Ribosomes are highly conserved large ribonucleoprotein (RNP) particles, consisting in yeast of a large 60S subunit and a small 40S subunit, that perform protein synthesis. Yeast ribosomes contain one copy each of four ribosomal RNAs (5S, 5.8S, 18S, and 25S; produced in two separate transcripts encoded within the rDNA repeat present as hundreds of copies on Chromosome 12) and 79 different ribosomal proteins (r-proteins), which are encoded by 137 different genes scattered about the genome, 59 of which are duplicated (6, 4). The 60S subunit contains 46 proteins and three RNA molecules: 25S RNA of 3392 nt, hydrogen bonded to the 5.8S RNA of 158 nt and associated with the 5S RNA of 121 nt. The 40S subunit has a single 18S RNA of 1798 nt and 33 proteins (7, 4). All yeast ribosomal proteins have a mammalian homolog (8). In a rapidly growing yeast cell, 60% of total transcription is devoted to ribosomal RNA, and 50% of RNA polymerase II transcription and 90% of mRNA splicing are devoted to the production of mRNAs for r-proteins. Coordinate regulation of the rRNA genes and 137 r-protein genes is affected by nutritional cues and a number of signal transduction pathways that can abruptly induce or silence the ribosomal genes, whose transcripts have naturally short lifetimes, leading to major implications for the expression of other genes as well (9, 10, 11). The expression of some r-protein genes is influenced by Abf1p (12), and most are directly induced by binding of Rap1p to their promoters, which excludes nucleosomes and recruits Fhl1p and Ifh1p to drive transcription (13). Ribosome assembly is a complex process, with different steps occurring in different parts of the cell. Ribosomal protein genes are transcribed in the nucleus, and the mRNA is transported to the cytoplasm for translation. The newly synthesized r-proteins then enter the nucleus and associate in the nucleolus with the two rRNA transcripts, one of which is methylated and pseudouridylated (
Homology calls are sourced from the Alliance of Genome Resources. Many aspects of data integration presented at the Alliance require a common set of orthology relationships among genes for the organisms represented, including human. The Alliance provides the results of all methods that have been benchmarked by the Quest for Orthologs Consortium (QfO). The homolog inferences from the different methods have been integrated using the DRSC Integrative Ortholog Prediction Tool (DIOPT), which integrates a number of existing methods including those used by the Alliance: Ensembl Compara, HGNC, Hieranoid, InParanoid, OMA, OrthoFinder, OrthoInspector, PANTHER, PhylomeDB, Roundup, TreeFam, and ZFIN.
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the
page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to
sort by that column; filter the table using the "Filter" box at the top of the table.
Information about cross-species functional complementation between yeast and other species, curated by SGD and the Princeton Protein Orthology Database (P-POD).
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the
page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to
sort by that column; filter the table using the "Filter" box at the top of the table.
Fungal Homology calls are sourced from AllianceMine, which compiles fungal homology calls from FungiDB, CGD, Panther, PomBase, TreeFam, HomoloGene, and SGD.
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the
page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to
sort by that column; filter the table using the "Filter" box at the top of the table.
List of external identifiers for the protein from various database sources.
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the
page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to
sort by that column; filter the table using the "Filter" box at the top of the table.
AGD |
AnalogYeast |
AspGD |
BLASTP at NCBI |
BLASTP at NCBI |
FungiDB |
PhylomeDB |
PomBase |
PomBase |
PomBase |
YGOB |
YOGY
AlphaFold Protein Structure |
GPMDB |
ModelArchive |
Pfam domains |
SUPERFAMILY |
TopologYeast |
UniProtKB
CYCLoPs |
dHITS |
LoQAtE |
YeastGFP |
YeastRC Public Images |
YeastRGB |
YPL+
BLASTN |
BLASTP |
Design Primers |
Restriction Fragment Map |
Restriction Fragment Sizes |
Six-Frame Translation
BLASTN vs. fungi |
BLASTP at NCBI |
BLASTP at NCBI |
BLASTP vs. fungi RPL2B / YIL018W Homology
Homologs
HOMOLOG ID
Species
Gene ID
Gene name
Source
Functional Complementation
Complement ID
Locus ID
Gene
Species
Gene ID
Strain background
Direction
Details
Source
Reference
Fungal Homologs
HOMOLOG ID
Species
Gene ID
Gene name
Description
Source
External Identifiers
Alias ID
External ID
Source
Resources
Homologs
Protein Databases
Localization
Post-translational Modifications
S288C only
S288C vs. other species
S288C vs. other strains