Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Up–down approach for expanding the chemical space of metal–organic frameworks

Abstract

The vast structural diversity of metal–organic frameworks (MOFs) and the ability to tailor the structures makes the materials applicable for a broad range of uses. Traditional bottom-up and top-down design approaches have enabled a rapid increase in this structural diversity, yet the systematic screening for unknown synthesizable MOFs remains a challenge. Here we report a design strategy, the up–down approach, by merging the bottom-up and top-down approaches. This approach bridges the advantages of both methods, creating a synergistic strategy for discovering MOF structures. Targeting Zr-based MOFs, we search promising topology candidates and unveiled 26 future structural configurations by considering the possible orientations of Zr6 clusters. Through ribbon representation and sophisticated analysis of the ligand angles, we suggest structure models and synthesize Zr6-based MOFs with bct (1) and scu (1) configurations. The up–down approach will accelerate the discovery of previously unknown or inaccessible MOFs, providing exciting opportunities to expand the chemical space of MOFs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Up–down approach for MOF discovery.
Fig. 2: Flowchart for screening possible topologies of Zr6-based MOFs.
Fig. 3: Ribbon representation to visualize molecular configurations and transformations of ligands.
Fig. 4: Ligand angle distribution for molecular configurations.
Fig. 5: Ligands for known and unknown Zr6-based MOFs.
Fig. 6: Discovery of new Zr6-based MOFs with bct (1) and scu (1) configurations.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in this Article and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 2350674 (UMOF-10), 2235854 (UPF-100) and 2235855 (UPF-101). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Making the future. Nat. Synth. 1, 1 (2022).

  2. Kalmutzki, M. J., Hanikel, N. & Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 4, eaat9180 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, Z. et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368, 297–303 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Freund, R. et al. The current status of MOF and COF applications. Angew. Chem. Int. Ed. 60, 23975–24001 (2021).

    Article  CAS  Google Scholar 

  5. Banerjee, S., Lollar, C. T., Xiao, Z., Fang, Y. & Zhou, H.-C. Biomedical integration of metal–organic frameworks. Trends Chem. 2, 467–479 (2020).

    Article  CAS  Google Scholar 

  6. Li, A. et al. The launch of a freely accessible MOF CIF collection from the CSD. Matter 4, 1105–1106 (2021).

    Article  CAS  Google Scholar 

  7. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Li, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. Establishing microporosity in open metal–organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J. Am. Chem. Soc 120, 8571–8572 (1998).

    Article  CAS  Google Scholar 

  9. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    Article  CAS  Google Scholar 

  10. Jiang, H., Alezi, D. & Eddaoudi, M. A reticular chemistry guide for the design of periodic solids. Nat. Rev. Mater. 6, 466–487 (2021).

    Article  CAS  Google Scholar 

  11. Andreo, J. et al. Reticular nanoscience: bottom-up assembly nanotechnology. J. Am. Chem. Soc. 144, 7531–7550 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Guillerm, V. et al. A supermolecular building approach for the design and construction of metal–organic frameworks. Chem. Soc. Rev. 43, 6141–6172 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, H. et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nat. Commun. 9, 1745 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bureekaew, S., Balwani, V., Amirjalayer, S. & Schmid, R. Isoreticular isomerism in 4,4-connected paddle-wheel metal–organic frameworks: structural prediction by the reverse topological approach. CrystEngComm 17, 344–352 (2014).

    Article  Google Scholar 

  15. Keupp, J. & Schmid, R. TopoFF: MOF structure prediction using specifically optimized blueprints. Faraday Discuss. 211, 79–101 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Baburin, I. A., Leoni, S. & Seifert, G. Enumeration of not-yet-synthesized zeolitic zinc imidazolate MOF networks: a topological and DFT approach. J. Phys. Chem. B 112, 9437–9443 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Lewis, D. W. et al. Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues. CrystEngComm 11, 2272–2276 (2009).

    Article  CAS  Google Scholar 

  18. Yuan, S. et al. Retrosynthesis of multi-component metal–organic frameworks. Nat. Commun. 9, 808 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ortín-Rubio, B. et al. Net-clipping: an approach to deduce the topology of metal–organic frameworks built with zigzag ligands. J. Am. Chem. Soc. 142, 9135–9140 (2020).

    Article  PubMed  Google Scholar 

  20. Chen, Z., Jiang, H., Li, M., O’Keeffe, M. & Eddaoudi, M. Reticular chemistry 3.2: typical minimal edge-transitive derived and related nets for the design and synthesis of metal–organic frameworks. Chem. Rev. 120, 8039–8065 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Bai, Y. et al. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 45, 2327–2367 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  PubMed  Google Scholar 

  23. Trickett, C. A. et al. Identification of the strong brønsted acid site in a metal–organic framework solid acid catalyst. Nat. Chem. 11, 170–176 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Delgado-Friedrichs, O., O’Keeffe, M. & Yaghi, O. M. Taxonomy of periodic nets and the design of materials. Phys. Chem. Chem. Phys. 9, 1035–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Li, M., Li, D., O’Keeffe, M. & Yaghi, O. M. Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 114, 1343–1370 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. O’Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1789 (2008).

    Article  PubMed  Google Scholar 

  27. Feng, D. et al. A highly stable porphyrinic zirconium metal–organic framework with shp-a topology. J. Am. Chem. Soc. 136, 17714–17717 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Cliffe, M. J. et al. Correlated defect nanoregions in a metal–organic framework. Nat. Commun. 5, 4176 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Richardson, J. S. Early ribbon drawings of proteins. Nat. Struct. Biol. 7, 624–625 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Richardson, J. S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34, 167–339 (1981).

  31. Guillerm, V., Grancha, T., Imaz, I., Juanhuix, J. & Maspoch, D. Zigzag ligands for transversal design in reticular chemistry: unveiling new structural opportunities for metal–organic frameworks. J. Am. Chem. Soc. 140, 10153–10157 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Kim, H. et al. Symmetry-guided syntheses of mixed-linker Zr metal–organic frameworks with precise linker locations. Chem. Sci. 10, 5801–5806 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bon, V., Senkovskyy, V., Senkovska, I. & Kaskel, S. Zr(IV) and Hf(IV) based metal–organic frameworks with reo-topology. Chem. Commun. 48, 8407–8409 (2012).

    Article  CAS  Google Scholar 

  34. Furukawa, H. et al. Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Mondloch, J. E. et al. Vapor-phase metalation by atomic layer deposition in a metal–organic framework. J. Am. Chem. Soc. 135, 10294–10297 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Kassie, A. A. et al. Postsynthetic metal exchange in a metal–organic framework assembled from Co(III) diphosphine pincer complexes. Inorg. Chem. 58, 3227–3236 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Feng, D. et al. Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. J. Am. Chem. Soc. 135, 17105–17110 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Materials Studio v 7.0 (Accelrys, 2013).

  39. Nguyen, H. T. T. et al. Combining linker design and linker-exchange strategies for the synthesis of a stable large-pore Zr-based metal–organic framework. ACS Appl. Mater. Interfaces 10, 35462–35468 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Cheng, S. et al. Charge separation in metal–organic framework enables heterogeneous thiol catalysis. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202300993 (2023).

  41. Hu, X. et al. Nanoscale metal–organic frameworks and metal–organic layers with two-photon-excited fluorescence. Inorg. Chem. 59, 4181–4185 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, X. et al. Direct observation of modulated radical spin states in metal–organic frameworks by controlled flexibility. J. Am. Chem. Soc. 144, 2685–2693 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Roy, S. et al. Electrocatalytic hydrogen evolution from a cobaloxime-based metal–organic framework thin film. J. Am. Chem. Soc. 141, 15942–15950 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, S. et al. A zirconium metal–organic framework with SOC topological net for catalytic peptide bond hydrolysis. Nat. Commun. 13, 1284 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, S. & Yaghi, O. M. ‘Eye’ of the molecule—a viewpoint. Faraday Discuss. 231, 145–149 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, T. C. et al. Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. J. Am. Chem. Soc. 137, 3585–3591 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Lin, Q. et al. New heterometallic zirconium metalloporphyrin frameworks and their heteroatom-activated high-surface-area carbon derivatives. J. Am. Chem. Soc. 137, 2235–2238 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Gong, X. et al. Metal–organic frameworks for the exploitation of distance between active sites in efficient photocatalysis. Angew. Chem. Int. Ed. 59, 5326–5331 (2020).

    Article  CAS  Google Scholar 

  49. Choi, E.-Y. et al. Pillared porphyrin homologous series: intergrowth in metal−organic frameworks. Inorg. Chem. 48, 426–428 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Barsukova, M. et al. Face-directed assembly of tailored isoreticular MOFs using centring structure-directing agents. Nat. Synth. 3, 33–46 (2024).

    Article  Google Scholar 

  51. Ma, J., Kalenak, A. P., Wong-Foy, A. G. & Matzger, A. J. Rapid guest exchange and ultra-low surface tension solvents optimize metal–organic framework activation. Angew. Chem. Int. Ed. 56, 14618–14621 (2017).

    Article  CAS  Google Scholar 

  52. Yu, F., Hu, B.-Q. & Li, B. A zirconium–organic framework incorporating with amino and sulfoxide groups. Inorg. Chem. Commun. 107, 107484 (2019).

    Article  CAS  Google Scholar 

  53. Deria, P. et al. Framework-topology-dependent catalytic activity of zirconium-based (porphinato)zinc(II) MOFs. J. Am. Chem. Soc. 138, 14449–14457 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Feng, D. et al. Zirconium–metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. 51, 10307–10310 (2012).

    Article  CAS  Google Scholar 

  55. Sheng, W., Wang, X., Wang, Y., Chen, S. & Lang, X. Integrating TEMPO into a metal–organic framework for cooperative photocatalysis: selective aerobic oxidation of sulfides. ACS Catal. 12, 11078–11088 (2022).

    Article  CAS  Google Scholar 

  56. Valverde, A. et al. Designing metal-chelator-like traps by encoding amino acids in zirconium-based metal–organic frameworks. Chem. Mater. 34, 9666–9684 (2022).

    Article  CAS  Google Scholar 

  57. Li, X.-M., Wang, Y., Mu, Y., Gao, J. & Zeng, L. Oriented construction of efficient intrinsic proton transport pathways in MOF-808. J. Mater. Chem. A 10, 18592–18597 (2022).

    Article  CAS  Google Scholar 

  58. Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2012).

    Article  CAS  Google Scholar 

  59. Colón, Y. J., Gómez-Gualdrón, D. A. & Snurr, R. Q. Topologically guided, automated construction of metal–organic frameworks and their evaluation for energy-related applications. Cryst. Growth Des. 17, 5801–5810 (2017).

    Article  Google Scholar 

  60. Moghadam, P. Z., Chung, Y. G. & Snurr, R. Q. Progress toward the computational discovery of new metal–organic framework adsorbents for energy applications. Nat. Energy 9, 121–133 (2024).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) of Korea (RS-2023-00279793, NRF-2020R1A2C3008226, NRF-2021M3I3A1084909, NRF-2021R1A6A6018767 and NRF-2016R1A5A1009405), the Carbon Neutral Institute Research Fund (1.220099.01) and the UBSI Research Fund (1.230069.01) of Ulsan National Institute of Science and Technology (UNIST). Jiy.K. and H.J.C. acknowledge the support from the NRF grants funded by the Korean Government (NRF-2018H1A2A1061391 (Global Ph.D. Fellowship Program) and NRF-2021R1A6A3A13043905). The authors acknowledge the Pohang Accelerator Laboratory (PAL) for 2D beamline use (2022-2nd-2D-034) and 6D beamline use (2024-1st-6D-A029). The authors thank Junghye Lee, H. Cho and Jinhyu Lee for their valuable discussions and efforts in attempting MOF synthesis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: W.C., Jiyeon Kim and D.N.; development of UDA methodology and analysis of ligand angles: Jiyeon Kim, D.N. and W.C.; investigation: Jiyeon Kim, D.N., E.C. and W.C.; synthesis and characterization of MOFs: Jiyeon Kim, D.N., H.J.C. and C.C.; synthesis of ligands: H.J.C. and D.S.; DFT calculations: J.L. and Jihan Kim; writing—original draft: Jiyeon Kim and D.N.; writing—review and editing: Jiyeon Kim, D.N., J.L., Jihan Kim and W.C; funding acquisition: W.C.

Corresponding author

Correspondence to Wonyoung Choe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Christopher Wilmer, Stefan Wuttke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, discussion, tables and schemes.

Supplementary Data 1

ZIP file of the molecular configuration CIF files.

Supplementary Data 2

ZIP file of the model structure CIF files.

Supplementary Data 3

Crystallographic data for UMOF-10, CCDC 2350674.

Supplementary Data 4

Crystallographic data for UPF-100, CCDC 2235854.

Supplementary Data 5

Crystallographic data for UPF-101, CCDC 2235855.

Supplementary Video 1

Video about the formation process of UPF-101 from UPF-100.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Nam, D., Cho, H.J. et al. Up–down approach for expanding the chemical space of metal–organic frameworks. Nat. Synth 3, 1518–1528 (2024). https://doi.org/10.1038/s44160-024-00638-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00638-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing