Nature Nanotechnology Nature Nanotechnology provides a forum for the publication of top-quality research papers in all areas of nanoscience and nanotechnology. Coverage in Nature Nanotechnology extends from basic research in physics, chemistry and biology through to the development of new devices and technologies for applications in a wide range of industrial sectors. Organic, inorganic and hybrid materials are all covered. http://feeds.nature.com/nnano/rss/current Nature Publishing Group en © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Nanotechnology © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. [email protected]
  • Nature Nanotechnology https://www.nature.com/uploads/product/nnano/rss.gif http://feeds.nature.com/nnano/rss/current <![CDATA[Unravelling electro-chemo-mechanical processes in graphite/silicon composites for designing nanoporous and microstructured battery electrodes]]> https://www.nature.com/articles/s41565-025-02027-7 <![CDATA[

    Nature Nanotechnology, Published online: 24 October 2025; doi:10.1038/s41565-025-02027-7

    Multimodal operando imaging reveals how multiscale structural design affects lithiation heterogeneity and electrochemical cycling stability in graphite/silicon composite battery electrodes.]]> <![CDATA[Unravelling electro-chemo-mechanical processes in graphite/silicon composites for designing nanoporous and microstructured battery electrodes]]> Xuekun LuRhodri E. OwenWenjia DuZhenyu ZhangAntonio BerteiRoby SoniXun ZhangFrancesco IacovielloDaqing LiAlice LlewellynJianuo ChenHan ZhangXuhui YaoQi LiYunlong ZhaoShashidhara MaratheChristoph RauPaul R. Shearing doi:10.1038/s41565-025-02027-7 Nature Nanotechnology, Published online: 2025-10-24; | doi:10.1038/s41565-025-02027-7 2025-10-24 Nature Nanotechnology 10.1038/s41565-025-02027-7 https://www.nature.com/articles/s41565-025-02027-7 <![CDATA[Black phosphorus nanosheets boost mitochondrial oxidative phosphorylation improving immunotherapy outcomes]]> https://www.nature.com/articles/s41565-025-02022-y <![CDATA[

    Nature Nanotechnology, Published online: 22 October 2025; doi:10.1038/s41565-025-02022-y

    PEGylated black phosphorus nanosheets boost mitochondrial oxidative phosphorylation, thereby modulating the survival and immune evasion in tumour cells, and further promoting the activation of immune regulation.]]>
    <![CDATA[Black phosphorus nanosheets boost mitochondrial oxidative phosphorylation improving immunotherapy outcomes]]> Yuedi YangMingda ZhaoJiadong LiRuiling XuJie LiangQing JiangXingchen PengAiping TongLi MinYunfeng LinXingdong ZhangYujiang FanYong Sun doi:10.1038/s41565-025-02022-y Nature Nanotechnology, Published online: 2025-10-22; | doi:10.1038/s41565-025-02022-y 2025-10-22 Nature Nanotechnology 10.1038/s41565-025-02022-y https://www.nature.com/articles/s41565-025-02022-y
    <![CDATA[Reversible metamorphosis of hierarchical DNA–inorganic crystals]]> https://www.nature.com/articles/s41565-025-02026-8 <![CDATA[

    Nature Nanotechnology, Published online: 20 October 2025; doi:10.1038/s41565-025-02026-8

    Actuators based on DNA–inorganic hybrid crystals reversibly change shape, which can be programmed by the length and composition of the DNA polymer, and induce cascaded reactions of compartmentalized enzymes in response to external stimuli.]]>
    <![CDATA[Reversible metamorphosis of hierarchical DNA–inorganic crystals]]> Yuan GaoWenzheng ShiStephen J. KlawaMargaret L. DalyEdward T. SamulskiEhssan NazockdastRonit Freeman doi:10.1038/s41565-025-02026-8 Nature Nanotechnology, Published online: 2025-10-20; | doi:10.1038/s41565-025-02026-8 2025-10-20 Nature Nanotechnology 10.1038/s41565-025-02026-8 https://www.nature.com/articles/s41565-025-02026-8
    <![CDATA[Author Correction: Nanoscale C–H/C–D mapping of organic materials using electron spectroscopy]]> https://www.nature.com/articles/s41565-025-02040-w <![CDATA[

    Nature Nanotechnology, Published online: 17 October 2025; doi:10.1038/s41565-025-02040-w

    Author Correction: Nanoscale C–H/C–D mapping of organic materials using electron spectroscopy]]>
    <![CDATA[Author Correction: Nanoscale C–H/C–D mapping of organic materials using electron spectroscopy]]> Ryosuke SengaKatsumi HagitaTomohiro MiyataHsiao-Fang WangKoichi MayumiHiroshi JinnaiKazu Suenaga doi:10.1038/s41565-025-02040-w Nature Nanotechnology, Published online: 2025-10-17; | doi:10.1038/s41565-025-02040-w 2025-10-17 Nature Nanotechnology 10.1038/s41565-025-02040-w https://www.nature.com/articles/s41565-025-02040-w
    <![CDATA[Progress in cancer vaccines enabled by nanotechnology]]> https://www.nature.com/articles/s41565-025-02021-z <![CDATA[

    Nature Nanotechnology, Published online: 17 October 2025; doi:10.1038/s41565-025-02021-z

    This Review discusses recent progress in therapeutic cancer vaccines, with particular emphasis on the role of nanotechnology in supporting these advances.]]>
    <![CDATA[Progress in cancer vaccines enabled by nanotechnology]]> B. J. KimNouran S. AbdelfattahAlexander HostetlerDarrell J. Irvine doi:10.1038/s41565-025-02021-z Nature Nanotechnology, Published online: 2025-10-17; | doi:10.1038/s41565-025-02021-z 2025-10-17 Nature Nanotechnology 10.1038/s41565-025-02021-z https://www.nature.com/articles/s41565-025-02021-z
    <![CDATA[Fast vortices excite short magnons]]> https://www.nature.com/articles/s41565-025-02023-x <![CDATA[

    Nature Nanotechnology, Published online: 16 October 2025; doi:10.1038/s41565-025-02023-x

    Fast-moving superconducting vortices generate monochromatic magnons at short wavelengths down to 36 nm in a ferromagnet–superconductor hybrid device.]]>
    <![CDATA[Fast vortices excite short magnons]]> Haiming Yu doi:10.1038/s41565-025-02023-x Nature Nanotechnology, Published online: 2025-10-16; | doi:10.1038/s41565-025-02023-x 2025-10-16 Nature Nanotechnology 10.1038/s41565-025-02023-x https://www.nature.com/articles/s41565-025-02023-x
    <![CDATA[Moving Abrikosov vortex lattices generate sub-40-nm magnons]]> https://www.nature.com/articles/s41565-025-02024-w <![CDATA[

    Nature Nanotechnology, Published online: 16 October 2025; doi:10.1038/s41565-025-02024-w

    In a hybrid superconductor–ferromagnet device, the dynamic stray fields of current-driven vortices unidirectionally excite coherent short-wavelength magnons.]]>
    <![CDATA[Moving Abrikosov vortex lattices generate sub-40-nm magnons]]> Oleksandr V. DobrovolskiyQi WangDenis Yu. VodolazovRoland SachserMichael HuthSebastian KnauerAlexander I. Buzdin doi:10.1038/s41565-025-02024-w Nature Nanotechnology, Published online: 2025-10-16; | doi:10.1038/s41565-025-02024-w 2025-10-16 Nature Nanotechnology 10.1038/s41565-025-02024-w https://www.nature.com/articles/s41565-025-02024-w
    <![CDATA[A push towards disruptive biosensing technologies]]> https://www.nature.com/articles/s41565-025-02050-8 <![CDATA[

    Nature Nanotechnology, Published online: 15 October 2025; doi:10.1038/s41565-025-02050-8

    We present a Focus issue on biosensing, examining sensing modalities at various length scales and their future roles in diagnostics, showcasing the field’s interdisciplinary nature.]]>
    <![CDATA[A push towards disruptive biosensing technologies]]> doi:10.1038/s41565-025-02050-8 Nature Nanotechnology, Published online: 2025-10-15; | doi:10.1038/s41565-025-02050-8 2025-10-15 Nature Nanotechnology 10.1038/s41565-025-02050-8 https://www.nature.com/articles/s41565-025-02050-8