Mec1p-dependent signaling begins with phosphorylation of Rad9p (16, 21). Activated Rad9p amplifies this initial signal by stimulating Mec1p phosphorylation of the effector kinases Chk1p and Rad53p (23, 24, 18). Chk1p and Rad53p phosphorylation leads to the arrest of cells in G1/S, intra-S, or G2/M phase, as well as the transcriptional upregulation of DNA damage repair genes, transcriptional repression of cyclins, and stabilization of replication forks (reviewed in 26 and 4). Other direct targets of Mec1p include the single-stranded DNA binding protein replication protein A (RPA) and Esc4p, which is required for stalled replication forks to resume activity (28, 29, 30).Mec1p forms a complex with Lcd1p that binds to damaged DNA in a reciprocally-dependant manner (13, 14). Lcd1p is also necessary for Mec1p to associate with telomeres (15). The presence of Mec1p is required for Rad9p to associate with DNA damage sites (16). In addition, Rad9p has been shown to play a role in regulating MEC1 expression (18, 19). Mutations in MEC1 lead to multiple defects, including sensitivity to DNA damaging agents, impaired checkpoint functions, chromosome breakage, and loss of telomeric silencing (2, 1, 22, 20). MEC1 is the homolog of S. pombe RAD3 and human
The S. cerevisiae Reference Genome sequence is derived from laboratory strain
S288C. Download DNA or protein sequence, view genomic context and
coordinates. Click "Sequence Details" to view all sequence information for this locus, including that
for other strains.
BLASTN |
BLASTP |
Design Primers |
Restriction Fragment Map |
Restriction Fragment Sizes |
Six-Frame Translation
BLASTN vs. fungi |
BLASTP at NCBI |
BLASTP vs. fungi
Basic sequence-derived (length, molecular weight, isoelectric point) and experimentally-determined (median abundance, median absolute deviation) protein information. Click "Protein Details" for further information about the protein such as half-life, abundance, domains, domains shared with other proteins, protein sequence retrieval for various strains, physico-chemical properties, protein modification sites, and external identifiers for the protein.
Curated mutant alleles for the specified gene, listed alphabetically. Click on the allele name to open the allele page. Click "SGD search" to view all alleles in search results.
View all MEC1 alleles in SGD search
GO Annotations consist of four mandatory components: a gene product, a term from one of the three
Gene Ontology (GO) controlled vocabularies
(Molecular Function,
Biological Process, and
Cellular Component), a reference, and an
evidence code. SGD has manually curated and high-throughput GO Annotations, both derived from the
literature, as well as computational, or predicted, annotations. Click "Gene Ontology Details" to view
all GO information and evidence for this locus as well as biological processes it shares with other genes.
View computational annotations
Macromolecular complex annotations are imported from the Complex Portal. These annotations have been derived from physical molecular interaction evidence extracted from the literature and cross-referenced in the entry, or by curator inference from information on homologs in closely related species or by inference from scientific background.
Phenotype annotations for a gene are curated single mutant phenotypes that require an observable
(e.g., "cell shape"), a qualifier (e.g., "abnormal"), a mutant type (e.g., null), strain background,
and a reference. In addition, annotations are classified as classical genetics or high-throughput
(e.g., large scale survey, systematic mutation set). Whenever possible, allele information and
additional details are provided. Click "Phenotype Details" to view all phenotype annotations and
evidence for this locus as well as phenotypes it shares with other genes.
Disease Annotations consist of three mandatory components: a gene product, a term from the
Disease Ontology (DO) controlled vocabulary and an
evidence code. SGD provides manually curated DO Annotations derived from the
literature. Click "Disease Details" to view all Disease information and evidence for this locus as well
as diseases it shares with other genes.
Interaction annotations are curated by BioGRID and include physical
or genetic interactions observed
between at least two genes. An interaction annotation is composed of the interaction type, name of the
interactor, assay type (e.g., Two-Hybrid), annotation type (e.g., manual or high-throughput), and a
reference, as well as other experimental details. Click "Interaction Details" to view all interaction
annotations and evidence for this locus, including an interaction visualization.
1191 total interactions for 676 unique genes
The number of putative Regulators (genes that regulate it) and Targets (genes it regulates) for the
given locus, based on experimental evidence. This evidence includes data generated through
high-throughput techniques. Click "Regulation Details" to view all regulation annotations, shared GO
enrichment among regulation Targets, and a regulator/target diagram for the locus.
Expression data are derived from records contained in the
Gene Expression Omnibus (GEO), and are first log2
transformed and normalized. Referenced datasets may contain one or more condition(s), and as a result
there may be a greater number of conditions than datasets represented in a single clickable histogram
bar. The histogram division at 0.0 separates the down-regulated (green) conditions and datasets from
those that are up-regulated (red). Click "Expression Details" to view all expression annotations and
details for this locus, including a visualization of genes that share a similar expression pattern.
A summary of the locus, written by SGD Biocurators following a thorough review of the literature. Links
to gene names and curated GO terms are included within the Summary Paragraphs.
Last Updated: 2006-03-24
All manually curated literature for the specified gene, organized into topics according to their
relevance to the gene (Primary Literature, Additional Literature, or Review). Click "Literature Details"
to view all literature information for this locus, including shared literature between genes.
MEC1 / YBR136W Overview
Sequence
Analyze Sequence
S288C only
S288C vs. other species
S288C vs. other strains
Protein
Alleles
Gene Ontology
Molecular Function
Biological Process
Cellular Component
Complex
Phenotype
Classical Genetics
Large-scale Survey
Disease
Manually Curated
Interaction
Physical Interactions
Genetic Interactions
Regulation
Expression
Summary Paragraph
Literature
Resources