.nature.com/articles/s41557-025-01972-z <![CDATA[

    Nature Chemistry, Published online: 16 October 2025; doi:10.1038/s41557-025-01972-z

    The high energetic demand of direct air capture of CO2 challenges its large-scale, industrial application. Now, the use of a photo-base allows for reversible capture of atmospheric CO2 driven by sunlight-induced pH swings.]]>
    <![CDATA[Light-driven direct air capture of CO<sub>2</sub>]]> Benjamin A. BakerGrace G. D. Han doi:10.1038/s41557-025-01972-z Nature Chemistry, Published online: 2025-10-16; | doi:10.1038/s41557-025-01972-z 2025-10-16 Nature Chemistry 10.1038/s41557-025-01972-z https://www.nature.com/articles/s41557-025-01972-z
    <![CDATA[Enantioselective light absorption drives kinetic resolution]]> https://www.nature.com/articles/s41557-025-01975-w <![CDATA[

    Nature Chemistry, Published online: 16 October 2025; doi:10.1038/s41557-025-01975-w

    Achieving enantioselectivity directly through light absorption is a long-standing challenge in photochemistry. Now, light can resolve racemic mixtures at the very moment of photon capture — enabling elegant kinetic resolution via chiral electron donor–acceptor complexes.]]>
    <![CDATA[Enantioselective light absorption drives kinetic resolution]]> Jumreang TummatornCharnsak Thongsornkleeb doi:10.1038/s41557-025-01975-w Nature Chemistry, Published online: 2025-10-16; | doi:10.1038/s41557-025-01975-w 2025-10-16 Nature Chemistry 10.1038/s41557-025-01975-w https://www.nature.com/articles/s41557-025-01975-w
    <![CDATA[Author Correction: Interfacial solvation pre-organizes the transition state of the oxygen evolution reaction]]> https://www.nature.com/articles/s41557-025-01991-w <![CDATA[

    Nature Chemistry, Published online: 15 October 2025; doi:10.1038/s41557-025-01991-w

    Author Correction: Interfacial solvation pre-organizes the transition state of the oxygen evolution reaction]]>
    <![CDATA[Author Correction: Interfacial solvation pre-organizes the transition state of the oxygen evolution reaction]]> Ricardo Martínez-HincapiéJanis TimoshenkoTimon WagnerEduardo OrtegaJody DruceMariana C. O. MonteiroMartina RüscherJoonbaek JangElif Öykü AlagözSamuele LasagnaLeon JacobseArno BergmannBeatriz Roldan CuenyaSebastian Z. Oener doi:10.1038/s41557-025-01991-w Nature Chemistry, Published online: 2025-10-15; | doi:10.1038/s41557-025-01991-w 2025-10-15 Nature Chemistry 10.1038/s41557-025-01991-w https://www.nature.com/articles/s41557-025-01991-w
    <![CDATA[Making isolable halosilylium Lewis superacids by protonation]]> https://www.nature.com/articles/s41557-025-01992-9 <![CDATA[

    Nature Chemistry, Published online: 15 October 2025; doi:10.1038/s41557-025-01992-9

    Halogen-substituted silylium ions are among the strongest known Lewis superacids with promising synthetic applications, but their synthesis has not been possible using established methods for generating silicon cations. Now, a general approach to these elusive reactive intermediates is reported, based on the protonation of halosilanes with a Brønsted superacid.]]>
    <![CDATA[Making isolable halosilylium Lewis superacids by protonation]]> doi:10.1038/s41557-025-01992-9 Nature Chemistry, Published online: 2025-10-15; | doi:10.1038/s41557-025-01992-9 2025-10-15 Nature Chemistry 10.1038/s41557-025-01992-9 https://www.nature.com/articles/s41557-025-01992-9