Abstract
Solar-driven synthetic fuel production couples solar energy conversion and storage in the form of chemical bonds and therefore has potential as a clean technology. The past decade has witnessed the continuous development of metalâorganic framework (MOF) materials with considerable interest towards combining light harvesting with catalytic CO2 conversion in one system. Built on a literature survey and data macroanalysis, this Perspective examines the development of this field by showcasing synthetic design approaches and highlighting attained milestones, while critically assessing pitfalls and opportunities. Five MOF-based material classifications for visible light-driven CO2 reduction are determined and discussed through key photocatalysis figures of merits and metrics. Analysis reveals MOFs as a favourable platform to achieve high product-selectivity CO2 photocatalysis. Non-standardized testing and reporting is found throughout this field and non-comparable product evolution rates, unverified carbon and electron source(s), and incomplete reporting checklists are identified as the main roadblocks towards accurate cross-laboratory benchmarking and breakthroughs. This Perspective additionally provides a balanced discussion and best practice recommendations to guide researchers investigating MOF-based materials for photocatalytic CO2 reduction.

This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
Source data of literature reports and contained performance metrics (DOI, publication year, main evolved product, selectivity, main product evolution rate, Cx product, irradiation wavelength, lamp power, irradiation power, main solvent, sacrificial electron donor, operation hours, 13C labelling, AQY, TONs and oxidation product) are available as Supplementary information.
References
World Energy Outlook 2022 (International Energy Agency, 2022).
Fu, Y. et al. An amine-functionalized titanium metalâorganic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 51, 3364â3367 (2012).
Sun, D. et al. Studies on photocatalytic CO2 reduction over NH2-UiO-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metalâorganic frameworks. Chem. Eur. J. 19, 14279â14285 (2013).
Fabian, D. M. et al. Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8, 2825â2850 (2015).
Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting. Mechanisms, challenges, and design strategies. Chem. Rev. 120, 919â985 (2020).
Warnan, J. & Reisner, E. Synthetic organic design for solar fuel systems. Angew. Chem. Int. Ed. 59, 17344â17354 (2020).
Furukawa, H., Cordova, K. E., OâKeeffe, M. & Yaghi, O. M. The chemistry and applications of metalâorganic frameworks. Science 341, 1230444 (2013).
Dalle, K. E. et al. Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 119, 2752â2875 (2019).
Stanley, P. M., Haimerl, J., Shustova, N. B., Fischer, R. A. & Warnan, J. Merging molecular catalysts and metalâorganic frameworks for photocatalytic fuel production. Nat. Chem. 14, 1342â1356 (2022).
Salionov, D. et al. Unraveling the molecular mechanism of MIL-53(Al) crystallization. Nat. Commun. 13, 3762 (2022).
Qian, Z. et al. Trace to the source: selfâtuning of MOF photocatalysts. Adv. Energy Mater. 13, 2300086 (2023).
Sun, K., Qian, Y. & Jiang, H.-L. Metalâorganic frameworks for photocatalytic water splitting and CO2 reduction. Angew. Chem. Int. Ed. 62, e202217565 (2023).
Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X. & Garcia, H. Semiconductor behavior of a metalâorganic framework (MOF). Chem. Eur. J. 13, 5106â5112 (2007).
Tachikawa, T., Choi, J. R., Fujitsuka, M. & Majima, T. Photoinduced charge-transfer processes on MOF-5 nanoparticles: elucidating differences between metalâorganic frameworks and semiconductor metal oxides. J. Phys. Chem. C 112, 14090â14101 (2008).
Wang, S., Yao, W., Lin, J., Ding, Z. & Wang, X. Cobalt imidazolate metalâorganic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem. Int. Ed. 53, 1034â1038 (2014).
Zeng, J.-Y., Wang, X.-S., Xie, B.-R., Li, Q.-R. & Zhang, X.-Z. Large Ï-conjugated metalâorganic frameworks for infrared-light-driven CO2 reduction. J. Am. Chem. Soc. 144, 1218â1231 (2022).
Yan, Z.-H. et al. Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metalâorganic framework. Nat. Commun. 9, 3353 (2018).
Xu, H.-Q. et al. Visible-light photoreduction of CO2 in a metalâorganic framework. boosting electron-hole separation via electron trap states. J. Am. Chem. Soc. 137, 13440â13443 (2015).
Fang, Z.-B. et al. Boosting interfacial charge-transfer kinetics for efficient overall CO2 photoreduction via rational design of coordination spheres on metalâorganic frameworks. J. Am. Chem. Soc. 142, 12515â12523 (2020).
Chen, S. et al. Fine-tuning the metal oxo cluster composition and phase structure of Ni/Ti bimetallic MOFs for efficient CO2 reduction. J. Phys. Chem. C 125, 9200â9209 (2021).
Dong, H. et al. Regulation of metal ions in smart metal-cluster nodes of metalâorganic frameworks with open metal sites for improved photocatalytic CO2 reduction reaction. Appl. Catal. B 276, 119173 (2020).
Lee, Y., Kim, S., Kang, J. K. & Cohen, S. M. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metalâorganic framework under visible light irradiation. Chem. Commun. 51, 5735â5738 (2015).
Fu, Y. et al. Enhanced photocatalytic CO2 reduction over Co-doped NH2-MIL-125(Ti) under visible light. RSC Adv. 7, 42819â42825 (2017).
Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367â369 (2019).
Rao, H., Schmidt, L. C., Bonin, J. & Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 548, 74â77 (2017).
Zhang, B. & Sun, L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 48, 2216â2264 (2019).
Chambers, M. B. et al. Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metalâorganic frameworks. Chem. Sus. Chem. 8, 603â608 (2015).
Stanley, P. M. et al. Hostâguest interactions in metalâorganic framework isoreticular series for molecular photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 60, 17854â17860 (2021).
Wang, X., Wisser, F. M., Canivet, J., Fontecave, M. & Mellot-Draznieks, C. Immobilization of a full photosystem in the large-pore MIL-101 metalâorganic framework for CO2 reduction. Chem. Sus. Chem. 11, 3315â3322 (2018).
Zhuo, T.-C. et al. H-bond-mediated selectivity control of formate versus CO during CO2 photoreduction with two cooperative Cu/X sites. J. Am. Chem. Soc. 143, 6114â6122 (2021).
Stanley, P. M. et al. Topology- and wavelength-governed CO2 reduction photocatalysis in molecular catalyst-metalâorganic framework assemblies. Chem. Sci. 13, 12164â12174 (2022).
Stanley, P. M., Sixt, F. & Warnan, J. Decoupled solar energy storage and dark photocatalysis in a 3D metalâorganic framework. Adv. Mater. 35, 2207280 (2023).
Choi, K. M. et al. Plasmon-enhanced photocatalytic CO2 conversion within metalâorganic frameworks under visible light. J. Am. Chem. Soc. 139, 356â362 (2017).
Fei, H., Sampson, M. D., Lee, Y., Kubiak, C. P. & Cohen, S. M. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metalâorganic framework. Inorg. Chem. 54, 6821â6828 (2015).
Stanley, P. M. et al. Entrapped molecular photocatalyst and photosensitizer in metalâorganic framework nanoreactors for enhanced solar CO2 reduction. ACS Catal. 11, 871â882 (2021).
Stanley, P. M. et al. Photocatalytic CO2âtoâsyngas evolution with molecular catalyst metalâorganic framework nanozymes. Adv. Mater. 35, 2207380 (2023).
Benseghir, Y. et al. Co-immobilization of a Rh catalyst and a Keggin polyoxometalate in the UiO-67 Zr-based metalâorganic framework. In depth structural characterization and photocatalytic properties for CO2 reduction. J. Am. Chem. Soc. 142, 9428â9438 (2020).
Stanley, P. M., Parkulab, M., Rieger, B., Warnan, J. & Fischer, R. A. Understanding entrapped molecular photosystem and metalâorganic framework synergy for improved solar fuel production. Faraday Discuss. 231, 281â297 (2021).
Chen, L., Wang, Y., Yu, F., Shen, X. & Duan, C. A simple strategy for engineering heterostructures of Au nanoparticle-loaded metalâorganic framework nanosheets to achieve plasmon-enhanced photocatalytic CO2 conversion under visible light. J. Mater. Chem. A 7, 11355â11361 (2019).
Becerra, J., Nguyen, D.-T., Gopalakrishnan, V.-N. & Do, T.-O. Plasmonic Au nanoparticles incorporated in the zeolitic imidazolate framework (ZIF-67) for the efficient sunlight-driven photoreduction of CO2. ACS Appl. Energy Mater. 3, 7659â7665 (2020).
Kratzl, K. et al. Generation and stabilization of small platinum clusters Pt12±x inside a metalâorganic framework. J. Am. Chem. Soc. 141, 13962â13969 (2019).
Guo, F. et al. Pt nanoparticles embedded in flowerlike NH2-UiO-68 for enhanced photocatalytic carbon dioxide reduction. J. Mater. Chem. A 7, 26490â26495 (2019).
Habisreutinger, S. N., Schmidt-Mende, L. & Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372â7408 (2013).
Jiang, Z. et al. Filling metalâorganic framework mesopores with TiO2 for CO2 photoreduction. Nature 586, 549â554 (2020).
Wu, L.-Y. et al. Encapsulating perovskite quantum dots in iron-based metalâorganic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 58, 9491â9495 (2019).
Liu, S.-M. et al. Ti-substituted Keggin-type polyoxotungstate as proton and electron reservoir encaged into metalâorganic framework for carbon dioxide photoreduction. Adv. Mater. Interfaces 5, 1801062 (2018).
Chen, L., Yu, F., Shen, X. & Duan, C. N-CND modified NH2-UiO-66 for photocatalytic CO2 conversion under visible light by a photo-induced electron transfer process. Chem. Commun. 55, 4845â4848 (2019).
Wang, X., Zhao, X., Zhang, D., Li, G. & Li, H. Microwave irradiation induced UIO-66-NH2 anchored on graphene with high activity for photocatalytic reduction of CO2. Appl. Catal. B 228, 47â53 (2018).
Dao, X.-Y. et al. Boosting photocatalytic CO2 reduction efficiency by heterostructures of NH2-MIL-101(Fe)/g-C3N4. ACS Appl. Energy Mater. 3, 3946â3954 (2020).
Shi, L., Wang, T., Zhang, H., Chang, K. & Ye, J. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metalâorganic framework for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater. 25, 5360â5367 (2015).
Chen, Y. et al. Stabilization of formate dehydrogenase in a metalâorganic framework for bioelectrocatalytic reduction of CO2. Angew. Chem. Int. Ed. 58, 7682â7686 (2019).
Li, N. et al. Adenine components in biomimetic metalâorganic frameworks for efficient CO2 photoconversion. Angew. Chem. Int. Ed. 58, 5226â5231 (2019).
Niu, Q. et al. Rational design of novel COF/MOF S-scheme heterojunction photocatalyst for boosting CO2 reduction at gasâsolid interface. ACS Appl. Mater. Interfaces 14, 24299â24308 (2022).
Wu, H. et al. Metalâorganic framework decorated cuprous oxide nanowires for long-lived charges applied in selective photocatalytic CO2 reduction to CH4. Angew. Chem. Int. Ed. 60, 8455â8459 (2021).
Yu, F., Jing, X., Wang, Y., Sun, M. & Duan, C. Hierarchically porous metalâorganic framework/MoS2 interface for selective photocatalytic conversion of CO2 with H2O into CH3COOH. Angew. Chem. Int. Ed. 60, 24849â24853 (2021).
Deng, X. et al. Metalâorganic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction. J. Am. Chem. Soc. 141, 10924â10929 (2019).
Nelson, A. P., Farha, O. K., Mulfort, K. L. & Hupp, J. T. Supercritical processing as a route to high internal surface areas and permanent microporosity in metalâorganic framework materials. J. Am. Chem. Soc. 131, 458â460 (2009).
Gibbons, B., Cai, M. & Morris, A. J. A potential roadmap to integrated metal organic framework artificial photosynthetic arrays. J. Am. Chem. Soc. 144, 17723â17736 (2022).
Wang, C. & Lin, W. Diffusion-controlled luminescence quenching in metalâorganic frameworks. J. Am. Chem. Soc. 133, 4232â4235 (2011).
Sharp, C. H. et al. Nanoconfinement and mass transport in metalâorganic frameworks. Chem. Soc. Rev. 50, 11530â11558 (2021).
Xie, L. S., Skorupskii, G. & DincÄ, M. Electrically conductive metalâorganic frameworks. Chem. Rev. 120, 8536â8580 (2020).
Lan, G. et al. Photosensitizing metalâorganic layers for efficient sunlight-driven carbon dioxide reduction. J. Am. Chem. Soc. 140, 12369â12373 (2018).
Eddaoudi, M. et al. Porous metalâorganic polyhedra: 25âà cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc. 123, 4368â4369 (2001).
Pullen, S. & Clever, G. H. Mixed-ligand metalâorganic frameworks and heteroleptic coordination cages as multifunctional scaffolds-a comparison. Acc. Chem. Res. 51, 3052â3064 (2018).
Lee, H. S. et al. A highly active, robust photocatalyst heterogenized in discrete cages of metalâorganic polyhedra for CO2 reduction. Energy Environ. Sci. 13, 519â526 (2020).
Zhao, Y., Cai, W., Chen, J., Miao, Y. & Bu, Y. A highly efficient composite catalyst constructed from NH2-MIL-125(Ti) and reduced graphene oxide for CO2 photoreduction. Front. Chem. 7, 789 (2019).
Hu, M. et al. Ultra-thin two-dimensional trimetallic metalâorganic framework for photocatalytic reduction of CO2. ACS Catal. 12, 3238â3248 (2022).
Guo, S.-H. et al. A bimetallic-MOF catalyst for efficient CO2 photoreduction from simulated flue gas to value-added formate. J. Mater. Chem. A 8, 11712â11718 (2020).
AlâTamreh, S. A. et al. Electroreduction of carbon dioxide into formate: a comprehensive review. ChemElectroChem 8, 3207â3220 (2021).
Chernyshova, I. V., Somasundaran, P. & Ponnurangam, S. On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl Acad. Sci. USA 115, E9261âE9270 (2018).
Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509â513 (2020).
He, J. & Janáky, C. Recent advances in solar-driven carbon dioxide conversion: expectations versus reality. ACS Energy Lett. 5, 1996â2014 (2020).
Matsubara, Y. Standard electrode potentials for the reduction of CO2 to CO in acetonitrileâwater mixtures determined using a generalized method for proton-coupled electron-transfer reactions. ACS Energy Lett. 2, 1886â1891 (2017).
Wiedner, E. S. & Linehan, J. C. Making a splash in homogeneous CO2 hydrogenation: elucidating the impact of solvent on catalytic mechanisms. Chem. Eur. J. 24, 16964â16971 (2018).
Qin, J., Wang, S. & Wang, X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl. Catal. B 209, 476â482 (2017).
Amombo Noa, F. M. et al. A unified topology approach to dot-, rod-, and sheet-MOFs. Chem 7, 2491â2512 (2021).
Cheetham, A. K., Rao, C. N. R. & Feller, R. K. Structural diversity and chemical trends in hybrid inorganicâorganic framework materials. Chem. Commun. 216, 4780â4795 (2006).
Zhao, R. et al. Partially nitrided Ni nanoclusters achieve energy-efficient electrocatalytic CO2 reduction to CO at ultralow overpotential. Adv. Mater. 35, e2205262 (2023).
Liu, Y. et al. Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coord. Chem. Rev. 388, 63â78 (2019).
Kornienko, N. Operando spectroscopy of nanoscopic metal/covalent organic framework electrocatalysts. Nanoscale 13, 1507â1514 (2021).
Zhang, K. et al. An iron-porphyrin grafted metalâorganic framework as a heterogeneous catalyst for the photochemical reduction of CO2. J. Photochem. Photobiol. 10, 100111 (2022).
Reguero, M., Claver, C., Carrilho, R. M. B. & MasdeuâBultó, A. M. Immobilized molecular catalysts for CO2 photoreduction. Adv. Sustain. Syst. 6, 2100493 (2022).
Wang, J.-W. et al. Facile electron delivery from graphene template to ultrathin metalâorganic layers for boosting CO2 photoreduction. Nat. Commun. 12, 813 (2021).
Lan, G. et al. Biomimetic active sites on monolayered metalâorganic frameworks for artificial photosynthesis. Nat. Catal. 5, 1006â1018 (2022).
Segev, G. et al. The 2022 solar fuels roadmap. J. Phys. D 55, 323003 (2022).
Ojha, N. & Kumar, S. Tri-phase photocatalysis for CO2 reduction and N2 fixation with efficient electron transfer on a hydrophilic surface of transition-metal-doped MIL-88A(Fe). Appl. Catal. B 292, 120166 (2021).
Hao, Y.-C. et al. Metalâorganic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nat. Commun. 12, 2682 (2021).
Haussener, S. Solar fuel processing: comparative mini-review on research, technology development, and scaling. Sol. Energy 246, 294â300 (2022).
Qureshi, M. & Takanabe, K. Insights on measuring and reporting heterogeneous photocatalysis: efficiency definitions and setup examples. Chem. Mater. 29, 158â167 (2017).
Liu, B., Vikrant, K., Kim, K.-H., Kumar, V. & Kailasa, S. K. Critical role of water stability in metalâorganic frameworks and advanced modification strategies for the extension of their applicability. Environ. Sci. Nano 7, 1319â1347 (2020).
Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metalâorganic frameworks. Chem. Rev. 114, 10575â10612 (2014).
Taylor, J. M., Vaidhyanathan, R., Iremonger, S. S. & Shimizu, G. K. H. Enhancing water stability of metalâorganic frameworks via phosphonate monoester linkers. J. Am. Chem. Soc. 134, 14338â14340 (2012).
Benson, E. E., Kubiak, C. P., Sathrum, A. J. & Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89â99 (2009).
Pellegrin, Y. & Odobel, F. Sacrificial electron donor reagents for solar fuel production. C. R. Chim. 20, 283â295 (2017).
Schneider, J. & Bahnemann, D. W. Undesired role of sacrificial reagents in photocatalysis. J. Phys. Chem. Lett. 4, 3479â3483 (2013).
Benseghir, Y. et al. Unveiling the mechanism of the photocatalytic reduction of CO2 to formate promoted by porphyrinic Zr-based metalâorganic frameworks. J. Mater. Chem. A 10, 18103â18115 (2022).
Gao, W.-Y. et al. A mixed-metal porphyrinic framework promoting gas-phase CO2 photoreduction without organic sacrificial agents. ChemSusChem 13, 6273â6277 (2020).
Sadeghi, N., Sharifnia, S. & Sheikh Arabi, M. A porphyrin-based metal organic framework for high rate photoreduction of CO2 to CH4 in gas phase. J. CO2 Util. 16, 450â457 (2016).
Das, R., Chakraborty, S. & Peter, S. C. Systematic assessment of solvent selection in photocatalytic CO2 reduction. ACS Energy Lett. 6, 3270â3274 (2021).
Bhattacharya, M., Chandler, K. J., Geary, J. & Saouma, C. T. The role of leached Zr in the photocatalytic reduction of CO2 to formate by derivatives of UiO-66 metal organic frameworks. Dalton Trans. 49, 4751â4757 (2020).
He, Y., Li, C., Chen, X.-B., Shi, Z. & Feng, S. Visible-light-responsive UiO-66(Zr) with defects efficiently promoting photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 14, 28977â28984 (2022).
Artero, V. & Fontecave, M. Solar fuels generation and molecular systems. Is it homogeneous or heterogeneous catalysis? Chem. Soc. Rev. 42, 2338â2356 (2013).
Kolthoff, I. M. & Miller, I. K. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. J. Am. Chem. Soc. 73, 3055â3059 (1951).
Yoshino, S., Takayama, T., Yamaguchi, Y., Iwase, A. & Kudo, A. CO2 reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis. Acc. Chem. Res. 55, 966â977 (2022).
Welter, E. S. et al. Figures of merit for photocatalysis: comparison of NiO/La-NaTaO3 and Synechocystis sp. PCC 6803 as a semiconductor and a bio-photocatalyst for water splitting. Catalysts 11, 1415 (2021).
Kisch, H. & Bahnemann, D. Best practice in photocatalysis: comparing rates or apparent quantum yields? J. Phys. Chem. Lett. 6, 1907â1910 (2015).
Kozuch, S. & Martin, J. M. L. âTurning overâ definitions in catalytic cycles. ACS Catal. 2, 2787â2794 (2012).
Calza, P., Minella, M., Demarchis, L., Sordello, F. & Minero, C. Photocatalytic rate dependence on light absorption properties of different TiO2 specimens. Catal. Today 340, 12â18 (2020).
Cernuto, G., Masciocchi, N., Cervellino, A., Colonna, G. M. & Guagliardi, A. Size and shape dependence of the photocatalytic activity of TiO2 nanocrystals: a total scattering Debye function study. J. Am. Chem. Soc. 133, 3114â3119 (2011).
Kolobov, N., Goesten, M. G. & Gascon, J. Metalâorganic frameworks: molecules or semiconductors in photocatalysis? Angew. Chem. Int. Ed. 60, 26038â26052 (2021).
Wu, X.-P., Choudhuri, I. & Truhlar, D. G. Computational studies of photocatalysis with metalâorganic frameworks. Energy Environ. Mater. 2, 251â263 (2019).
Jablonka, K. M., Ongari, D., Moosavi, S. M. & Smit, B. Big-data science in porous materials: materials genomics and machine learning. Chem. Rev. 120, 8066â8129 (2020).
Bennett, T. D., Coudert, F.-X., James, S. L. & Cooper, A. I. The changing state of porous materials. Nat. Mater. 20, 1179â1187 (2021).
Hu, H. et al. Metalâorganic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 13, 358â366 (2021).
Vandenhaute, S., Cools-Ceuppens, M., DeKeyser, S., Verstraelen, T. & van Speybroeck, V. Machine learning potentials for metalâorganic frameworks using an incremental learning approach. NPJ Comput. Mater. 9, 19 (2023).
Burger, B. et al. A mobile robotic chemist. Nature 583, 237â241 (2020).
Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70â81 (2016).
Tran, P. D., Wong, L. H., Barber, J. & Loo, J. S. C. Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ. Sci. 5, 5902â5918 (2012).
Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072â1075 (2008).
Acknowledgements
P.M.S. and V.R. thank the Chemical Industry Fonds (FCI) for a PhD fellowship. This work was supported by the German Research Foundation (DFG) Priority Program 1928 âCoordination Networks: Building Blocks for Functional Systemsâ, the research project MOFMOX (grant number FI 502/43-1) and by the Excellence Cluster 2089 âe-conversionâ (Fundamentals of Energy Conversion Processes).
Author information
Authors and Affiliations
Contributions
P.M.S. and J.W. conceived the idea and outline for this work. P.M.S. performed the literature overview and metrics analysis. P.M.S. and J.W. wrote the paper with contributions from V.R. and R.A.F. All authors have approved the final version of this paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Synthesis thanks Alina Kampouri, Caroline T. Saouma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Methods for literature search, definition of figures of merit and references.
Source data
Source Data Figs.1â4 Literature analysis.
Full list and description of literature publications on which our analysis is built.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Stanley, P.M., Ramm, V., Fischer, R.A. et al. Analysis of metalâorganic framework-based photosynthetic CO2 reduction. Nat. Synth 3, 307â318 (2024). https://doi.org/10.1038/s44160-024-00490-z
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s44160-024-00490-z
This article is cited by
-
Sunlight-driven simultaneous CO2 reduction and water oxidation using indium-organic framework heterostructures
Nature Communications (2025)
-
Dual S-scheme heterojunction nanocomposite-driven charge transport for photocatalytic green energy production and environmental implementationsâwhere to go?
Advanced Composites and Hybrid Materials (2025)
-
Research progress on photocatalysts for CO2 conversion to liquid products
Rare Metals (2025)
-
Engineering the electron localization of metal sites on nanosheets assembled periodic macropores for CO2 photoreduction
Nature Communications (2024)


