Summary of Integration Techniques
                          b
      FTC part II:            F (x) dx = F (b) − F (a)
                      a
      Antiderivatives Table
      Substitution:           f (u(x)) · u (x) dx =    f (u) du

      Integration by Parts:           u dv = u · v −     v du, or

              f (x) · g (x) dx = f (x) · g (x) −         f (x) · g (x) dx

      Trigonometric Integrals: use a trigonometric substitution, a
      trigonometric identity or both.
                               polynomial
      Partial Fractions for                dx ; factor denominator,
                               polynomial
      decompose into partial fractions, integrate
      Approximate Integration
      + any combination thereof.

Summary of Integration Methods

  • 1.
    Summary of IntegrationTechniques b FTC part II: F (x) dx = F (b) − F (a) a Antiderivatives Table Substitution: f (u(x)) · u (x) dx = f (u) du Integration by Parts: u dv = u · v − v du, or f (x) · g (x) dx = f (x) · g (x) − f (x) · g (x) dx Trigonometric Integrals: use a trigonometric substitution, a trigonometric identity or both. polynomial Partial Fractions for dx ; factor denominator, polynomial decompose into partial fractions, integrate Approximate Integration + any combination thereof.