CS335- Discrete Mathematics




                              1
Agenda
   Course policies

   Quick Overview




                      2
Grading Scheme

   Quize + Assignments 12
   Midterm             18
   Final               30

   Total              60



                             3
Recommended Books
   “Discrete Mathematics with Application” by Susana.

   K.H. Rosen, Discrete Mathematics and its
    Applications, (5th Edition), McGraw Hill 1999.

   “Discrete Mathematical Structures” by B. Kalman
    Prentice Hall (1996).




                                                         4
Grading (cont’d)

   Exams/Quizzes can be from the following:

       Current lecture
       Material covered in any previous lecture
       Reading assignments
       From any assigned homework.



                                                   5
Academic Dishonesty
   Any form of cheating on
    exams/assignments/quizzes is subject to a penalty.

   Assignment Copy may lead to zero in all
    assignments.




                                                         6
Introduction
   Discrete mathematics describes processes
    that consist of a sequence of individual
    steps.
   This contrasts with calculus, which
    describes processes that change in a
    continuous fashion.
   Whereas the ideas of calculus were
    fundamental to the science and technology
    of the industrial revolution, the ideas of
    discrete mathematics underlie the science
    and technology of the computer age
                                                 7
Discrete Continuous – 5a




                           8
What Is Discrete Mathematics?

   Definition Discrete Mathematics
       Discrete Mathematics is a collection of
        mathematical topics that examine and
        use finite or countably infinite
        mathematical objects.




                                                  9
                                                  9
Quick Overview - Topics
   Logic and Sets
       Make notions you’re already used to from
        programming a little more rigorous (operators)
       Fundamental to all mathematical disciplines
       Useful for digital circuits, hardware design
   Elementary Number Theory
       Get to rediscover the old reliable number and
        find out some surprising facts
       Very useful in crypto-systems
                                                         10
Quick Overview - Topics
   Proofs (especially induction)
       If you want to debug a program beyond a
        doubt, prove that it’s bug-free
       Proof-theory has recently also been shown to
        be useful in discovering bugs in pre-production
        hardware
   Counting and Combinatorics
       Compute your odds of winning lottery
       Important for predicting how long certain
        computer program will take to finish
       Useful in designing algorithms
                                                          11
                                                          11
Quick Overview - Topics
   Graph Theory
       Many clever data-structures for organizing
        information and making programs highly
        efficient are based on graph theory
       Very useful in describing problems in
           Databases
           Operating Systems
           Networks
           EVERY CS DISCIPLINE!!!!
   Trees
       Data structures for organizing information and   12


        making programs efficient
What is of Integers & Real
  Set Discrete Mathematics
              –6
        Numbers – 5b




        CS-708      13
Logic – 7




CS-708       14
Statement – 8a




 CS-708          15
Examples – 8b




 CS-708         16
Truth Values of Propositions –
             8c




         CS-708        17
Examples – 9a




 CS-708         18
Statements & Truth Values –
            9b
                    T
                    T
                    F
                    F




        CS-708          19
Example – 10b




 CS-708         20
Understanding Statements –
           11c




        CS-708      21
Example – 11b




 CS-708         22
Compound Statement – 12a




       CS-708      23
Symbolic Representation –
          13a




       CS-708       24
Logical Connectives – 14a




       CS-708       25
Examples – 14b




  CS-708         26
Translating from English to
      Symbols – 15




        CS-708       27
Translating from English to
     Symbols – 16a




        CS-708       28
Translating from English to
      Symbols – 16




        CS-708       29
Translating from English to
     Symbols – 17a




        CS-708       30
Translating from English to
     Symbols – 17b




        CS-708       31
Negation – 19




 CS-708         32
Truth Table for ~p – 20




      CS-708       33
Conjunction – 21




  CS-708       34
Truth Table for p ^ q – 22




       CS-708        35
Disjunction – 23




  CS-708           36
Truth Table for p q – 15




      CS-708        37
Truth Table




CS-708        38
Truth Table for ~p^q - 2




      CS-708        39
Truth Table for ~p^q – 2a




       CS-708       40
Truth Table for ~p^q – 2b




      CS-708        41
Truth Table for ~p^q – 2c




       CS-708       42
~p ^ (q v~ r) – (2 - 3a)




           CS-708          43
~p ^ (q v~ r) – 2 - 3b




           CS-708        44
~p ^ (q v~ r) – 2 - 3c




           CS-708        45
~p ^ (q v~ r) – 2 - 3d




           CS-708        46
Truth Table for ~p (p v~ q) – 2 -
                   v
                3e




          CS-708         47
Truth Table for (pvq) ^~ (p^q) – 2 - 4a




             CS-708          48
Truth Table for (pvq) ^~ (p^q) – 2 -
                 4c




           CS-708          49
Truth Table for (pvq) ^~ (p^q) – 2 -
                      v    v
                 4e




           CS-708          50
Truth Table for (pvq) ^~ (p^q) – 2
                -4f




          CS-708          51
Exclusive OR – 2 - 5




    CS-708        52
Symbols for Exclusive OR – 2 - 5a




          CS-708         53
Logical Equivalence – 2 - 6




        CS-708       54
Double Negation ~(~p) ≡ p – 2 - 7




          CS-708         55
Examples – 2 - 12




   CS-708       56
Example – 2 - 17c




   CS-708       57
Example – 2 - 17e




   CS-708       58
De Morgan’s Laws – 2 - 9




      CS-708       59
De Morgan’s Laws – 2 - 9a




       CS-708       60
Proof – 2 - 16




 CS-708          61
Proof – 2 - 16d




 CS-708           62
Application – 2 - 10




    CS-708        63
Exercise – 2 - 19




   CS-708       64
Tautology – 2 - 21




   CS-708        65
Example – 2 - 21a




   CS-708       66
Contradiction – 2 - 22




     CS-708        67
Example – 2 - 22a




   CS-708       68
Exercise – 2 - 23




   CS-708       69
Exercise – 2 - 24




   CS-708       70
Laws of Logic – 2 - 25




     CS-708        71
Laws of Logic – 2 - 25a




      CS-708       72
Laws of Logic – 2 - 25b




      CS-708       73
Laws of Logic – 2 - 25c




      CS-708       74
Laws of Logic – 2 - 25d




      CS-708       75
Application - 1




  CS-708          76
Example - 2




CS-708        77
Simplifying a Statement – 3




        CS-708       78
Distributive Law in Reverse – 4




         CS-708        79
Exercise – 5




CS-708         80
Exercise - 5a




 CS-708         81

Discrete lecture 01