This document discusses predictive maintenance using sensor data in utility industries. It describes how sensors can monitor infrastructure and predict failures by analyzing patterns in sensor data using machine learning models. An architecture is proposed that uses big data frameworks like Spark, Kafka and HBase to collect, analyze and store large volumes of real-time sensor data at scale. Predictive analytics on this data with techniques like clustering and regression can detect anomalies and predict failures to enable condition-based maintenance in utilities. Modeling uncertain sensor readings with probabilistic and autoregressive approaches is also discussed.