Section 6.3 
Complex 
Rational 
Expressions 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1
Objective #1 
Simplify complex rational expressions by 
multiplying by 1. 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 2
Simplifying Complex Fractions 
Complex rational expressions, also called complex 
fractions, have numerators or denominators containing one 
or more fractions. 
5 
x 
x 
 
5 
1 1 
 
5 
x 
Woe is me, 
for I am 
complex. 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 3
Complex Rational Expressions 
Simplifying a Complex Rational 
Expression by Multiplying by 1 in the 
Form LCD 
T 
LCD 
1) Find the LCD of all rational expressions within the 
complex rational expression. 
2) Multiply both the numerator and the denominator of the 
complex rational expression by this LCD. 
3) Use the distributive property and multiply each term in the 
numerator and denominator by this LCD. Simplify each term. 
No fractional expressions should remain within the numerator 
and denominator of the main fraction. 
4) If possible, factor and simplify. 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 4
Simplifying Complex Fractions 
x 
 
 
x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 5 
EXAMPLE 
 
Simplify: . 
1 
1 
5 
5 
5 
x 
x 
 
SOLUTION 
The denominators in the complex rational expression are 5 and 
x. The LCD is 5x. Multiply both the numerator and the 
denominator of the complex rational expression by 5x. 
 
 
 
 
 
  
 
x 
5 
  
 
 
x 
x 
x 
x 
x 
x 
1 
1 
5 
5 
5 
5 
1 
1 
5 
5 
5 Multiply the numerator and 
denominator by 5x.
Simplifying Complex Fractions 
 Divide out common factors. 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 6 
x 
   
1 
x x 
x 
x 
x 
x 
1 
5 
5 
5 
5 
5 
5 
5 
   
 
Use the distributive 
property. 
CONTINUED 
x 
   
1 
x x 
x 
x 
x 
x 
1 
5 
5 
5 
5 
5 
5 
5 
   
2 
 
25  
5 
 
x 
x 
Simplify. 
 x  5  x 
 
5 
 
1    
5 
 
x 
Factor and simplify.
Simplifying Complex Fractions 
Simplify. 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 7 
CONTINUED 
5  
1 
 
x 
Simplify. 5   x
Simplifying Complex Fractions 
1 
x x 
 
 
x x x x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 8 
EXAMPLE 
Simplify: . 
6 
1 
6 
 
 
SOLUTION 
The denominators in the complex rational expression are x + 6 
and x. The LCD is (x + 6)x. Multiply both the numerator and 
the denominator of the complex rational expression by (x + 6)x. 
Multiply the numerator and 
denominator by (x + 6)x. 
  
  6 
1 
6 
1 
6 
6 
6 
1 
6 
1 
 
 
 
 
 
 
 
 
 
 x x 
x x
Simplifying Complex Fractions 
Use the distributive 
property. 
CONTINUED 
    
   
 
 6 6 
1 
6 
   
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 9 
6 
1 
6 
  
  
 
x x 
x 
x x 
x 
x x 
Divide out common factors. 
    
 
 6 6 
1 
6 
6 
1 
6 
  
  
 
x x 
x 
x x 
x 
x x 
Simplify. 
 6 
 
x x 
  
  6  
6 
 
x x 
x x 
6 36 
6 
  
x 2  
x Simplify. 

Simplifying Complex Fractions 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 10 
CONTINUED 
6 
 
6x 2  
36x Subtract. 
 
Factor and simplify. 
  
6   
1 
6   
6 
 
x x 
 
1 
 
 6 Simplify. 
 
x x
x x x  
y 
 1  1  1 
 
   
 
 1  1  1 
 
xy  y y x  
y y 
x y x y x y x y 
   
    
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 11 
1a. Simplify: 
2 
2 
1 
1 
x 
y 
x 
y 
 
 
Multiply the numerator and denominator by the LCD of 2. y 
2 
2 
2 
2 2 2 2 2 
2 
2 2 2 
y 
y y y y 
x y x x y 
y 
y y y 
2 
2 2 
( ) 
( )( ) 
Objective #1: Example
x x x  
y 
 1  1  1 
 
   
 
 1  1  1 
 
xy  y y x  
y y 
x y x y x y x y 
   
    
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 12 
1a. Simplify: 
2 
2 
1 
1 
x 
y 
x 
y 
 
 
Multiply the numerator and denominator by the LCD of 2. y 
2 
2 
2 
2 2 2 2 2 
2 
2 2 2 
y 
y y y y 
x y x x y 
y 
y y y 
2 
2 2 
( ) 
( )( ) 
Objective #1: Example
 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 13 
Objective #1: Example 
1b. Simplify: 
1 1 
7 
7 
x  
x 
Multiply the numerator and denominator 
by the LCD of x(x  7). 
1 1 1 1 ( 7) ( 7) 
7 ( 7) 7 7 
7 ( 7) 7 7 ( 7) 
( 7) 7 7 
7 ( 7) 7 ( 7) 7 ( 7) 
1 1 
( 7) ( 7) 
x x x x 
x x x x x x x x 
x x x x 
x x x x 
x x x x x x 
x x x x 
  
   
       
  
     
   
   
 
   
 
 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 14 
Objective #1: Example 
1b. Simplify: 
1 1 
7 
7 
x  
x 
Multiply the numerator and denominator 
by the LCD of x(x  7). 
1 1 1 1 ( 7) ( 7) 
7 ( 7) 7 7 
7 ( 7) 7 7 ( 7) 
( 7) 7 7 
7 ( 7) 7 ( 7) 7 ( 7) 
1 1 
( 7) ( 7) 
x x x x 
x x x x x x x x 
x x x x 
x x x x 
x x x x x x 
x x x x 
  
   
       
  
     
   
   
 
   
 
Objective #2 
Simplify complex rational expressions by dividing. 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 15
Simplifying Complex Fractions 
Simplifying a Complex Rational 
Expression by Dividing 
1) If necessary, add or subtract to get a single rational 
expression in the numerator. 
2) If necessary, add or subtract to get a single rational 
expression in the denominator. 
3) Perform the division indicated by the main fraction 
bar: Invert the denominator of the complex rational 
expression and multiply. 
4) If possible, simplify. 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 16
Simplifying Complex Fractions 
m 
2 2 
m m m 
3 
2 
4 4 
9 
2 2 
m 
2 
m 
m 
m m m 
9  
2 
m m m m 
    
2 2 3 3 
m m 
2  3  
3 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 17 
EXAMPLE 
Simplify: . 
5 6   
6 
 
  
  
 
 
m m 
m m 
SOLUTION 
1) Subtract to get a single rational expression in the 
numerator. 
2 
2 2 4 4  3  3 
  2 
2  
  
 
  
 
 m m m 
  
2 
 
m m 
    
   
     
     
   2 
2 2 
2 
3 3 2 
2 3 3 
3 3 2 
   
 
   
 
   
 
m m m 
m m m 
m m m
Simplifying Complex Fractions 
3 2 
CONTINUED 
m m m m 
    
4 4 2 18 
2 
3 2 2 
m m m 
   
6 4 18 
 
  3   3   
2 
   3   3   
2 
2 
2) Add to get a single rational expression in the denominator. 
3 
m 
m 
2 2   
3 
m m m 
   
 
m m 
9 
3 9 3 2 2 
 
m   m  
m 
m 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 18 
 
m m m 
m m m 
 3 2  2 3 
3 
5 6 6 
 
  
 
  
 
  m m m m 
m m 
m m 
 m 
 
3  
3 
    
  
    
3  3   3 
 
 3 2 3 
2 3 3 
3 2 3 
   
 
   
 
   
 
m m m 
m m m 
m m m 
 3  2  3 
   3  2  
3 
 
   
 
m m m 
m m m
Simplifying Complex Fractions 
3) & 4) Perform the division indicated by the main fraction 
bar: Invert and multiply. If possible, simplify. 
m m m 
   
6 4 18 
 m  3  m  3  m 
 
2 
 
9 
 
m 
 3 2 3 
2 
m 
2 2 
m m m 
m 
5 6 6 
m m m 
   
3 2 3 
m m m 
   
6 4 18 
m m m 
   
3 2 3 
m m m 
   
6 4 18 
m m m 
   
6 4 18 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 19 
3 
4 4 
9 
2 
2 
3 2 
2 2 
   
 
  
 
  
  
 
 
m m m 
m m 
m m 
    
    
9 
3 3 2 
2 2 
3 2 
 
 
   
 
m 
m m m 
    
    
9 
3 3 2 
2 2 
3 2 
 
 
   
 
m 
m m m 
 2 2 
9 
3 2 
  
 
m m 
CONTINUED
Objective #2: Example 
x x 
x x 
x x 
x x 
  
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 20 
2a. Simplify: 
1 1 
 
1 1 
1 1 
1 1 
  
  
 
  
The LCD of the numerator is (x 1)(x 1). 
The LCD of the denominator is (x 1)(x 1).
Objective #2: Example 
x x 
x x 
x x 
x x 
  
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 21 
2a. Simplify: 
1 1 
 
1 1 
1 1 
1 1 
  
  
 
  
The LCD of the numerator is (x 1)(x 1). 
The LCD of the denominator is (x 1)(x 1).
x x x x x x x x x x 
x x x x x x x x x x 
x x x x x x x x x x 
x x x x x x x x x x 
 1  1 (  1)(  1) (  1)(  1)  2  1  2  1 
   
 1  1 (  1)(  1) (  1)(  1) (  1)(  1) (  1)(  1) 
  
 1  1 (  1)(  1) (  1)(  1)    2  1  2  1 
 1  1 (  1)(  1) (  1)(  1)  (  1)(  1) (  1)(  
1) 
x x x x 
     
x x x x 
2 1 2 1 
x x x 
1)( 1) ( 1)( 1) 
x x x x x x x x 
x x x x 
x 
x x x x x x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 22 
Objective #2: Example 
2 2 
2 2 
2 2 
2 1 ( 2 1) 
( 
x 
 
2 2 
2 2 2 2 
2 1 2 1 2 1 2 1 
( 1)( 1) ( 1)( 1) 
4 
( 1)( 1) 4 ( 1)( 1) 4 
2 x 2 2 ( x 1)( x 1) 2 x 2 2 2( x 
2 1) 
( x 1)( x 
1) 
2 
x 
x 
2 1 
     
    
 
          
    
    
    
     
  
 
 
CONTINUED
x x x x x x x x x x 
x x x x x x x x x x 
x x x x x x x x x x 
x x x x x x x x x x 
 1  1 (  1)(  1) (  1)(  1)  2  1  2  1 
   
 1  1 (  1)(  1) (  1)(  1) (  1)(  1) (  1)(  1) 
  
 1  1 (  1)(  1) (  1)(  1)    2  1  2  1 
 1  1 (  1)(  1) (  1)(  1)  (  1)(  1) (  1)(  
1) 
x x x x 
     
x x x x 
2 1 2 1 
x x x 
1)( 1) ( 1)( 1) 
x x x x x x x x 
x x x x 
x 
x x x x x x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 23 
Objective #2: Example 
2 2 
2 2 
2 2 
2 1 ( 2 1) 
( 
x 
 
2 2 
2 2 2 2 
2 1 2 1 2 1 2 1 
( 1)( 1) ( 1)( 1) 
4 
( 1)( 1) 4 ( 1)( 1) 4 
2 x 2 2 ( x 1)( x 1) 2 x 2 2 2( x 
2 1) 
( x 1)( x 
1) 
2 
x 
x 
2 1 
     
    
 
          
    
    
    
     
  
 
 
CONTINUED
x 
 
1  
4 
  
x x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 24 
Objective #2: Example 
2b. Simplify: 
2 
1 2 
1 7 10 
  
Rewrite the expression without negative exponents. 
Then multiply the numerator and denominator 
by the LCD of 2. x
x 
 
1  
4 
  
x x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 25 
Objective #2: Example 
2b. Simplify: 
2 
1 2 
1 7 10 
  
Rewrite the expression without negative exponents. 
Then multiply the numerator and denominator 
by the LCD of 2. x
x x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 26 
Objective #2: Example 
2 2 
1 2 
2 
2 
2 
2 2 2 
2 2 2 
2 
2 2 
2 
2 
4 
1 
1 4 
1 7 10 7 10 1 
4 4 
1 1 
7 10 7 10 1 1 
4 ( 2)( 2) 2 
7 10 ( 5)( 2) 5 
x x 
x x 
x 
x 
x x x 
x x x 
x x x x x 
x x x x 
x x x x x 
 
  
 
 
 
    
 
   
   
       
    
   
     
CONTINUED
x x 
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 27 
Objective #2: Example 
2 2 
1 2 
2 
2 
2 
2 2 2 
2 2 2 
2 
2 2 
2 
2 
4 
1 
1 4 
1 7 10 7 10 1 
4 4 
1 1 
7 10 7 10 1 1 
4 ( 2)( 2) 2 
7 10 ( 5)( 2) 5 
x x 
x x 
x 
x 
x x x 
x x x 
x x x x x 
x x x x 
x x x x x 
 
  
 
 
 
    
 
   
   
       
    
   
     
CONTINUED

Lecture complex fractions

  • 1.
    Section 6.3 Complex Rational Expressions Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1
  • 2.
    Objective #1 Simplifycomplex rational expressions by multiplying by 1. Copyright © 2013, 2009, 2006 Pearson Education, Inc. 2
  • 3.
    Simplifying Complex Fractions Complex rational expressions, also called complex fractions, have numerators or denominators containing one or more fractions. 5 x x  5 1 1  5 x Woe is me, for I am complex. Copyright © 2013, 2009, 2006 Pearson Education, Inc. 3
  • 4.
    Complex Rational Expressions Simplifying a Complex Rational Expression by Multiplying by 1 in the Form LCD T LCD 1) Find the LCD of all rational expressions within the complex rational expression. 2) Multiply both the numerator and the denominator of the complex rational expression by this LCD. 3) Use the distributive property and multiply each term in the numerator and denominator by this LCD. Simplify each term. No fractional expressions should remain within the numerator and denominator of the main fraction. 4) If possible, factor and simplify. Copyright © 2013, 2009, 2006 Pearson Education, Inc. 4
  • 5.
    Simplifying Complex Fractions x   x Copyright © 2013, 2009, 2006 Pearson Education, Inc. 5 EXAMPLE  Simplify: . 1 1 5 5 5 x x  SOLUTION The denominators in the complex rational expression are 5 and x. The LCD is 5x. Multiply both the numerator and the denominator of the complex rational expression by 5x.         x 5     x x x x x x 1 1 5 5 5 5 1 1 5 5 5 Multiply the numerator and denominator by 5x.
  • 6.
    Simplifying Complex Fractions  Divide out common factors. Copyright © 2013, 2009, 2006 Pearson Education, Inc. 6 x    1 x x x x x x 1 5 5 5 5 5 5 5     Use the distributive property. CONTINUED x    1 x x x x x x 1 5 5 5 5 5 5 5    2  25  5  x x Simplify.  x  5  x  5  1    5  x Factor and simplify.
  • 7.
    Simplifying Complex Fractions Simplify. Copyright © 2013, 2009, 2006 Pearson Education, Inc. 7 CONTINUED 5  1  x Simplify. 5   x
  • 8.
    Simplifying Complex Fractions 1 x x   x x x x Copyright © 2013, 2009, 2006 Pearson Education, Inc. 8 EXAMPLE Simplify: . 6 1 6   SOLUTION The denominators in the complex rational expression are x + 6 and x. The LCD is (x + 6)x. Multiply both the numerator and the denominator of the complex rational expression by (x + 6)x. Multiply the numerator and denominator by (x + 6)x.     6 1 6 1 6 6 6 1 6 1           x x x x
  • 9.
    Simplifying Complex Fractions Use the distributive property. CONTINUED          6 6 1 6    Copyright © 2013, 2009, 2006 Pearson Education, Inc. 9 6 1 6      x x x x x x x x Divide out common factors.       6 6 1 6 6 1 6      x x x x x x x x Simplify.  6  x x     6  6  x x x x 6 36 6   x 2  x Simplify. 
  • 10.
    Simplifying Complex Fractions Copyright © 2013, 2009, 2006 Pearson Education, Inc. 10 CONTINUED 6  6x 2  36x Subtract.  Factor and simplify.   6   1 6   6  x x  1   6 Simplify.  x x
  • 11.
    x x x y  1  1  1       1  1  1  xy  y y x  y y x y x y x y x y        Copyright © 2013, 2009, 2006 Pearson Education, Inc. 11 1a. Simplify: 2 2 1 1 x y x y   Multiply the numerator and denominator by the LCD of 2. y 2 2 2 2 2 2 2 2 2 2 2 2 y y y y y x y x x y y y y y 2 2 2 ( ) ( )( ) Objective #1: Example
  • 12.
    x x x y  1  1  1       1  1  1  xy  y y x  y y x y x y x y x y        Copyright © 2013, 2009, 2006 Pearson Education, Inc. 12 1a. Simplify: 2 2 1 1 x y x y   Multiply the numerator and denominator by the LCD of 2. y 2 2 2 2 2 2 2 2 2 2 2 2 y y y y y x y x x y y y y y 2 2 2 ( ) ( )( ) Objective #1: Example
  • 13.
     Copyright ©2013, 2009, 2006 Pearson Education, Inc. 13 Objective #1: Example 1b. Simplify: 1 1 7 7 x  x Multiply the numerator and denominator by the LCD of x(x  7). 1 1 1 1 ( 7) ( 7) 7 ( 7) 7 7 7 ( 7) 7 7 ( 7) ( 7) 7 7 7 ( 7) 7 ( 7) 7 ( 7) 1 1 ( 7) ( 7) x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x                               
  • 14.
     Copyright ©2013, 2009, 2006 Pearson Education, Inc. 14 Objective #1: Example 1b. Simplify: 1 1 7 7 x  x Multiply the numerator and denominator by the LCD of x(x  7). 1 1 1 1 ( 7) ( 7) 7 ( 7) 7 7 7 ( 7) 7 7 ( 7) ( 7) 7 7 7 ( 7) 7 ( 7) 7 ( 7) 1 1 ( 7) ( 7) x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x                               
  • 15.
    Objective #2 Simplifycomplex rational expressions by dividing. Copyright © 2013, 2009, 2006 Pearson Education, Inc. 15
  • 16.
    Simplifying Complex Fractions Simplifying a Complex Rational Expression by Dividing 1) If necessary, add or subtract to get a single rational expression in the numerator. 2) If necessary, add or subtract to get a single rational expression in the denominator. 3) Perform the division indicated by the main fraction bar: Invert the denominator of the complex rational expression and multiply. 4) If possible, simplify. Copyright © 2013, 2009, 2006 Pearson Education, Inc. 16
  • 17.
    Simplifying Complex Fractions m 2 2 m m m 3 2 4 4 9 2 2 m 2 m m m m m 9  2 m m m m     2 2 3 3 m m 2  3  3 Copyright © 2013, 2009, 2006 Pearson Education, Inc. 17 EXAMPLE Simplify: . 5 6   6        m m m m SOLUTION 1) Subtract to get a single rational expression in the numerator. 2 2 2 4 4  3  3   2 2         m m m   2  m m                     2 2 2 2 3 3 2 2 3 3 3 3 2             m m m m m m m m m
  • 18.
    Simplifying Complex Fractions 3 2 CONTINUED m m m m     4 4 2 18 2 3 2 2 m m m    6 4 18    3   3   2    3   3   2 2 2) Add to get a single rational expression in the denominator. 3 m m 2 2   3 m m m     m m 9 3 9 3 2 2  m   m  m m Copyright © 2013, 2009, 2006 Pearson Education, Inc. 18  m m m m m m  3 2  2 3 3 5 6 6          m m m m m m m m  m  3  3           3  3   3   3 2 3 2 3 3 3 2 3             m m m m m m m m m  3  2  3    3  2  3      m m m m m m
  • 19.
    Simplifying Complex Fractions 3) & 4) Perform the division indicated by the main fraction bar: Invert and multiply. If possible, simplify. m m m    6 4 18  m  3  m  3  m  2  9  m  3 2 3 2 m 2 2 m m m m 5 6 6 m m m    3 2 3 m m m    6 4 18 m m m    3 2 3 m m m    6 4 18 m m m    6 4 18 Copyright © 2013, 2009, 2006 Pearson Education, Inc. 19 3 4 4 9 2 2 3 2 2 2              m m m m m m m         9 3 3 2 2 2 3 2       m m m m         9 3 3 2 2 2 3 2       m m m m  2 2 9 3 2    m m CONTINUED
  • 20.
    Objective #2: Example x x x x x x x x   Copyright © 2013, 2009, 2006 Pearson Education, Inc. 20 2a. Simplify: 1 1  1 1 1 1 1 1        The LCD of the numerator is (x 1)(x 1). The LCD of the denominator is (x 1)(x 1).
  • 21.
    Objective #2: Example x x x x x x x x   Copyright © 2013, 2009, 2006 Pearson Education, Inc. 21 2a. Simplify: 1 1  1 1 1 1 1 1        The LCD of the numerator is (x 1)(x 1). The LCD of the denominator is (x 1)(x 1).
  • 22.
    x x xx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x  1  1 (  1)(  1) (  1)(  1)  2  1  2  1     1  1 (  1)(  1) (  1)(  1) (  1)(  1) (  1)(  1)    1  1 (  1)(  1) (  1)(  1)    2  1  2  1  1  1 (  1)(  1) (  1)(  1)  (  1)(  1) (  1)(  1) x x x x      x x x x 2 1 2 1 x x x 1)( 1) ( 1)( 1) x x x x x x x x x x x x x x x x x x x Copyright © 2013, 2009, 2006 Pearson Education, Inc. 22 Objective #2: Example 2 2 2 2 2 2 2 1 ( 2 1) ( x  2 2 2 2 2 2 2 1 2 1 2 1 2 1 ( 1)( 1) ( 1)( 1) 4 ( 1)( 1) 4 ( 1)( 1) 4 2 x 2 2 ( x 1)( x 1) 2 x 2 2 2( x 2 1) ( x 1)( x 1) 2 x x 2 1                                          CONTINUED
  • 23.
    x x xx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x  1  1 (  1)(  1) (  1)(  1)  2  1  2  1     1  1 (  1)(  1) (  1)(  1) (  1)(  1) (  1)(  1)    1  1 (  1)(  1) (  1)(  1)    2  1  2  1  1  1 (  1)(  1) (  1)(  1)  (  1)(  1) (  1)(  1) x x x x      x x x x 2 1 2 1 x x x 1)( 1) ( 1)( 1) x x x x x x x x x x x x x x x x x x x Copyright © 2013, 2009, 2006 Pearson Education, Inc. 23 Objective #2: Example 2 2 2 2 2 2 2 1 ( 2 1) ( x  2 2 2 2 2 2 2 1 2 1 2 1 2 1 ( 1)( 1) ( 1)( 1) 4 ( 1)( 1) 4 ( 1)( 1) 4 2 x 2 2 ( x 1)( x 1) 2 x 2 2 2( x 2 1) ( x 1)( x 1) 2 x x 2 1                                          CONTINUED
  • 24.
    x  1 4   x x Copyright © 2013, 2009, 2006 Pearson Education, Inc. 24 Objective #2: Example 2b. Simplify: 2 1 2 1 7 10   Rewrite the expression without negative exponents. Then multiply the numerator and denominator by the LCD of 2. x
  • 25.
    x  1 4   x x Copyright © 2013, 2009, 2006 Pearson Education, Inc. 25 Objective #2: Example 2b. Simplify: 2 1 2 1 7 10   Rewrite the expression without negative exponents. Then multiply the numerator and denominator by the LCD of 2. x
  • 26.
    x x Copyright© 2013, 2009, 2006 Pearson Education, Inc. 26 Objective #2: Example 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 1 1 4 1 7 10 7 10 1 4 4 1 1 7 10 7 10 1 1 4 ( 2)( 2) 2 7 10 ( 5)( 2) 5 x x x x x x x x x x x x x x x x x x x x x x x x x x                                     CONTINUED
  • 27.
    x x Copyright© 2013, 2009, 2006 Pearson Education, Inc. 27 Objective #2: Example 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 1 1 4 1 7 10 7 10 1 4 4 1 1 7 10 7 10 1 1 4 ( 2)( 2) 2 7 10 ( 5)( 2) 5 x x x x x x x x x x x x x x x x x x x x x x x x x x                                     CONTINUED