This document contains lecture notes on sparse autoencoders. It begins with an introduction describing the limitations of supervised learning and the need for algorithms that can automatically learn feature representations from unlabeled data. The notes then state that sparse autoencoders are one approach to learn features from unlabeled data, and describe the organization of the rest of the notes. The notes will cover feedforward neural networks, backpropagation for supervised learning, autoencoders for unsupervised learning, and how sparse autoencoders are derived from these concepts.