Self-organizing networks can perform unsupervised clustering by mapping high-dimensional input patterns into a smaller number of clusters in output space through competitive learning. Fixed weight competitive networks like Maxnet, Mexican Hat net, and Hamming net use competitive learning with fixed weights. Maxnet uses winner-take-all competition to select the neuron whose weights best match the input. Mexican Hat net has both excitatory and inhibitory connections between neurons to enhance contrast. Hamming net determines which exemplar vector most closely matches the input using the Hamming distance measure.