Nature Cell Biology Nature Cell Biology publishes peer-reviewed original research of the highest quality in all areas of cell biology with an emphasis on studies that provide insights into the molecular mechanisms underlying cellular processes. The journal’s scope is broad and ranges from cytoskeletal dynamics, membrane transport, adhesion and migration, cell division, signalling pathways, development and stem cells, to molecular and cellular mechanisms underlying cancer. Nature Cell Biology provides timely and informative coverage of cell biological advances. http://feeds.nature.com/ncb/rss/current Nature Publishing Group en © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Cell Biology © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. [email protected]
  • Nature Cell Biology https://www.nature.com/uploads/product/ncb/rss.png http://feeds.nature.com/ncb/rss/current <![CDATA[Scaling back DEI programmes and the loss of scientific talent]]> https://www.nature.com/articles/s41556-025-01797-5 <![CDATA[

    Nature Cell Biology, Published online: 23 October 2025; doi:10.1038/s41556-025-01797-5

    Programmes that support diversity, equity and inclusion (DEI) in science are under attack in the USA. Data indicate that diversity in the scientific workforce increases creativity and success in tackling challenging problems. Loss of promising talent supported by these programmes will substantially weaken our research capacity, limit innovation and substantially reduce discoveries important for driving scientific advancements.]]> <![CDATA[Scaling back DEI programmes and the loss of scientific talent]]> Needhi BhallaJoAnn TrejoMary Munson doi:10.1038/s41556-025-01797-5 Nature Cell Biology, Published online: 2025-10-23; | doi:10.1038/s41556-025-01797-5 2025-10-23 Nature Cell Biology 10.1038/s41556-025-01797-5 https://www.nature.com/articles/s41556-025-01797-5 <![CDATA[Enhancer activation from transposable elements in extrachromosomal DNA]]> https://www.nature.com/articles/s41556-025-01788-6 <![CDATA[

    Nature Cell Biology, Published online: 21 October 2025; doi:10.1038/s41556-025-01788-6

    Kraft, Murphy, Jones et al. identify extrachromosomal DNA (ecDNA)-interacting elements (EIEs) enriched for transposable elements within ecDNA in colorectal cancer cells. They show that EIE 14 integrated within ecDNA acts as an enhancer to promote cancer fitness.]]>
    <![CDATA[Enhancer activation from transposable elements in extrachromosomal DNA]]> Katerina KraftSedona E. MurphyMatthew G. JonesQuanming ShiAarohi Bhargava-ShahChristy LuongKing L. HungBritney J. HeRui LiSeung Kuk ParkMichael T. MontgomeryNatasha E. WeiserYanbo WangJens LuebeckVineet BafnaJef D. BoekePaul S. MischelAlistair N. BoettigerHoward Y. Chang doi:10.1038/s41556-025-01788-6 Nature Cell Biology, Published online: 2025-10-21; | doi:10.1038/s41556-025-01788-6 2025-10-21 Nature Cell Biology 10.1038/s41556-025-01788-6 https://www.nature.com/articles/s41556-025-01788-6
    <![CDATA[Epigenetic alterations facilitate transcriptional and translational programs in hypoxia]]> https://www.nature.com/articles/s41556-025-01786-8 <![CDATA[

    Nature Cell Biology, Published online: 16 October 2025; doi:10.1038/s41556-025-01786-8

    Watt, Dauber, Szkop and colleagues find that H3K4me3 remodels 5′UTR selection in hypoxia and that this process is independent of HIF-1 transcriptional mechanisms.]]>
    <![CDATA[Epigenetic alterations facilitate transcriptional and translational programs in hypoxia]]> Kathleen WattBianca DauberKrzysztof J. SzkopLaura LeePredrag JovanovicShan ChenRanveer PaliaJulia A. VassalakisTyler T. CooperDavid PapadopoliLaìa MasvidalMichael JewerKristofferson TandocHannah PlummerGilles A. LajoieIvan TopisirovicOla LarssonLynne-Marie Postovit doi:10.1038/s41556-025-01786-8 Nature Cell Biology, Published online: 2025-10-16; | doi:10.1038/s41556-025-01786-8 2025-10-16 Nature Cell Biology 10.1038/s41556-025-01786-8 https://www.nature.com/articles/s41556-025-01786-8
    <![CDATA[A continuous totipotent-like cell-based embryo model recapitulates mouse embryogenesis from zygotic genome activation to gastrulation]]> https://www.nature.com/articles/s41556-025-01793-9 <![CDATA[

    Nature Cell Biology, Published online: 15 October 2025; doi:10.1038/s41556-025-01793-9

    The authors identify a chemical cocktail to generate totipotent-like cells, which they then use to build an embryo model. This model captures a developmental spectrum from early embryogenesis to post-implantation events.]]>
    <![CDATA[A continuous totipotent-like cell-based embryo model recapitulates mouse embryogenesis from zygotic genome activation to gastrulation]]> Yixuan RenXuyang WangHaiyin LiuYaxing XuRuoqi ChengShengnan RenZining LiYunfei HuoBo LiJingyang GuanCheng LiHongkui DengJun Xu doi:10.1038/s41556-025-01793-9 Nature Cell Biology, Published online: 2025-10-15; | doi:10.1038/s41556-025-01793-9 2025-10-15 Nature Cell Biology 10.1038/s41556-025-01793-9 https://www.nature.com/articles/s41556-025-01793-9
    <![CDATA[Author Correction: Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development]]> https://www.nature.com/articles/s41556-025-01802-x <![CDATA[

    Nature Cell Biology, Published online: 14 October 2025; doi:10.1038/s41556-025-01802-x

    Author Correction: Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development]]>
    <![CDATA[Author Correction: Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development]]> Chenfei WangXiaoyu LiuYawei GaoLei YangChong LiWenqiang LiuChuan ChenXiaochen KouYanhong ZhaoJiayu ChenYixuan WangRongrong LeHong WangTao DuanYong ZhangShaorong Gao doi:10.1038/s41556-025-01802-x Nature Cell Biology, Published online: 2025-10-14; | doi:10.1038/s41556-025-01802-x 2025-10-14 Nature Cell Biology 10.1038/s41556-025-01802-x https://www.nature.com/articles/s41556-025-01802-x
    <![CDATA[Chaperone-mediated autophagy regulates neuronal activity by sex-specific remodelling of the synaptic proteome]]> https://www.nature.com/articles/s41556-025-01771-1 <![CDATA[

    Nature Cell Biology, Published online: 14 October 2025; doi:10.1038/s41556-025-01771-1

    Khawaja et al. show sex-specific differences in neuronal-activity regulation by chaperone-mediated autophagy and that loss of chaperone-mediated autophagy leads to defective neuronal physiology and increased seizure susceptibility, linking chaperone-mediated autophagy to neuronal excitability.]]>
    <![CDATA[Chaperone-mediated autophagy regulates neuronal activity by sex-specific remodelling of the synaptic proteome]]> Rabia R. KhawajaErnesto GriegoKristen LindenauAsma SalekJessica GambardellaAurora ScrivoHannah R. MondayMathieu BourdenxJesús Madero-PérezZohaib N. KhanBhakti ChavdaRonald CutlerSarah GraffSimone SidoliGaetano SantulliLaura SantambrogioInmaculada TassetSusmita KaushikLi GanPablo E. CastilloAna Maria Cuervo doi:10.1038/s41556-025-01771-1 Nature Cell Biology, Published online: 2025-10-14; | doi:10.1038/s41556-025-01771-1 2025-10-14 Nature Cell Biology 10.1038/s41556-025-01771-1 https://www.nature.com/articles/s41556-025-01771-1
    <![CDATA[MAPL regulates gasdermin-mediated release of mtDNA from lysosomes to drive pyroptotic cell death]]> https://www.nature.com/articles/s41556-025-01774-y <![CDATA[

    Nature Cell Biology, Published online: 13 October 2025; doi:10.1038/s41556-025-01774-y

    Nguyen, Collier et al. find a mitochondria–lysosome inflammatory pathway regulated by the SUMO E3 ligase MAPL, which promotes vesicular mtDNA transport to lysosomes and subsequent gasdermin-dependent lysosomal permeabilization to activate pyroptosis.]]>
    <![CDATA[MAPL regulates gasdermin-mediated release of mtDNA from lysosomes to drive pyroptotic cell death]]> Mai NguyenJack J. CollierOlesia IgnatenkoGenevieve MorinVanessa GoyonAlexandre JanerCamila Tiefensee RibeiroAusten J. MilnerwoodSidong HuangMichel DesjardinsHeidi M. McBride doi:10.1038/s41556-025-01774-y Nature Cell Biology, Published online: 2025-10-13; | doi:10.1038/s41556-025-01774-y 2025-10-13 Nature Cell Biology 10.1038/s41556-025-01774-y https://www.nature.com/articles/s41556-025-01774-y
    <![CDATA[CoCo-ST detects global and local biological structures in spatial transcriptomics datasets]]> https://www.nature.com/articles/s41556-025-01781-z <![CDATA[

    Nature Cell Biology, Published online: 13 October 2025; doi:10.1038/s41556-025-01781-z

    Wu, Zhang and colleagues introduce ‘compare and contrast spatial transcriptomics’ (CoCo-ST), a graph contrastive learning-based method for spatial transcriptomics analysis that detects low-variance structures.]]>
    <![CDATA[CoCo-ST detects global and local biological structures in spatial transcriptomics datasets]]> Muhammad AminuBo ZhuNatalie VokesHong ChenLingzhi HongJianrong LiJunya FujimotoMehdi ChaibYuqiu YangBo WangAlissa PoteeteMonique B. NilssonXiuning LeTina CasconeDavid JaffrayNicholas NavinTao WangLauren A. ByersDon L. GibbonsJohn HeymachKen ChenChao ChengJianjun ZhangJia Wu doi:10.1038/s41556-025-01781-z Nature Cell Biology, Published online: 2025-10-13; | doi:10.1038/s41556-025-01781-z 2025-10-13 Nature Cell Biology 10.1038/s41556-025-01781-z https://www.nature.com/articles/s41556-025-01781-z