This document discusses kernel methods and radial basis function (RBF) networks. It begins with an introduction and overview of Cover's theory of separability of patterns. It then revisits the XOR problem and shows how it can be solved using Gaussian hidden functions. The interpolation problem is explained and how RBF networks can perform strict interpolation through a set of training data points. Radial basis functions that satisfy Micchelli's theorem allowing for a nonsingular interpolation matrix are presented. Finally, the structure and training of RBF networks using k-means clustering and recursive least squares estimation is covered.