Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 1998 Feb 28;353(1366):187–198. doi: 10.1098/rstb.1998.0201

Levels of genetic polymorphism: marker loci versus quantitative traits.

R K Butlin 1, T Tregenza 1
PMCID: PMC1692210  PMID: 9533123

Abstract

Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species.

Full Text

The Full Text of this article is available as a PDF (238.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton N. H., Turelli M. Evolutionary quantitative genetics: how little do we know? Annu Rev Genet. 1989;23:337–370. doi: 10.1146/annurev.ge.23.120189.002005. [DOI] [PubMed] [Google Scholar]
  2. Cooper S. J., Hewitt G. M. Nuclear DNA sequence divergence between parapatric subspecies of the grasshopper Chorthippus parallelus. Insect Mol Biol. 1993;2(3):185–194. doi: 10.1111/j.1365-2583.1993.tb00138.x. [DOI] [PubMed] [Google Scholar]
  3. Cooper S. J., Ibrahim K. M., Hewitt G. M. Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Mol Ecol. 1995 Feb;4(1):49–60. doi: 10.1111/j.1365-294x.1995.tb00191.x. [DOI] [PubMed] [Google Scholar]
  4. Hoelzel A. R., Halley J., O'Brien S. J., Campagna C., Arnbom T., Le Boeuf B., Ralls K., Dover G. A. Elephant seal genetic variation and the use of simulation models to investigate historical population bottlenecks. J Hered. 1993 Nov-Dec;84(6):443–449. doi: 10.1093/oxfordjournals.jhered.a111370. [DOI] [PubMed] [Google Scholar]
  5. Houle D. Comparing evolvability and variability of quantitative traits. Genetics. 1992 Jan;130(1):195–204. doi: 10.1093/genetics/130.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lande R. Genetics and demography in biological conservation. Science. 1988 Sep 16;241(4872):1455–1460. doi: 10.1126/science.3420403. [DOI] [PubMed] [Google Scholar]
  8. Lande R. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet Res. 1975 Dec;26(3):221–235. doi: 10.1017/s0016672300016037. [DOI] [PubMed] [Google Scholar]
  9. Lande R. The minimum number of genes contributing to quantitative variation between and within populations. Genetics. 1981 Nov-Dec;99(3-4):541–553. doi: 10.1093/genetics/99.3-4.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Li W. H., Sadler L. A. Low nucleotide diversity in man. Genetics. 1991 Oct;129(2):513–523. doi: 10.1093/genetics/129.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  12. Meyer J, Elsner N. How well are FREQUENCY SENSITIVITIES OF grasshopper ears tuned to species-specific song spectra? J Exp Biol. 1996;199(Pt 7):1631–1642. doi: 10.1242/jeb.199.7.1631. [DOI] [PubMed] [Google Scholar]
  13. Roff D. A., Mousseau T. A. Quantitative genetics and fitness: lessons from Drosophila. Heredity (Edinb) 1987 Feb;58(Pt 1):103–118. doi: 10.1038/hdy.1987.15. [DOI] [PubMed] [Google Scholar]
  14. Skibinski D. O., Woodwark M., Ward R. D. A quantitative test of the neutral theory using pooled allozyme data. Genetics. 1993 Sep;135(1):233–248. doi: 10.1093/genetics/135.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tilley S. G., Verrell P. A., Arnold S. J. Correspondence between sexual isolation and allozyme differentiation: a test in the salamander Desmognathus ochrophaeus. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2715–2719. doi: 10.1073/pnas.87.7.2715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Watt W. B. Allozymes in evolutionary genetics: self-imposed burden or extraordinary tool? Genetics. 1994 Jan;136(1):11–16. doi: 10.1093/genetics/136.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wu C. I., Palopoli M. F. Genetics of postmating reproductive isolation in animals. Annu Rev Genet. 1994;28:283–308. doi: 10.1146/annurev.ge.28.120194.001435. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES