15-441: Computer Networking
Lecture 3: Application Layer and
Socket Programming
Lecture 3: 9-4-01 2
Lecture Overview
• Application layer
• Client-server
• Application requirements
• Background
• TCP vs. UDP
• Byte ordering
• Socket I/O
• TCP/UDP server and client
• I/O multiplexing
Lecture 3: 9-4-01 3
Applications and Application-Layer
Protocols
• Application: communicating,
distributed processes
• Running in network hosts in
“user space”
• Exchange messages to
implement app
• e.g., email, file transfer, the
Web
• Application-layer protocols
• One “piece” of an app
• Define messages exchanged
by apps and actions taken
• User services provided by
lower layer protocols
application
transport
network
data link
physical
application
transport
network
data link
physical
application
transport
network
data link
physical
Lecture 3: 9-4-01 4
Client-Server Paradigm
Typical network app has two pieces: client and server
application
transport
network
data link
physical
application
transport
network
data link
physical
Client:
• Initiates contact with server
(“speaks first”)
• Typically requests service from
server,
• For Web, client is implemented in
browser; for e-mail, in mail reader
Server:
• Provides requested service to
client
• e.g., Web server sends
requested Web page, mail server
delivers e-mail
request
reply
Lecture 3: 9-4-01 5
Ftp: The File Transfer Protocol
• Transfer file to/from remote host
• Client/server model
• Client: side that initiates transfer (either to/from remote)
• Server: remote host
• ftp: RFC 959
• ftp server: port 21
file transfer
FTP
server
FTP
user
interface
FTP
client
local file
system
remote file
system
user
at host
Lecture 3: 9-4-01 6
Ftp: Separate Control, Data
Connections
• Ftp client contacts ftp server
at port 21, specifying TCP
as transport protocol
• Two parallel TCP
connections opened:
• Control: exchange commands,
responses between client,
server.
“out of band control”
• Data: file data to/from server
• Ftp server maintains “state”:
current directory, earlier
authentication
FTP
client
FTP
server
TCP control connection
port 21
TCP data connection
port 20
Lecture 3: 9-4-01 7
Ftp Commands, Responses
Sample Commands:
• sent as ASCII text over
control channel
• USER username
• PASS password
• LIST return list of files in
current directory
• RETR filename
retrieves (gets) file
• STOR filename stores
(puts) file onto remote host
Sample Return Codes
• status code and phrase
• 331 Username OK,
password required
• 125 data connection
already open;
transfer starting
• 425 Can’t open data
connection
• 452 Error writing
file
Lecture 3: 9-4-01 8
What Transport Service Does an
Application Need?
Data loss
• Some apps (e.g., audio) can
tolerate some loss
• Other apps (e.g., file transfer,
telnet) require 100% reliable
data transfer
Timing
• Some apps (e.g., Internet
telephony, interactive
games) require low delay to
be “effective”
Bandwidth
• Some apps (e.g., multimedia) require minimum amount of
bandwidth to be “effective”
• Other apps (“elastic apps”) make use of whatever bandwidth they
get
Lecture 3: 9-4-01 9
Transport Service Requirements
of Common Apps
no loss
no loss
no loss
loss-tolerant
loss-tolerant
loss-tolerant
no loss
elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above
few Kbps
elastic
no
no
no
yes, 100’s msec
yes, few secs
yes, 100’s msec
yes and no
file transfer
e-mail
web documents
real-time audio/
video
stored audio/video
interactive games
financial apps
Application Data loss Bandwidth Time Sensitive
Lecture 3: 9-4-01 10
Lecture Overview
• Application layer
• Client-server
• Application requirements
• Background
• TCP vs. UDP
• Byte ordering
• Socket I/O
• TCP/UDP server and client
• I/O multiplexing
Lecture 3: 9-4-01 11
Server and Client
TCP/UDP
IP
Ethernet Adapter
Server
TCP/UDP
IP
Ethernet Adapter
Clients
Server and Client exchange messages over the
network through a common Socket API
Socket API
hardware
kernel
space
user
space
ports
Lecture 3: 9-4-01 12
User Datagram Protocol(UDP):
An Analogy
Postal Mail
• Single mailbox to receive
messages
• Unreliable 
• Not necessarily in-order
delivery
• Each letter is independent
• Must address each reply
Example UDP applications
Multimedia, voice over IP
UDP
• Single socket to receive
messages
• No guarantee of delivery
• Not necessarily in-order
delivery
• Datagram – independent
packets
• Must address each packet
Postal Mail
• Single mailbox to receive
letters
• Unreliable 
• Not necessarily in-order
delivery
• Letters sent independently
• Must address each reply
Lecture 3: 9-4-01 13
Transmission Control Protocol
(TCP): An Analogy
TCP
• Reliable – guarantee
delivery
• Byte stream – in-order
delivery
• Connection-oriented –
single socket per
connection
• Setup connection
followed by data transfer
Telephone Call
• Guaranteed delivery
• In-order delivery
• Connection-oriented
• Setup connection
followed by conversation
Example TCP applications
Web, Email, Telnet
Lecture 3: 9-4-01 14
Network Addressing Analogy
412-268-8000
ext.123
Central Number
Applications/Servers
Web
Port 80
Mail
Port 25
Exchange
Area Code
412-268-8000
ext.654
IP Address
Network No.
Host Number
Telephone No
15-441 Students Clients
Professors at CMU
Network Programming
Telephone Call
Port No.
Extension
Lecture 3: 9-4-01 15
Concept of Port Numbers
• Port numbers are used to identify
“entities” on a host
• Port numbers can be
• Well-known (port 0-1023)
• Dynamic or private (port 1024-65535)
• Servers/daemons usually use well-
known ports
• Any client can identify the server/service
• HTTP = 80, FTP = 21, Telnet = 23, ...
• /etc/service defines well-known ports
• Clients usually use dynamic ports
• Assigned by the kernel at run time
TCP/UDP
IP
Ethernet Adapter
NTP
daemon
Web
server
port 123 port 80
Lecture 3: 9-4-01 16
Names and Addresses
• Each attachment point on Internet is given
unique address
• Based on location within network – like phone
numbers
• Humans prefer to deal with names not
addresses
• DNS provides mapping of name to address
• Name based on administrative ownership of
host
Lecture 3: 9-4-01 17
#include <netinet/in.h>
/* Internet address structure */
struct in_addr {
u_long s_addr; /* 32-bit IPv4 address */
}; /* network byte ordered */
/* Socket address, Internet style. */
struct sockaddr_in {
u_char sin_family; /* Address Family */
u_short sin_port; /* UDP or TCP Port# */
/* network byte ordered */
struct in_addr sin_addr; /* Internet Address */
char sin_zero[8]; /* unused */
};
Internet Addressing Data Structure
• sin_family = AF_INET selects Internet address family
Lecture 3: 9-4-01 18
Byte Ordering
• Big Endian
• Sun Solaris, PowerPC, ...
• Little Endian
• i386, alpha, ...
• Network byte order = Big Endian
128 2 194 95
union {
u_int32_t addr; /* 4 bytes address */
char c[4];
} un;
/* 128.2.194.95 */
un.addr = 0x8002c25f;
/* c[0] = ? */
c[0] c[1] c[2] c[3]
95 194 2 128
Lecture 3: 9-4-01 19
Byte Ordering Functions
• Converts between host byte order and network
byte order
• ‘h’ = host byte order
• ‘n’ = network byte order
• ‘l’ = long (4 bytes), converts IP addresses
• ‘s’ = short (2 bytes), converts port numbers
#include <netinet/in.h>
unsigned long int htonl(unsigned long int hostlong);
unsigned short int htons(unsigned short int
hostshort);
unsigned long int ntohl(unsigned long int netlong);
unsigned short int ntohs(unsigned short int
netshort);
Lecture 3: 9-4-01 20
Lecture Overview
• Application layer
• Client-server
• Application requirements
• Background
• TCP vs. UDP
• Byte ordering
• Socket I/O
• TCP/UDP server and client
• I/O multiplexing
Lecture 3: 9-4-01 21
• A socket is a file descriptor that lets an application read/write data
from/to the network
• socket returns an integer (socket descriptor)
• fd < 0 indicates that an error occurred
• socket descriptors are similar to file descriptors
• AF_INET: associates a socket with the Internet protocol family
• SOCK_STREAM: selects the TCP protocol
• SOCK_DGRAM: selects the UDP protocol
What is a Socket?
int fd; /* socket descriptor */
if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) }
perror(“socket”);
exit(1);
}
Lecture 3: 9-4-01 22
TCP
IP
Ethernet Adapter
Web Server
Port 80
• For example: web
server
• What does a web server
need to do so that a web
client can connect to it?
TCP Server
Lecture 3: 9-4-01 23
• Since web traffic uses TCP, the web server must create a socket of type
SOCK_STREAM
int fd; /* socket descriptor */
if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror(“socket”);
exit(1);
}
• socket returns an integer (socket descriptor)
• fd < 0 indicates that an error occurred
• AF_INET associates a socket with the Internet protocol family
• SOCK_STREAM selects the TCP protocol
Socket I/O: socket()
Lecture 3: 9-4-01 24
• A socket can be bound to a port
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */
/* create the socket */
srv.sin_family = AF_INET; /* use the Internet addr family */
srv.sin_port = htons(80); /* bind socket ‘fd’ to port 80*/
/* bind: a client may connect to any of my addresses */
srv.sin_addr.s_addr = htonl(INADDR_ANY);
if(bind(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {
perror("bind"); exit(1);
}
• Still not quite ready to communicate with a client...
Socket I/O: bind()
Lecture 3: 9-4-01 25
Socket I/O: listen()
• listen indicates that the server will accept a connection
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */
/* 1) create the socket */
/* 2) bind the socket to a port */
if(listen(fd, 5) < 0) {
perror(“listen”);
exit(1);
}
• Still not quite ready to communicate with a client...
Lecture 3: 9-4-01 26
Socket I/O: accept()
• accept blocks waiting for a connection
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */
struct sockaddr_in cli; /* used by accept() */
int newfd; /* returned by accept() */
int cli_len = sizeof(cli); /* used by accept() */
/* 1) create the socket */
/* 2) bind the socket to a port */
/* 3) listen on the socket */
newfd = accept(fd, (struct sockaddr*) &cli, &cli_len);
if(newfd < 0) {
perror("accept"); exit(1);
}
• accept returns a new socket (newfd) with the same properties as the
original socket (fd)
• newfd < 0 indicates that an error occurred
Lecture 3: 9-4-01 27
Socket I/O: accept() continued...
struct sockaddr_in cli; /* used by accept() */
int newfd; /* returned by accept() */
int cli_len = sizeof(cli); /* used by accept() */
newfd = accept(fd, (struct sockaddr*) &cli, &cli_len);
if(newfd < 0) {
perror("accept");
exit(1);
}
• How does the server know which client it is?
• cli.sin_addr.s_addr contains the client’s IP address
• cli.sin_port contains the client’s port number
• Now the server can exchange data with the client by
using read and write on the descriptor newfd.
• Why does accept need to return a new descriptor?
Lecture 3: 9-4-01 28
Socket I/O: read()
• read can be used with a socket
• read blocks waiting for data from the client but
does not guarantee that sizeof(buf) is read
int fd; /* socket descriptor */
char buf[512]; /* used by read() */
int nbytes; /* used by read() */
/* 1) create the socket */
/* 2) bind the socket to a port */
/* 3) listen on the socket */
/* 4) accept the incoming connection */
if((nbytes = read(newfd, buf, sizeof(buf))) < 0) {
perror(“read”); exit(1);
}
Lecture 3: 9-4-01 29
TCP
IP
Ethernet Adapter
2 Web Clients
TCP Client
• For example: web
client
• How does a web client
connect to a web server?
Lecture 3: 9-4-01 30
struct sockaddr_in srv;
srv.sin_addr.s_addr = inet_addr(“128.2.35.50”);
if(srv.sin_addr.s_addr == (in_addr_t) -1) {
fprintf(stderr, "inet_addr failed!n"); exit(1);
}
Converting a numerical address to a string:
Dealing with IP Addresses
• IP Addresses are commonly written as strings (“128.2.35.50”), but
programs deal with IP addresses as integers.
struct sockaddr_in srv;
char *t = inet_ntoa(srv.sin_addr);
if(t == 0) {
fprintf(stderr, “inet_ntoa failed!n”); exit(1);
}
Converting strings to numerical address:
Lecture 3: 9-4-01 31
Translating Names to Addresses
• Gethostbyname provides interface to DNS
• Additional useful calls
• Gethostbyaddr – returns hostent given sockaddr_in
• Getservbyname
• Used to get service description (typically port number)
• Returns servent based on name
#include <netdb.h>
struct hostent *hp; /*ptr to host info for remote*/
struct sockaddr_in peeraddr;
char *name = “www.cs.cmu.edu”;
peeraddr.sin_family = AF_INET;
hp = gethostbyname(name)
peeraddr.sin_addr.s_addr = ((struct in_addr*)(hp->h_addr))->s_addr;
Lecture 3: 9-4-01 32
Socket I/O: connect()
• connect allows a client to connect to a server...
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by connect() */
/* create the socket */
/* connect: use the Internet address family */
srv.sin_family = AF_INET;
/* connect: socket ‘fd’ to port 80 */
srv.sin_port = htons(80);
/* connect: connect to IP Address “128.2.35.50” */
srv.sin_addr.s_addr = inet_addr(“128.2.35.50”);
if(connect(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {
perror(”connect"); exit(1);
}
Lecture 3: 9-4-01 33
Socket I/O: write()
• write can be used with a socket
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by connect() */
char buf[512]; /* used by write() */
int nbytes; /* used by write() */
/* 1) create the socket */
/* 2) connect() to the server */
/* Example: A client could “write” a request to a server
*/
if((nbytes = write(fd, buf, sizeof(buf))) < 0) {
perror(“write”);
exit(1);
}
Lecture 3: 9-4-01 34
Review: TCP Client-Server
Interaction
socket()
bind()
listen()
accept()
write()
read()
read()
TCP Server
close()
socket()
TCP Client
connect()
write()
read()
close()
connection establishment
data request
data reply
end-of-file notification
from UNIX Network Programming Volume 1, figure 4.1
Lecture 3: 9-4-01 35
UDP
IP
Ethernet Adapter
NTP
daemon
UDP Server Example
Port 123
• For example: NTP
daemon
• What does a UDP server
need to do so that a UDP
client can connect to it?
Lecture 3: 9-4-01 36
Socket I/O: socket()
• The UDP server must create a datagram socket…
int fd; /* socket descriptor */
if((fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
perror(“socket”);
exit(1);
}
• socket returns an integer (socket descriptor)
• fd < 0 indicates that an error occurred
• AF_INET: associates a socket with the Internet protocol family
• SOCK_DGRAM: selects the UDP protocol
Lecture 3: 9-4-01 37
Socket I/O: bind()
• A socket can be bound to a port
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */
/* create the socket */
/* bind: use the Internet address family */
srv.sin_family = AF_INET;
/* bind: socket ‘fd’ to port 80*/
srv.sin_port = htons(80);
/* bind: a client may connect to any of my addresses */
srv.sin_addr.s_addr = htonl(INADDR_ANY);
if(bind(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {
perror("bind"); exit(1);
}
• Now the UDP server is ready to accept packets…
Lecture 3: 9-4-01 38
Socket I/O: recvfrom()
• read does not provide the client’s address to the UDP server
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */
struct sockaddr_in cli; /* used by recvfrom() */
char buf[512]; /* used by recvfrom() */
int cli_len = sizeof(cli); /* used by recvfrom() */
int nbytes; /* used by recvfrom() */
/* 1) create the socket */
/* 2) bind to the socket */
nbytes = recvfrom(fd, buf, sizeof(buf), 0 /* flags */,
(struct sockaddr*) &cli, &cli_len);
if(nbytes < 0) {
perror(“recvfrom”); exit(1);
}
Lecture 3: 9-4-01 39
Socket I/O: recvfrom() continued...
nbytes = recvfrom(fd, buf, sizeof(buf), 0 /* flags */,
(struct sockaddr*) cli, &cli_len);
• The actions performed by recvfrom
• returns the number of bytes read (nbytes)
• copies nbytes of data into buf
• returns the address of the client (cli)
• returns the length of cli (cli_len)
• don’t worry about flags
Lecture 3: 9-4-01 40
TCP
IP
Ethernet Adapter
2 UDP Clients
UDP Client Example
ports
• How does a UDP client
communicate with a UDP
server?
Lecture 3: 9-4-01 41
Socket I/O: sendto()
• write is not allowed
• Notice that the UDP client does not bind a port number
• a port number is dynamically assigned when the first sendto is called
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by sendto() */
/* 1) create the socket */
/* sendto: send data to IP Address “128.2.35.50” port 80 */
srv.sin_family = AF_INET;
srv.sin_port = htons(80);
srv.sin_addr.s_addr = inet_addr(“128.2.35.50”);
nbytes = sendto(fd, buf, sizeof(buf), 0 /* flags */,
(struct sockaddr*) &srv, sizeof(srv));
if(nbytes < 0) {
perror(“sendto”); exit(1);
}
Lecture 3: 9-4-01 42
Review: UDP Client-Server
Interaction
socket()
bind()
recvfrom()
sendto()
UDP Server
socket()
UDP Client
sendto()
recvfrom()
close()
blocks until datagram
received from a client
data request
data reply
from UNIX Network Programming Volume 1, figure 8.1
Lecture 3: 9-4-01 43
UDP
IP
Ethernet Adapter
UDP Server
The UDP Server
Port 2000
Port 3000
• How can the UDP server
service multiple ports
simultaneously?
Lecture 3: 9-4-01 44
int s1; /* socket descriptor 1 */
int s2; /* socket descriptor 2 */
/* 1) create socket s1 */
/* 2) create socket s2 */
/* 3) bind s1 to port 2000 */
/* 4) bind s2 to port 3000 */
while(1) {
recvfrom(s1, buf, sizeof(buf), ...);
/* process buf */
recvfrom(s2, buf, sizeof(buf), ...);
/* process buf */
}
UDP Server: Servicing Two Ports
• What problems does this code have?
Lecture 3: 9-4-01 45
Socket I/O: select()
int select(int maxfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);
FD_CLR(int fd, fd_set *fds); /* clear the bit for fd in fds */
FD_ISSET(int fd, fd_set *fds); /* is the bit for fd in fds? */
FD_SET(int fd, fd_set *fds); /* turn on the bit for fd in fds */
FD_ZERO(fd_set *fds); /* clear all bits in fds */
• maxfds: number of descriptors to be tested
• descriptors (0, 1, ... maxfds-1) will be tested
• readfds: a set of fds we want to check if data is available
• returns a set of fds ready to read
• if input argument is NULL, not interested in that condition
• writefds: returns a set of fds ready to write
• exceptfds: returns a set of fds with exception conditions
Lecture 3: 9-4-01 46
Socket I/O: select()
int select(int maxfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);
struct timeval {
long tv_sec; /* seconds /
long tv_usec; /* microseconds */
}
• timeout
• if NULL, wait forever and return only when one of the descriptors is
ready for I/O
• otherwise, wait up to a fixed amount of time specified by timeout
• if we don’t want to wait at all, create a timeout structure with timer value
equal to 0
• Refer to the man page for more information
Lecture 3: 9-4-01 47
int s1, s2; /* socket descriptors */
fd_set readfds; /* used by select() */
/* create and bind s1 and s2 */
while(1) {
FD_ZERO(&readfds); /* initialize the fd set
*/
FD_SET(s1, &readfds); /* add s1 to the fd set */
FD_SET(s2, &readfds); /* add s2 to the fd set */
if(select(s2+1, &readfds, 0, 0, 0) < 0) {
perror(“select”);
exit(1);
}
if(FD_ISSET(s1, &readfds)) {
recvfrom(s1, buf, sizeof(buf), ...);
/* process buf */
}
/* do the same for s2 */
}
Socket I/O: select()
• select allows synchronous I/O multiplexing
Lecture 3: 9-4-01 48
TCP
IP
Ethernet Adapter
Web Server
Port 80
How can a a web server manage
multiple connections simultaneously?
Port 8001
More Details About a Web Server
Lecture 3: 9-4-01 49
int fd, next=0; /* original socket */
int newfd[10]; /* new socket descriptors */
while(1) {
fd_set readfds;
FD_ZERO(&readfds); FD_SET(fd, &readfds);
/* Now use FD_SET to initialize other newfd’s
that have already been returned by accept() */
select(maxfd+1, &readfds, 0, 0, 0);
if(FD_ISSET(fd, &readfds)) {
newfd[next++] = accept(fd, ...);
}
/* do the following for each descriptor newfd[n] */
if(FD_ISSET(newfd[n], &readfds)) {
read(newfd[n], buf, sizeof(buf));
/* process data */
}
}
Socket I/O: select()
• Now the web server can support multiple connections...
Lecture 3: 9-4-01 50
A Few Programming Notes:
Representing Packets
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 4-byte integer
Length: 2-byte integer
Checksum: 2-byte integer
Address: 4-byte IP address
Lecture 3: 9-4-01 51
A Few Programming Notes:
Building a Packet in a Buffer
struct packet {
u_int32_t type;
u_int16_t length;
u_int16_t checksum;
u_int32_t address;
};
/* ================================================== */
char buf[1024];
struct packet *pkt;
pkt = (struct packet*) buf;
pkt->type = htonl(1);
pkt->length = htons(2);
pkt->checksum = htons(3);
pkt->address = htonl(4);
Lecture 3: 9-4-01 52
Socket Programming References
• Man page
• usage: man <function name>
• Textbook
• Sections 2.6, 2.7
• demo programs written in Java
• Unix Network Programming : Networking
APIs: Sockets and XTI (Volume 1)
• Section 2, 3, 4, 6, 8
• ultimate socket programming bible!

lecture03 on socket programming000000.ppt

  • 1.
    15-441: Computer Networking Lecture3: Application Layer and Socket Programming
  • 2.
    Lecture 3: 9-4-012 Lecture Overview • Application layer • Client-server • Application requirements • Background • TCP vs. UDP • Byte ordering • Socket I/O • TCP/UDP server and client • I/O multiplexing
  • 3.
    Lecture 3: 9-4-013 Applications and Application-Layer Protocols • Application: communicating, distributed processes • Running in network hosts in “user space” • Exchange messages to implement app • e.g., email, file transfer, the Web • Application-layer protocols • One “piece” of an app • Define messages exchanged by apps and actions taken • User services provided by lower layer protocols application transport network data link physical application transport network data link physical application transport network data link physical
  • 4.
    Lecture 3: 9-4-014 Client-Server Paradigm Typical network app has two pieces: client and server application transport network data link physical application transport network data link physical Client: • Initiates contact with server (“speaks first”) • Typically requests service from server, • For Web, client is implemented in browser; for e-mail, in mail reader Server: • Provides requested service to client • e.g., Web server sends requested Web page, mail server delivers e-mail request reply
  • 5.
    Lecture 3: 9-4-015 Ftp: The File Transfer Protocol • Transfer file to/from remote host • Client/server model • Client: side that initiates transfer (either to/from remote) • Server: remote host • ftp: RFC 959 • ftp server: port 21 file transfer FTP server FTP user interface FTP client local file system remote file system user at host
  • 6.
    Lecture 3: 9-4-016 Ftp: Separate Control, Data Connections • Ftp client contacts ftp server at port 21, specifying TCP as transport protocol • Two parallel TCP connections opened: • Control: exchange commands, responses between client, server. “out of band control” • Data: file data to/from server • Ftp server maintains “state”: current directory, earlier authentication FTP client FTP server TCP control connection port 21 TCP data connection port 20
  • 7.
    Lecture 3: 9-4-017 Ftp Commands, Responses Sample Commands: • sent as ASCII text over control channel • USER username • PASS password • LIST return list of files in current directory • RETR filename retrieves (gets) file • STOR filename stores (puts) file onto remote host Sample Return Codes • status code and phrase • 331 Username OK, password required • 125 data connection already open; transfer starting • 425 Can’t open data connection • 452 Error writing file
  • 8.
    Lecture 3: 9-4-018 What Transport Service Does an Application Need? Data loss • Some apps (e.g., audio) can tolerate some loss • Other apps (e.g., file transfer, telnet) require 100% reliable data transfer Timing • Some apps (e.g., Internet telephony, interactive games) require low delay to be “effective” Bandwidth • Some apps (e.g., multimedia) require minimum amount of bandwidth to be “effective” • Other apps (“elastic apps”) make use of whatever bandwidth they get
  • 9.
    Lecture 3: 9-4-019 Transport Service Requirements of Common Apps no loss no loss no loss loss-tolerant loss-tolerant loss-tolerant no loss elastic elastic elastic audio: 5Kb-1Mb video:10Kb-5Mb same as above few Kbps elastic no no no yes, 100’s msec yes, few secs yes, 100’s msec yes and no file transfer e-mail web documents real-time audio/ video stored audio/video interactive games financial apps Application Data loss Bandwidth Time Sensitive
  • 10.
    Lecture 3: 9-4-0110 Lecture Overview • Application layer • Client-server • Application requirements • Background • TCP vs. UDP • Byte ordering • Socket I/O • TCP/UDP server and client • I/O multiplexing
  • 11.
    Lecture 3: 9-4-0111 Server and Client TCP/UDP IP Ethernet Adapter Server TCP/UDP IP Ethernet Adapter Clients Server and Client exchange messages over the network through a common Socket API Socket API hardware kernel space user space ports
  • 12.
    Lecture 3: 9-4-0112 User Datagram Protocol(UDP): An Analogy Postal Mail • Single mailbox to receive messages • Unreliable  • Not necessarily in-order delivery • Each letter is independent • Must address each reply Example UDP applications Multimedia, voice over IP UDP • Single socket to receive messages • No guarantee of delivery • Not necessarily in-order delivery • Datagram – independent packets • Must address each packet Postal Mail • Single mailbox to receive letters • Unreliable  • Not necessarily in-order delivery • Letters sent independently • Must address each reply
  • 13.
    Lecture 3: 9-4-0113 Transmission Control Protocol (TCP): An Analogy TCP • Reliable – guarantee delivery • Byte stream – in-order delivery • Connection-oriented – single socket per connection • Setup connection followed by data transfer Telephone Call • Guaranteed delivery • In-order delivery • Connection-oriented • Setup connection followed by conversation Example TCP applications Web, Email, Telnet
  • 14.
    Lecture 3: 9-4-0114 Network Addressing Analogy 412-268-8000 ext.123 Central Number Applications/Servers Web Port 80 Mail Port 25 Exchange Area Code 412-268-8000 ext.654 IP Address Network No. Host Number Telephone No 15-441 Students Clients Professors at CMU Network Programming Telephone Call Port No. Extension
  • 15.
    Lecture 3: 9-4-0115 Concept of Port Numbers • Port numbers are used to identify “entities” on a host • Port numbers can be • Well-known (port 0-1023) • Dynamic or private (port 1024-65535) • Servers/daemons usually use well- known ports • Any client can identify the server/service • HTTP = 80, FTP = 21, Telnet = 23, ... • /etc/service defines well-known ports • Clients usually use dynamic ports • Assigned by the kernel at run time TCP/UDP IP Ethernet Adapter NTP daemon Web server port 123 port 80
  • 16.
    Lecture 3: 9-4-0116 Names and Addresses • Each attachment point on Internet is given unique address • Based on location within network – like phone numbers • Humans prefer to deal with names not addresses • DNS provides mapping of name to address • Name based on administrative ownership of host
  • 17.
    Lecture 3: 9-4-0117 #include <netinet/in.h> /* Internet address structure */ struct in_addr { u_long s_addr; /* 32-bit IPv4 address */ }; /* network byte ordered */ /* Socket address, Internet style. */ struct sockaddr_in { u_char sin_family; /* Address Family */ u_short sin_port; /* UDP or TCP Port# */ /* network byte ordered */ struct in_addr sin_addr; /* Internet Address */ char sin_zero[8]; /* unused */ }; Internet Addressing Data Structure • sin_family = AF_INET selects Internet address family
  • 18.
    Lecture 3: 9-4-0118 Byte Ordering • Big Endian • Sun Solaris, PowerPC, ... • Little Endian • i386, alpha, ... • Network byte order = Big Endian 128 2 194 95 union { u_int32_t addr; /* 4 bytes address */ char c[4]; } un; /* 128.2.194.95 */ un.addr = 0x8002c25f; /* c[0] = ? */ c[0] c[1] c[2] c[3] 95 194 2 128
  • 19.
    Lecture 3: 9-4-0119 Byte Ordering Functions • Converts between host byte order and network byte order • ‘h’ = host byte order • ‘n’ = network byte order • ‘l’ = long (4 bytes), converts IP addresses • ‘s’ = short (2 bytes), converts port numbers #include <netinet/in.h> unsigned long int htonl(unsigned long int hostlong); unsigned short int htons(unsigned short int hostshort); unsigned long int ntohl(unsigned long int netlong); unsigned short int ntohs(unsigned short int netshort);
  • 20.
    Lecture 3: 9-4-0120 Lecture Overview • Application layer • Client-server • Application requirements • Background • TCP vs. UDP • Byte ordering • Socket I/O • TCP/UDP server and client • I/O multiplexing
  • 21.
    Lecture 3: 9-4-0121 • A socket is a file descriptor that lets an application read/write data from/to the network • socket returns an integer (socket descriptor) • fd < 0 indicates that an error occurred • socket descriptors are similar to file descriptors • AF_INET: associates a socket with the Internet protocol family • SOCK_STREAM: selects the TCP protocol • SOCK_DGRAM: selects the UDP protocol What is a Socket? int fd; /* socket descriptor */ if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) } perror(“socket”); exit(1); }
  • 22.
    Lecture 3: 9-4-0122 TCP IP Ethernet Adapter Web Server Port 80 • For example: web server • What does a web server need to do so that a web client can connect to it? TCP Server
  • 23.
    Lecture 3: 9-4-0123 • Since web traffic uses TCP, the web server must create a socket of type SOCK_STREAM int fd; /* socket descriptor */ if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) { perror(“socket”); exit(1); } • socket returns an integer (socket descriptor) • fd < 0 indicates that an error occurred • AF_INET associates a socket with the Internet protocol family • SOCK_STREAM selects the TCP protocol Socket I/O: socket()
  • 24.
    Lecture 3: 9-4-0124 • A socket can be bound to a port int fd; /* socket descriptor */ struct sockaddr_in srv; /* used by bind() */ /* create the socket */ srv.sin_family = AF_INET; /* use the Internet addr family */ srv.sin_port = htons(80); /* bind socket ‘fd’ to port 80*/ /* bind: a client may connect to any of my addresses */ srv.sin_addr.s_addr = htonl(INADDR_ANY); if(bind(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) { perror("bind"); exit(1); } • Still not quite ready to communicate with a client... Socket I/O: bind()
  • 25.
    Lecture 3: 9-4-0125 Socket I/O: listen() • listen indicates that the server will accept a connection int fd; /* socket descriptor */ struct sockaddr_in srv; /* used by bind() */ /* 1) create the socket */ /* 2) bind the socket to a port */ if(listen(fd, 5) < 0) { perror(“listen”); exit(1); } • Still not quite ready to communicate with a client...
  • 26.
    Lecture 3: 9-4-0126 Socket I/O: accept() • accept blocks waiting for a connection int fd; /* socket descriptor */ struct sockaddr_in srv; /* used by bind() */ struct sockaddr_in cli; /* used by accept() */ int newfd; /* returned by accept() */ int cli_len = sizeof(cli); /* used by accept() */ /* 1) create the socket */ /* 2) bind the socket to a port */ /* 3) listen on the socket */ newfd = accept(fd, (struct sockaddr*) &cli, &cli_len); if(newfd < 0) { perror("accept"); exit(1); } • accept returns a new socket (newfd) with the same properties as the original socket (fd) • newfd < 0 indicates that an error occurred
  • 27.
    Lecture 3: 9-4-0127 Socket I/O: accept() continued... struct sockaddr_in cli; /* used by accept() */ int newfd; /* returned by accept() */ int cli_len = sizeof(cli); /* used by accept() */ newfd = accept(fd, (struct sockaddr*) &cli, &cli_len); if(newfd < 0) { perror("accept"); exit(1); } • How does the server know which client it is? • cli.sin_addr.s_addr contains the client’s IP address • cli.sin_port contains the client’s port number • Now the server can exchange data with the client by using read and write on the descriptor newfd. • Why does accept need to return a new descriptor?
  • 28.
    Lecture 3: 9-4-0128 Socket I/O: read() • read can be used with a socket • read blocks waiting for data from the client but does not guarantee that sizeof(buf) is read int fd; /* socket descriptor */ char buf[512]; /* used by read() */ int nbytes; /* used by read() */ /* 1) create the socket */ /* 2) bind the socket to a port */ /* 3) listen on the socket */ /* 4) accept the incoming connection */ if((nbytes = read(newfd, buf, sizeof(buf))) < 0) { perror(“read”); exit(1); }
  • 29.
    Lecture 3: 9-4-0129 TCP IP Ethernet Adapter 2 Web Clients TCP Client • For example: web client • How does a web client connect to a web server?
  • 30.
    Lecture 3: 9-4-0130 struct sockaddr_in srv; srv.sin_addr.s_addr = inet_addr(“128.2.35.50”); if(srv.sin_addr.s_addr == (in_addr_t) -1) { fprintf(stderr, "inet_addr failed!n"); exit(1); } Converting a numerical address to a string: Dealing with IP Addresses • IP Addresses are commonly written as strings (“128.2.35.50”), but programs deal with IP addresses as integers. struct sockaddr_in srv; char *t = inet_ntoa(srv.sin_addr); if(t == 0) { fprintf(stderr, “inet_ntoa failed!n”); exit(1); } Converting strings to numerical address:
  • 31.
    Lecture 3: 9-4-0131 Translating Names to Addresses • Gethostbyname provides interface to DNS • Additional useful calls • Gethostbyaddr – returns hostent given sockaddr_in • Getservbyname • Used to get service description (typically port number) • Returns servent based on name #include <netdb.h> struct hostent *hp; /*ptr to host info for remote*/ struct sockaddr_in peeraddr; char *name = “www.cs.cmu.edu”; peeraddr.sin_family = AF_INET; hp = gethostbyname(name) peeraddr.sin_addr.s_addr = ((struct in_addr*)(hp->h_addr))->s_addr;
  • 32.
    Lecture 3: 9-4-0132 Socket I/O: connect() • connect allows a client to connect to a server... int fd; /* socket descriptor */ struct sockaddr_in srv; /* used by connect() */ /* create the socket */ /* connect: use the Internet address family */ srv.sin_family = AF_INET; /* connect: socket ‘fd’ to port 80 */ srv.sin_port = htons(80); /* connect: connect to IP Address “128.2.35.50” */ srv.sin_addr.s_addr = inet_addr(“128.2.35.50”); if(connect(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) { perror(”connect"); exit(1); }
  • 33.
    Lecture 3: 9-4-0133 Socket I/O: write() • write can be used with a socket int fd; /* socket descriptor */ struct sockaddr_in srv; /* used by connect() */ char buf[512]; /* used by write() */ int nbytes; /* used by write() */ /* 1) create the socket */ /* 2) connect() to the server */ /* Example: A client could “write” a request to a server */ if((nbytes = write(fd, buf, sizeof(buf))) < 0) { perror(“write”); exit(1); }
  • 34.
    Lecture 3: 9-4-0134 Review: TCP Client-Server Interaction socket() bind() listen() accept() write() read() read() TCP Server close() socket() TCP Client connect() write() read() close() connection establishment data request data reply end-of-file notification from UNIX Network Programming Volume 1, figure 4.1
  • 35.
    Lecture 3: 9-4-0135 UDP IP Ethernet Adapter NTP daemon UDP Server Example Port 123 • For example: NTP daemon • What does a UDP server need to do so that a UDP client can connect to it?
  • 36.
    Lecture 3: 9-4-0136 Socket I/O: socket() • The UDP server must create a datagram socket… int fd; /* socket descriptor */ if((fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) { perror(“socket”); exit(1); } • socket returns an integer (socket descriptor) • fd < 0 indicates that an error occurred • AF_INET: associates a socket with the Internet protocol family • SOCK_DGRAM: selects the UDP protocol
  • 37.
    Lecture 3: 9-4-0137 Socket I/O: bind() • A socket can be bound to a port int fd; /* socket descriptor */ struct sockaddr_in srv; /* used by bind() */ /* create the socket */ /* bind: use the Internet address family */ srv.sin_family = AF_INET; /* bind: socket ‘fd’ to port 80*/ srv.sin_port = htons(80); /* bind: a client may connect to any of my addresses */ srv.sin_addr.s_addr = htonl(INADDR_ANY); if(bind(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) { perror("bind"); exit(1); } • Now the UDP server is ready to accept packets…
  • 38.
    Lecture 3: 9-4-0138 Socket I/O: recvfrom() • read does not provide the client’s address to the UDP server int fd; /* socket descriptor */ struct sockaddr_in srv; /* used by bind() */ struct sockaddr_in cli; /* used by recvfrom() */ char buf[512]; /* used by recvfrom() */ int cli_len = sizeof(cli); /* used by recvfrom() */ int nbytes; /* used by recvfrom() */ /* 1) create the socket */ /* 2) bind to the socket */ nbytes = recvfrom(fd, buf, sizeof(buf), 0 /* flags */, (struct sockaddr*) &cli, &cli_len); if(nbytes < 0) { perror(“recvfrom”); exit(1); }
  • 39.
    Lecture 3: 9-4-0139 Socket I/O: recvfrom() continued... nbytes = recvfrom(fd, buf, sizeof(buf), 0 /* flags */, (struct sockaddr*) cli, &cli_len); • The actions performed by recvfrom • returns the number of bytes read (nbytes) • copies nbytes of data into buf • returns the address of the client (cli) • returns the length of cli (cli_len) • don’t worry about flags
  • 40.
    Lecture 3: 9-4-0140 TCP IP Ethernet Adapter 2 UDP Clients UDP Client Example ports • How does a UDP client communicate with a UDP server?
  • 41.
    Lecture 3: 9-4-0141 Socket I/O: sendto() • write is not allowed • Notice that the UDP client does not bind a port number • a port number is dynamically assigned when the first sendto is called int fd; /* socket descriptor */ struct sockaddr_in srv; /* used by sendto() */ /* 1) create the socket */ /* sendto: send data to IP Address “128.2.35.50” port 80 */ srv.sin_family = AF_INET; srv.sin_port = htons(80); srv.sin_addr.s_addr = inet_addr(“128.2.35.50”); nbytes = sendto(fd, buf, sizeof(buf), 0 /* flags */, (struct sockaddr*) &srv, sizeof(srv)); if(nbytes < 0) { perror(“sendto”); exit(1); }
  • 42.
    Lecture 3: 9-4-0142 Review: UDP Client-Server Interaction socket() bind() recvfrom() sendto() UDP Server socket() UDP Client sendto() recvfrom() close() blocks until datagram received from a client data request data reply from UNIX Network Programming Volume 1, figure 8.1
  • 43.
    Lecture 3: 9-4-0143 UDP IP Ethernet Adapter UDP Server The UDP Server Port 2000 Port 3000 • How can the UDP server service multiple ports simultaneously?
  • 44.
    Lecture 3: 9-4-0144 int s1; /* socket descriptor 1 */ int s2; /* socket descriptor 2 */ /* 1) create socket s1 */ /* 2) create socket s2 */ /* 3) bind s1 to port 2000 */ /* 4) bind s2 to port 3000 */ while(1) { recvfrom(s1, buf, sizeof(buf), ...); /* process buf */ recvfrom(s2, buf, sizeof(buf), ...); /* process buf */ } UDP Server: Servicing Two Ports • What problems does this code have?
  • 45.
    Lecture 3: 9-4-0145 Socket I/O: select() int select(int maxfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout); FD_CLR(int fd, fd_set *fds); /* clear the bit for fd in fds */ FD_ISSET(int fd, fd_set *fds); /* is the bit for fd in fds? */ FD_SET(int fd, fd_set *fds); /* turn on the bit for fd in fds */ FD_ZERO(fd_set *fds); /* clear all bits in fds */ • maxfds: number of descriptors to be tested • descriptors (0, 1, ... maxfds-1) will be tested • readfds: a set of fds we want to check if data is available • returns a set of fds ready to read • if input argument is NULL, not interested in that condition • writefds: returns a set of fds ready to write • exceptfds: returns a set of fds with exception conditions
  • 46.
    Lecture 3: 9-4-0146 Socket I/O: select() int select(int maxfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout); struct timeval { long tv_sec; /* seconds / long tv_usec; /* microseconds */ } • timeout • if NULL, wait forever and return only when one of the descriptors is ready for I/O • otherwise, wait up to a fixed amount of time specified by timeout • if we don’t want to wait at all, create a timeout structure with timer value equal to 0 • Refer to the man page for more information
  • 47.
    Lecture 3: 9-4-0147 int s1, s2; /* socket descriptors */ fd_set readfds; /* used by select() */ /* create and bind s1 and s2 */ while(1) { FD_ZERO(&readfds); /* initialize the fd set */ FD_SET(s1, &readfds); /* add s1 to the fd set */ FD_SET(s2, &readfds); /* add s2 to the fd set */ if(select(s2+1, &readfds, 0, 0, 0) < 0) { perror(“select”); exit(1); } if(FD_ISSET(s1, &readfds)) { recvfrom(s1, buf, sizeof(buf), ...); /* process buf */ } /* do the same for s2 */ } Socket I/O: select() • select allows synchronous I/O multiplexing
  • 48.
    Lecture 3: 9-4-0148 TCP IP Ethernet Adapter Web Server Port 80 How can a a web server manage multiple connections simultaneously? Port 8001 More Details About a Web Server
  • 49.
    Lecture 3: 9-4-0149 int fd, next=0; /* original socket */ int newfd[10]; /* new socket descriptors */ while(1) { fd_set readfds; FD_ZERO(&readfds); FD_SET(fd, &readfds); /* Now use FD_SET to initialize other newfd’s that have already been returned by accept() */ select(maxfd+1, &readfds, 0, 0, 0); if(FD_ISSET(fd, &readfds)) { newfd[next++] = accept(fd, ...); } /* do the following for each descriptor newfd[n] */ if(FD_ISSET(newfd[n], &readfds)) { read(newfd[n], buf, sizeof(buf)); /* process data */ } } Socket I/O: select() • Now the web server can support multiple connections...
  • 50.
    Lecture 3: 9-4-0150 A Few Programming Notes: Representing Packets 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Length | Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Type: 4-byte integer Length: 2-byte integer Checksum: 2-byte integer Address: 4-byte IP address
  • 51.
    Lecture 3: 9-4-0151 A Few Programming Notes: Building a Packet in a Buffer struct packet { u_int32_t type; u_int16_t length; u_int16_t checksum; u_int32_t address; }; /* ================================================== */ char buf[1024]; struct packet *pkt; pkt = (struct packet*) buf; pkt->type = htonl(1); pkt->length = htons(2); pkt->checksum = htons(3); pkt->address = htonl(4);
  • 52.
    Lecture 3: 9-4-0152 Socket Programming References • Man page • usage: man <function name> • Textbook • Sections 2.6, 2.7 • demo programs written in Java • Unix Network Programming : Networking APIs: Sockets and XTI (Volume 1) • Section 2, 3, 4, 6, 8 • ultimate socket programming bible!