Relations & Functions
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1
                   y
                        x

                       x
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1
                   y
                        x

                       x
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1
                   y
                        x

                       x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x

                       x                         x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x

                       x                         x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x
                                                      function
                       x                         x
              function
Relations & Functions
A relation is a set of any ordered pairs that are related in any way.
e.g. x 2  y 2  25
A function is a relation such that for any x value, there is a maximum
of one y value.
 e.g. y  x 2
Straight Line Test
If a straight line is drawn parallel to the y axis, it will only cross a
function once, if at all.
          y            1           y                   x  y2
                   y
                        x
                                                      function
                       x                          x
                                                note: actually two functions 
              function                                                       
                                                y  x and y   x 
Domain and Range y  f  x 
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
          To find a domain, look for values x could not be.
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
           To find a domain, look for values x could not be.
e.g.
       y             x  y2


                    x
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
             To find a domain, look for values x could not be.
e.g.
         y             x  y2


                       x


       domain: x  0
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
             To find a domain, look for values x could not be.
e.g.
         y             x  y2                       y            y  f  x
                                                     3
                                                      1
                       x                                   2     x


       domain: x  0
Domain and Range y  f  x 
Domain: All possible values of x that can be substituted into the
        function/relation.
        “Domain is the INPUT of the function/relation”
             To find a domain, look for values x could not be.
e.g.
         y             x  y2                       y            y  f  x
                                                     3
                                                      1
                       x                                   2     x


       domain: x  0                        domain: x  0 and x  2
Things to look for:
1. Fractions:
Things to look for:
1. Fractions: bottom of fraction  0
Things to look for:
1. Fractions: bottom of fraction  0
               1
e.g.  i  y 
               x
Things to look for:
1. Fractions: bottom of fraction  0
               1
e.g.  i  y 
               x
           x0
Things to look for:
1. Fractions: bottom of fraction  0
               1
e.g.  i  y 
               x
           x0
domain: all real x except x  0
Things to look for:
1. Fractions: bottom of fraction  0
               1                                      1
e.g.  i  y                           ii  y 
               x                                    x2 1
           x0
domain: all real x except x  0
Things to look for:
1. Fractions: bottom of fraction  0
               1                                      1
e.g.  i  y                           ii  y 
               x                                    x2 1
           x0                                 x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
              4x    3
  iii  y      
             x 1 7  x
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
              4x    3
  iii  y      
             x 1 7  x

    x 1  0
       x 1
Things to look for:
1. Fractions: bottom of fraction  0
               1                                          1
e.g.  i  y                               ii  y 
               x                                        x2 1
           x0                                     x2 1  0
domain: all real x except x  0
                                                    x2  1
                                                     x  1
                                       domain: all real x except x  1
              4x    3
  iii  y      
             x 1 7  x

    x 1  0       7x  0
       x 1               x7
Things to look for:
1. Fractions: bottom of fraction  0
               1                                           1
e.g.  i  y                                ii  y 
               x                                         x2 1
           x0                                      x2 1  0
domain: all real x except x  0
                                                     x2  1
                                                      x  1
                                        domain: all real x except x  1
              4x    3
  iii  y      
             x 1 7  x

    x 1  0       7x  0
       x 1               x7
 domain: all real x except x  1 or 7
2. Root Signs:
2. Root Signs: you can’t find the square root of a negative number.
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2
         4  x2  0
            x2  4
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2
       4  x2  0
          x2  4
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0
          x2  4
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0
          x2  4                            x  3
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0        5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5

               1
   iii  y 
              x2
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5

               1
   iii  y 
              x2

     x20
2. Root Signs: you can’t find the square root of a negative number.

e.g.  i  y  4  x 2                 ii  y  x  3  5  x
       4  x2  0                         x3 0       5 x  0
          x2  4                            x  3         x5
   domain:  2  x  2                        domain:  3  x  5

               1
   iii  y 
              x2

     x20
     domain: x  2
Range: All possible y values obtained by substituting in the domain
Range: All possible y values obtained by substituting in the domain
         “Range is the OUTPUT of the function/relation”
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y             x  y2


                    x
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y                x  y2


                        x


    range: all real y
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y                x  y2                  y            y  f  x
                                                 3
                                                  1
                        x                             2     x


    range: all real y
Range: All possible y values obtained by substituting in the domain
           “Range is the OUTPUT of the function/relation”

e.g.
       y                x  y2                  y            y  f  x
                                                 3
                                                  1
                        x                             2     x


    range: all real y                     range: y  1 and y  3
Things to look for:
1. Maximum/Minimum values:
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2
           range: y  0
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2
        y  50
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2
        y  50
        range: y  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2                    iv  y  x  2
        y  50
        range: y  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                             are always  0
e.g.  i  y  x 2                      ii  y  x 2  3
           range: y  0                       y  03
                                          range: y  3

   iii  y  5  x 2                    iv  y  x  2
        y  50                              range: y  0
        range: y  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                                   are always  0
e.g.  i  y  x 2                            ii  y  x 2  3
           range: y  0                             y  03
                                                range: y  3

   iii  y  5  x 2                          iv  y  x  2
        y  50                                    range: y  0
        range: y  5
                          v y  x  2  5
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                                   are always  0
e.g.  i  y  x 2                            ii  y  x 2  3
           range: y  0                             y  03
                                                range: y  3

   iii  y  5  x 2                          iv  y  x  2
        y  50                                    range: y  0
        range: y  5
                          v y  x  2  5
                                y  05
Things to look for:
1. Maximum/Minimum values: even powers and absolute values
                                   are always  0
e.g.  i  y  x 2                            ii  y  x 2  3
           range: y  0                             y  03
                                                range: y  3

   iii  y  5  x 2                          iv  y  x  2
        y  50                                    range: y  0
        range: y  5
                          v y  x  2  5
                                y  05
                            range: y  5
2. Restrictions on Domain:
2. Restrictions on Domain: sub in endpoints and centre of domain
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
  domain:  2  x  2
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2      when x  2, y  4  22
  domain:  2  x  2               0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x 2
                      when x  2, y  4  22    when x  0, y  4  02
  domain:  2  x  2               0                        2
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                     2
e.g. y  4  x 2


  domain:  2  x  2               0                     2
                                          range: 0  y  2
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                     2
e.g. y  4  x  2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions:
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x  2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x     2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
               1
e.g.  i  y 
               x
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x     2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
               1
e.g.  i  y 
               x
           y0
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x   2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
               1
e.g.  i  y 
               x
           y0
 range: all real y except y  0
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x  2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0
 range: all real y except y  0
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x  2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x  2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x    2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

            x7
 iii  y 
            x4
2. Restrictions on Domain: sub in endpoints and centre of domain
                      when x  2, y  4  22 when x  0, y  4  0
                                                                           2
e.g. y  4  x    2


  domain:  2  x  2               0                     2
                                          range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

            x7                        1
 iii  y                         x4 x7
            x4
                                       x4
                                         3
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x    2
                         when x  2, y  4  22     when x  0, y  4  02
  domain:  2  x  2                  0                         2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

            x7                        1
 iii  y                         x4 x7
            x4
              3                        x4
      y  1                             3
             x4
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x    2
                         when x  2, y  4  22     when x  0, y  4  02
  domain:  2  x  2                  0                         2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

            x7                        1
 iii  y                         x4 x7
            x4
               3                       x4
      y  1                             3
             x4
      y  1 0
2. Restrictions on Domain: sub in endpoints and centre of domain

e.g. y  4  x    2
                         when x  2, y  4  22     when x  0, y  4  02
  domain:  2  x  2                  0                         2
                                               range: 0  y  2

3. Fractions: If you have a constant on the top of the fraction, fraction  0
                                                             1
e.g.  i  y 
               1                               ii  y  5 
               x                                             x
           y0                                       y  50
 range: all real y except y  0               range: all real y except y  5

            x7                        1
 iii  y                         x4 x7
            x4
               3                       x4
      y  1                             3
             x4
      y  1 0
 range: all real y except y  1
Function Notation
Function Notation
e.g. f  x   3 x 2  4
Function Notation
e.g. f  x   3 x 2  4
  a) f  5
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4
                    2
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4
                    2


             75  4
             79
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4   b) f  a 
                    2


             75  4
             79
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4   b) f  a   3a 2  4
                    2


             75  4
             79
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4    b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x 
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4                          b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x   3  x  h   4   3x 2  4 
                                      2
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4                          b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x   3  x  h   4   3x 2  4 
                                       2


                            3 x 2  6 xh  3h 2  4  3 x 2  4
                            6 xh  3h 2
Function Notation
e.g. f  x   3 x 2  4
  a) f  5  3  5  4                          b) f  a   3a 2  4
                    2


             75  4
             79
 c) f  x  h   f  x   3  x  h   4   3x 2  4 
                                       2


                            3 x 2  6 xh  3h 2  4  3 x 2  4
                            6 xh  3h 2



             Exercise 2F; 1, 2, 3acdfi, 4begh, 5a, 6, 7a, 8abd,
                       10abdf, 11aceh, 12bd, 14*

11 X1 T02 06 relations and functions (2010)

  • 1.
  • 2.
    Relations & Functions Arelation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25
  • 3.
    Relations & Functions Arelation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2
  • 4.
    Relations & Functions Arelation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all.
  • 5.
    Relations & Functions Arelation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x x
  • 6.
    Relations & Functions Arelation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x x
  • 7.
    Relations & Functions Arelation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x x function
  • 8.
    Relations & Functions Arelation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x x x function
  • 9.
    Relations & Functions Arelation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x x x function
  • 10.
    Relations & Functions Arelation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x function x x function
  • 11.
    Relations & Functions Arelation is a set of any ordered pairs that are related in any way. e.g. x 2  y 2  25 A function is a relation such that for any x value, there is a maximum of one y value. e.g. y  x 2 Straight Line Test If a straight line is drawn parallel to the y axis, it will only cross a function once, if at all. y 1 y x  y2 y x function x x  note: actually two functions  function    y  x and y   x 
  • 12.
    Domain and Rangey  f  x 
  • 13.
    Domain and Rangey  f  x  Domain: All possible values of x that can be substituted into the function/relation.
  • 14.
    Domain and Rangey  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation”
  • 15.
    Domain and Rangey  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be.
  • 16.
    Domain and Rangey  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 x
  • 17.
    Domain and Rangey  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 x domain: x  0
  • 18.
    Domain and Rangey  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 y y  f  x 3 1 x 2 x domain: x  0
  • 19.
    Domain and Rangey  f  x  Domain: All possible values of x that can be substituted into the function/relation. “Domain is the INPUT of the function/relation” To find a domain, look for values x could not be. e.g. y x  y2 y y  f  x 3 1 x 2 x domain: x  0 domain: x  0 and x  2
  • 20.
    Things to lookfor: 1. Fractions:
  • 21.
    Things to lookfor: 1. Fractions: bottom of fraction  0
  • 22.
    Things to lookfor: 1. Fractions: bottom of fraction  0 1 e.g.  i  y  x
  • 23.
    Things to lookfor: 1. Fractions: bottom of fraction  0 1 e.g.  i  y  x x0
  • 24.
    Things to lookfor: 1. Fractions: bottom of fraction  0 1 e.g.  i  y  x x0 domain: all real x except x  0
  • 25.
    Things to lookfor: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 domain: all real x except x  0
  • 26.
    Things to lookfor: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1
  • 27.
    Things to lookfor: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1
  • 28.
    Things to lookfor: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x
  • 29.
    Things to lookfor: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x x 1  0 x 1
  • 30.
    Things to lookfor: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x x 1  0 7x  0 x 1 x7
  • 31.
    Things to lookfor: 1. Fractions: bottom of fraction  0 1 1 e.g.  i  y   ii  y  x x2 1 x0 x2 1  0 domain: all real x except x  0 x2  1 x  1 domain: all real x except x  1 4x 3  iii  y   x 1 7  x x 1  0 7x  0 x 1 x7 domain: all real x except x  1 or 7
  • 32.
  • 33.
    2. Root Signs:you can’t find the square root of a negative number.
  • 34.
    2. Root Signs:you can’t find the square root of a negative number. e.g.  i  y  4  x 2
  • 35.
    2. Root Signs:you can’t find the square root of a negative number. e.g.  i  y  4  x 2 4  x2  0 x2  4
  • 36.
    2. Root Signs:you can’t find the square root of a negative number. e.g.  i  y  4  x 2 4  x2  0 x2  4 domain:  2  x  2
  • 37.
    2. Root Signs:you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x2  4 domain:  2  x  2
  • 38.
    2. Root Signs:you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 x2  4 x  3 domain:  2  x  2
  • 39.
    2. Root Signs:you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2
  • 40.
    2. Root Signs:you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5
  • 41.
    2. Root Signs:you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5 1  iii  y  x2
  • 42.
    2. Root Signs:you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5 1  iii  y  x2 x20
  • 43.
    2. Root Signs:you can’t find the square root of a negative number. e.g.  i  y  4  x 2  ii  y  x  3  5  x 4  x2  0 x3 0 5 x  0 x2  4 x  3 x5 domain:  2  x  2 domain:  3  x  5 1  iii  y  x2 x20 domain: x  2
  • 44.
    Range: All possibley values obtained by substituting in the domain
  • 45.
    Range: All possibley values obtained by substituting in the domain “Range is the OUTPUT of the function/relation”
  • 46.
    Range: All possibley values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 x
  • 47.
    Range: All possibley values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 x range: all real y
  • 48.
    Range: All possibley values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 y y  f  x 3 1 x 2 x range: all real y
  • 49.
    Range: All possibley values obtained by substituting in the domain “Range is the OUTPUT of the function/relation” e.g. y x  y2 y y  f  x 3 1 x 2 x range: all real y range: y  1 and y  3
  • 50.
    Things to lookfor: 1. Maximum/Minimum values:
  • 51.
    Things to lookfor: 1. Maximum/Minimum values: even powers and absolute values are always  0
  • 52.
    Things to lookfor: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2
  • 53.
    Things to lookfor: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2 range: y  0
  • 54.
    Things to lookfor: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0
  • 55.
    Things to lookfor: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03
  • 56.
    Things to lookfor: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3
  • 57.
    Things to lookfor: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2
  • 58.
    Things to lookfor: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2 y  50
  • 59.
    Things to lookfor: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2 y  50 range: y  5
  • 60.
    Things to lookfor: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  5
  • 61.
    Things to lookfor: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5
  • 62.
    Things to lookfor: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5 v y  x  2  5
  • 63.
    Things to lookfor: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5 v y  x  2  5 y  05
  • 64.
    Things to lookfor: 1. Maximum/Minimum values: even powers and absolute values are always  0 e.g.  i  y  x 2  ii  y  x 2  3 range: y  0 y  03 range: y  3  iii  y  5  x 2  iv  y  x  2 y  50 range: y  0 range: y  5 v y  x  2  5 y  05 range: y  5
  • 65.
  • 66.
    2. Restrictions onDomain: sub in endpoints and centre of domain
  • 67.
    2. Restrictions onDomain: sub in endpoints and centre of domain e.g. y  4  x 2
  • 68.
    2. Restrictions onDomain: sub in endpoints and centre of domain e.g. y  4  x 2 domain:  2  x  2
  • 69.
    2. Restrictions onDomain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 domain:  2  x  2 0
  • 70.
    2. Restrictions onDomain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2
  • 71.
    2. Restrictions onDomain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2
  • 72.
    2. Restrictions onDomain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions:
  • 73.
    2. Restrictions onDomain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0
  • 74.
    2. Restrictions onDomain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  x
  • 75.
    2. Restrictions onDomain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  x y0
  • 76.
    2. Restrictions onDomain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  x y0 range: all real y except y  0
  • 77.
    2. Restrictions onDomain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 range: all real y except y  0
  • 78.
    2. Restrictions onDomain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0
  • 79.
    2. Restrictions onDomain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5
  • 80.
    2. Restrictions onDomain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7  iii  y  x4
  • 81.
    2. Restrictions onDomain: sub in endpoints and centre of domain when x  2, y  4  22 when x  0, y  4  0 2 e.g. y  4  x 2 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 x4 3
  • 82.
    2. Restrictions onDomain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 3 x4 y  1 3 x4
  • 83.
    2. Restrictions onDomain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 3 x4 y  1 3 x4 y  1 0
  • 84.
    2. Restrictions onDomain: sub in endpoints and centre of domain e.g. y  4  x 2 when x  2, y  4  22 when x  0, y  4  02 domain:  2  x  2 0 2 range: 0  y  2 3. Fractions: If you have a constant on the top of the fraction, fraction  0 1 e.g.  i  y  1  ii  y  5  x x y0 y  50 range: all real y except y  0 range: all real y except y  5 x7 1  iii  y  x4 x7 x4 3 x4 y  1 3 x4 y  1 0 range: all real y except y  1
  • 85.
  • 86.
    Function Notation e.g. f x   3 x 2  4
  • 87.
    Function Notation e.g. f x   3 x 2  4 a) f  5
  • 88.
    Function Notation e.g. f x   3 x 2  4 a) f  5  3  5  4 2
  • 89.
    Function Notation e.g. f x   3 x 2  4 a) f  5  3  5  4 2  75  4  79
  • 90.
    Function Notation e.g. f x   3 x 2  4 a) f  5  3  5  4 b) f  a  2  75  4  79
  • 91.
    Function Notation e.g. f x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79
  • 92.
    Function Notation e.g. f x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x 
  • 93.
    Function Notation e.g. f x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x   3  x  h   4   3x 2  4  2
  • 94.
    Function Notation e.g. f x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x   3  x  h   4   3x 2  4  2  3 x 2  6 xh  3h 2  4  3 x 2  4  6 xh  3h 2
  • 95.
    Function Notation e.g. f x   3 x 2  4 a) f  5  3  5  4 b) f  a   3a 2  4 2  75  4  79 c) f  x  h   f  x   3  x  h   4   3x 2  4  2  3 x 2  6 xh  3h 2  4  3 x 2  4  6 xh  3h 2 Exercise 2F; 1, 2, 3acdfi, 4begh, 5a, 6, 7a, 8abd, 10abdf, 11aceh, 12bd, 14*