Abstract
Metalâorganic frameworks (MOFs) have emerged as exciting potential new candidates for application across nanomedicine, with the first example now in a phase II human clinical trial. MOFs have a range of desirable properties that make them suitable for various applications, including drug delivery, imaging and new treatment modalities, often in concert. In this Primer, we present an overview of the application of MOFs in biomedicine, focusing on drug delivery and imaging, but highlighting the chemical and structural versatility that is enabling their implementation in emerging treatment modalities and new biological applications. We discuss best practices in synthesis, characterization and application, including ongoing issues with reproducibility and limitations of applications, ending with an outlook of the field.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5, 951â967 (2021).
Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101â124 (2021).
Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015).
Naseri, N., Valizadeh, H. & Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv. Pharm. Bull. 5, 305â313 (2015).
Demir Duman, F. et al. in Biomedical Applications of Inorganic Materials Ch. 2, 14â126 (The Royal Society of Chemistry, 2021).
Unnikrishnan, G., Joy, A., Megha, M., Kolanthai, E. & Senthilkumar, M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: a critical review. Discov. Nano 18, 157 (2023).
Moore, T. L. et al. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 44, 6287â6305 (2015).
Furukawa, H., Cordova, K. E., OâKeeffe, M. & Yaghi, O. M. The chemistry and applications of metalâorganic frameworks. Science 341, 1230444 (2013).
Lawson, H. D., Walton, S. P. & Chan, C. Metalâorganic frameworks for drug delivery: a design perspective. ACS Appl. Mater. Interfaces 13, 7004â7020 (2021).
Rojas, S., Devic, T. & Horcajada, P. Metalâorganic frameworks based on bioactive components. J. Mater. Chem. B 5, 2560â2573 (2017).
Cai, H., Huang, Y.-L. & Li, D. Biological metalâorganic frameworks: structures, hostâguest chemistry and bio-applications. Coord. Chem. Rev. 378, 207â221 (2019).
Bunzen, H. Chemical stability of metalâorganic frameworks for applications in drug delivery. ChemNanoMat 7, 998â1007 (2021).
Ettlinger, R. et al. Toxicity of metalâorganic framework nanoparticles: from essential analyses to potential applications. Chem. Soc. Rev. 51, 464â484 (2022). A comprehensive overview of the varying factors dictating metalâorganic framework toxicity and how to assess it in vitro and in vivo.
Osterrieth, J. W. M. & Fairen-Jimenez, D. Metalâorganic framework composites for theragnostics and drug delivery applications. Biotechnol. J. 16, 2000005 (2021).
Wang, A. et al. Biomedical metalâorganic framework materials: perspectives and challenges. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202308589 (2023).
Horcajada, P. et al. Metalâorganic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974â5978 (2006).
Horcajada, P. et al. Flexible porous metalâorganic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774â6780 (2008).
Xiao, B. et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metalâorganic framework. J. Am. Chem. Soc. 129, 1203â1209 (2007).
McKinlay, A. C. et al. Exceptional behavior over the whole adsorptionâstorageâdelivery cycle for NO in porous metal organic frameworks. J. Am. Chem. Soc. 130, 10440â10444 (2008).
Taylor, K. M. L., Rieter, W. J. & Lin, W. Manganese-based nanoscale metalâorganic frameworks for magnetic resonance imaging. J. Am. Chem. Soc. 130, 14358â14359 (2008).
Rowe, M. D., Thamm, D. H., Kraft, S. L. & Boyes, S. G. Polymer-modified gadolinium metalâorganic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules 10, 983â993 (2009).
Rieter, W. J., Taylor, K. M. L., An, H., Lin, W. & Lin, W. Nanoscale metalâorganic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc. 128, 9024â9025 (2006).
McKinlay, A. C. et al. BioMOFs: metalâorganic frameworks for biological and medical applications. Angew. Chem. Int. Ed. 49, 6260â6266 (2010).
Horcajada, P. et al. Porous metalâorganic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172â178 (2010). A major breakthrough study demonstrating drug delivery and MRI using Fe metalâorganic frameworks in vitro and in vivo.
Horcajada, P. et al. Metalâorganic frameworks in biomedicine. Chem. Rev. 112, 1232â1268 (2012).
Liu, X. et al. Iron-based metalâorganic frameworks in drug delivery and biomedicine. ACS Appl. Mater. Interfaces 13, 9643â9655 (2021).
Abánades Lázaro, I. & Forgan, R. S. Application of zirconium MOFs in drug delivery and biomedicine. Coord. Chem. Rev. 380, 230â259 (2019).
Wang, J. et al. Advances of hafnium based nanomaterials for cancer theranostics. Front. Chem. 11, 1283924 (2023).
Wang, Q., Sun, Y., Li, S., Zhang, P. & Yao, Q. Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy. RSC Adv. 10, 37600â37620 (2020).
Maleki, A., Shahbazi, M.-A., Alinezhad, V. & Santos, H. A. The progress and prospect of zeolitic imidazolate frameworks in cancer therapy, antibacterial activity, and biomineralization. Adv. Healthc. Mater. 9, 2000248 (2020).
Demir Duman, F. & Forgan, R. S. Applications of nanoscale metalâorganic frameworks as imaging agents in biology and medicine. J. Mater. Chem. B 9, 3423â3449 (2021).
Lu, K., Aung, T., Guo, N., Weichselbaum, R. & Lin, W. Nanoscale metalâorganic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 30, 1707634 (2018).
Zhu, W., Zhao, J., Chen, Q. & Liu, Z. Nanoscale metalâorganic frameworks and coordination polymers as theranostic platforms for cancer treatment. Coord. Chem. Rev. 398, 113009 (2019).
Ni, K., Lan, G. & Lin, W. Nanoscale metalâorganic frameworks generate reactive oxygen species for cancer therapy. ACS Cent. Sci. 6, 861â868 (2020).
Yin, X., Ai, F. & Han, L. Recent development of MOF-based photothermal agent for tumor ablation. Front. Chem. 10, 841316 (2022).
Zhong, Y. et al. Recent advances in MOF-based nanoplatforms generating reactive species for chemodynamic therapy. Dalton Trans. 49, 11045â11058 (2020).
Koshy, M. et al. A phase 1 doseâescalation study of RiMO-301 with palliative radiation in advanced tumors. J. Clin. Oncol. 41, 2527â2527 (2023). A report covering the first human clinical trial involving a metalâorganic framework.
Tyagi, N., Wijesundara, Y. H., Gassensmith, J. J. & Popat, A. Clinical translation of metalâorganic frameworks. Nat. Rev. Mater. 8, 701â703 (2023).
Allendorf, M. D., Stavila, V., Witman, M., Brozek, C. K. & Hendon, C. H. What lies beneath a metalâorganic framework crystal structure? New design principles from unexpected behaviors. J. Am. Chem. Soc. 143, 6705â6723 (2021).
Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533â3539 (1963).
He, T., Kong, X.-J. & Li, J.-R. Chemically stable metalâorganic frameworks: rational construction and application expansion. Acc. Chem. Res. 54, 3083â3094 (2021).
Bůžek, D., Adamec, S., Lang, K. & Demel, J. Metalâorganic frameworks vs. buffers: case study of UiO-66 stability. Inorg. Chem. Front. 8, 720â734 (2021).
Luzuriaga, M. A. et al. ZIF-8 degrades in cell media, serum, and some â but not all â common laboratory buffers. Supramol. Chem. 31, 485â490 (2019).
McGuire, C. V. & Forgan, R. S. The surface chemistry of metalâorganic frameworks. Chem. Commun. 51, 5199â5217 (2015).
Figueroa-Quintero, L. et al. Post-synthetic surface modification of metalâorganic frameworks and their potential applications. Small Methods 7, 2201413 (2023).
Chen, X. et al. Formulation of metalâorganic framework-based drug carriers by controlled coordination of methoxy PEG phosphate: boosting colloidal stability and redispersibility. J. Am. Chem. Soc. 143, 13557â13572 (2021).
Abánades Lázaro, I. et al. Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery. Chem 2, 561â578 (2017).
Howarth, A. J. et al. Best practices for the synthesis, activation, and characterization of metalâorganic frameworks. Chem. Mater. 29, 26â39 (2017).
Wang, S., McGuirk, C. M., dâAquino, A., Mason, J. A. & Mirkin, C. A. Metalâorganic framework nanoparticles. Adv. Mater. 30, 1800202 (2018).
Marshall, C. R., Staudhammer, S. A. & Brozek, C. K. Size control over metalâorganic framework porous nanocrystals. Chem. Sci. 10, 9396â9408 (2019). A comprehensive perspective on methods to control particle size of nanoparticulate metalâorganic frameworks.
Forgan, R. S. Modulated self-assembly of metalâorganic frameworks. Chem. Sci. 11, 4546â4562 (2020). A detailed review of the use of modulation to control particle size and surface chemistry of nanoparticulate metalâorganic frameworks.
Wang, Z. et al. Surfactant-guided spatial assembly of nano-architectures for molecular profiling of extracellular vesicles. Nat. Commun. 12, 4039 (2021).
Kumari, S. et al. In vivo biocompatibility of ZIF-8 for slow release via intranasal administration. Chem. Sci. 14, 5774â5782 (2023).
Markopoulou, P. & Forgan, R. S. in MetalâOrganic Frameworks for Biomedical Applications (ed. Mozafari, M.) Ch. 12, 245â276 (Woodhead Publishing, 2020).
Giménez-Marqués, M. et al. GraftFast surface engineering to improve MOF nanoparticles furtiveness. Small 14, 1801900 (2018).
Bellido, E. et al. Heparin-engineered mesoporous iron metalâorganic framework nanoparticles: toward stealth drug nanocarriers. Adv. Healthc. Mater. 4, 1246â1257 (2015).
Röder, R. et al. Multifunctional nanoparticles by coordinative self-assembly of his-tagged units with metalâorganic frameworks. J. Am. Chem. Soc. 139, 2359â2368 (2017).
Jung, S. et al. Bio-functionalization of metalâorganic frameworks by covalent protein conjugation. Chem. Commun. 47, 2904â2906 (2011).
Hidalgo, T. et al. Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers. Sci. Rep. 7, 43099 (2017).
Demir Duman, F., Monaco, A., Foulkes, R., Becer, C. R. & Forgan, R. S. Glycopolymer-functionalized MOF-808 nanoparticles as a cancer-targeted dual drug delivery system for carboplatin and floxuridine. ACS Appl. Nano Mater. 5, 13862â13873 (2022).
Qiu, J. et al. Porous nanoparticles with engineered shells release their drug cargo in cancer cells. Int. J. Pharm. 610, 121230 (2021).
Agostoni, V. et al. A âgreenâ strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci. Rep. 5, 7925 (2015).
Cutrone, G. et al. Comb-like dextran copolymers: a versatile strategy to coat highly porous MOF nanoparticles with a PEG shell. Carbohydr. Polym. 223, 115085 (2019).
Morris, W., Briley, W. E., Auyeung, E., Cabezas, M. D. & Mirkin, C. A. Nucleic acidâmetal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 136, 7261â7264 (2014).
Kahn, J. S., Freage, L., Enkin, N., Garcia, M. A. A. & Willner, I. Stimuli-responsive DNA-functionalized metalâorganic frameworks (MOFs). Adv. Mater. 29, 1602782 (2017).
Wang, S. et al. General and direct method for preparing oligonucleotide-functionalized metalâorganic framework nanoparticles. J. Am. Chem. Soc. 139, 9827â9830 (2017). Development of a simple, facile method for coating metalâorganic framework nanoparticles with oligonucleotides through phosphate coordination.
Wuttke, S. et al. MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells. Chem. Commun. 51, 15752â15755 (2015).
Li, X. et al. Drug-loaded lipid-coated hybrid organicâinorganic âstealthâ nanoparticles for cancer therapy. Front. Bioeng. Biotechnol. 8, 1027 (2020).
Ding, M., Liu, W. & Gref, R. Nanoscale MOFs: from synthesis to drug delivery and theranostics applications. Adv. Drug Deliv. Rev. 190, 114496 (2022).
He, S. et al. Metalâorganic frameworks for advanced drug delivery. Acta Pharm. Sin. B 11, 2362â2395 (2021).
Miller, S. R. et al. Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chem. Commun. 46, 4526â4528 (2010).
Tamames-Tabar, C. et al. A Zn azelate MOF: combining antibacterial effect. CrystEngComm 17, 456â462 (2015).
Su, H. et al. A highly porous medical metalâorganic framework constructed from bioactive curcumin. Chem. Commun. 51, 5774â5777 (2015).
Abánades Lázaro, I., Abánades Lázaro, S. & Forgan, R. S. Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chem. Commun. 54, 2792â2795 (2018).
Abánades Lázaro, I., Wells, C. J. R. & Forgan, R. S. Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery. Angew. Chem. Int. Ed. 59, 5211â5217 (2020). Development of the defect-loading concept to maximize drug loading in metalâorganic frameworks, including generating metalâorganic framework nanoparticles loaded with four separate drugs.
Zheng, H. et al. One-pot synthesis of metalâorganic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 138, 962â968 (2016).
Yan, J. et al. Mineralization of pH-sensitive doxorubicin prodrug in ZIF-8 to enable targeted delivery to solid tumors. Anal. Chem. 92, 11453â11461 (2020).
Lyu, F., Zhang, Y., Zare, R. N., Ge, J. & Liu, Z. One-pot synthesis of protein-embedded metalâorganic frameworks with enhanced biological activities. Nano Lett. 14, 5761â5765 (2014). Development of the one-pot encapsulation of proteins by zeolitic imidazolate frameworks.
Dutta, S. et al. Nanoarchitectonics of biofunctionalized metalâorganic frameworks with biological macromolecules and living cells. Small Methods 3, 1900213 (2019).
Riccò, R. et al. Metalâorganic frameworks for cell and virus biology: a perspective. ACS Nano 12, 13â23 (2018).
Velásquez-Hernández, Md. J. et al. Towards applications of bioentities@MOFs in biomedicine. Coord. Chem. Rev. 429, 213651 (2021).
Cases DÃaz, J., Lozano-Torres, B. & Giménez-Marqués, M. Boosting protein encapsulation through Lewis-acid-mediated metalâorganic framework mineralization: toward effective intracellular delivery. Chem. Mater. 34, 7817â7827 (2022).
Agostoni, V. et al. Towards an improved anti-HIV activity of NRTI via metalâorganic frameworks nanoparticles. Adv. Healthc. Mater. 2, 1630â1637 (2013).
Souza, B. E. & Tan, J.-C. Mechanochemical approaches towards the in situ confinement of 5-FU anti-cancer drug within MIL-100 (Fe) metalâorganic framework. CrystEngComm 22, 4526â4530 (2020).
Orellana-Tavra, C. et al. Amorphous metalâorganic frameworks for drug delivery. Chem. Commun. 51, 13878â13881 (2015).
Chakraborty, D., Yurdusen, A., Mouchaham, G., Nouar, F. & Serre, C. Large-scale production of metalâorganic frameworks. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202309089 (2023).
Giménez-Marqués, M., Hidalgo, T., Serre, C. & Horcajada, P. Nanostructured metalâorganic frameworks and their bio-related applications. Coord. Chem. Rev. 307, 342â360 (2016).
Khan, N. A. & Jhung, S. H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction. Coord. Chem. Rev. 285, 11â23 (2015).
Tanaka, S. in MetalâOrganic Frameworks for Biomedical Applications (ed. Mozafari, M.) Ch. 10, 197â222 (Woodhead Publishing, 2020).
Rubio-Martinez, M. et al. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 46, 3453â3480 (2017).
Osterrieth, J. W. M. et al. How reproducible are surface areas calculated from the BET equation. Adv. Mater. 34, 2201502 (2022). An interlaboratory study of porosity analysis procedures that led to the development of novel, open-source analytical software.
Lázaro, I. A. A comprehensive thermogravimetric analysis multifaceted method for the exact determination of the composition of multifunctional metalâorganic framework materials. Eur. J. Inorg. Chem. 2020, 4284â4294 (2020).
Christodoulou, I. et al. Nanoscale iron-based metalâorganic frameworks: incorporation of functionalized drugs and degradation in biological media. Int. J. Mol. Sci. 24, 3662 (2023).
Hirschle, P. et al. Exploration of MOF nanoparticle sizes using various physical characterization methods â is what you measure what you get. CrystEngComm 18, 4359â4368 (2016).
Wheeler, K. E. et al. Environmental dimensions of the protein corona. Nat. Nanotechnol. 16, 617â629 (2021).
Li, X. et al. Doxorubicin-loaded metalâorganic frameworks nanoparticles with engineered cyclodextrin coatings: insights on drug location by solid state NMR spectroscopy. Nanomaterials 11, 945 (2021).
Cunha, D. et al. Rationale of drug encapsulation and release from biocompatible porous metalâorganic frameworks. Chem. Mater. 25, 2767â2776 (2013).
Motakef-Kazemi, N., Shojaosadati, S. A. & Morsali, A. Metal organic framework [Zn2(1,4-bdc)2(dabco)]n as drug delivery system. Adv. Mater. Res. 829, 247â250 (2014).
Markopoulou, P. et al. Identifying differing intracellular cargo release mechanisms by monitoring in vitro drug delivery from MOFs in real time. Cell Rep. Phys. Sci. 1, 100254 (2020).
Hu, Z. et al. A luminescent Mg-metalâorganic framework for sustained release of 5-fluorouracil: appropriate hostâguest interaction and satisfied acidâbase resistance. ACS Appl. Mater. Interfaces 12, 14914â14923 (2020).
Modi, S. & Anderson, B. D. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol. Pharm. 10, 3076â3089 (2013).
Porcino, M., Li, X., Gref, R. & Martineau-Corcos, C. Solid-state NMR spectroscopy: a key tool to unravel the supramolecular structure of drug delivery systems. Molecules 26, 4142 (2021).
Chaupard, M., de Frutos, M. & Gref, R. Deciphering the structure and chemical composition of drug nanocarriers: from bulk approaches to individual nanoparticle characterization. Part. Part. Syst. Charact. 38, 2100022 (2021).
Bhattacharjee, A., Gumma, S. & Purkait, M. K. Fe3O4 promoted metalâorganic framework MIL-100(Fe) for the controlled release of doxorubicin hydrochloride. Microporous Mesoporous Mater. 259, 203â210 (2018).
Ke, X., Song, X., Qin, N., Cai, Y. & Ke, F. Rational synthesis of magnetic Fe3O4@MOF nanoparticles for sustained drug delivery. J. Porous Mater. 26, 813â818 (2019).
Fytory, M. et al. Dual-ligated metalâorganic framework as novel multifunctional nanovehicle for targeted drug delivery for hepatic cancer treatment. Sci. Rep. 11, 19808 (2021).
di Nunzio, M. R., Agostoni, V., Cohen, B., Gref, R. & Douhal, A. A âship in a bottleâ strategy to load a hydrophilic anticancer drug in porous metalâorganic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery. J. Med. Chem. 57, 411â420 (2014).
Jiang, K. et al. Thermal stimuli-triggered drug release from a biocompatible porous metalâorganic framework. Chem. Eur. J. 23, 10215â10221 (2017).
Kaur, N. et al. Metalâorganic framework based antibiotic release and antimicrobial response: an overview. CrystEngComm 22, 7513â7527 (2020).
Wang, Y. et al. Metalâorganic frameworks for stimuli-responsive drug delivery. Biomaterials 230, 119619 (2020).
Rodriguez-Ruiz, V. et al. Efficient âgreenâ encapsulation of a highly hydrophilic anticancer drug in metalâorganic framework nanoparticles. J. Drug Target. 23, 759â767 (2015).
Segeritz, C.-P. & Vallier, L. in Basic Science Methods for Clinical Researchers (eds Jalali, M., Saldanha, F. Y. L. & Jalali, M.) Ch. 9, 151â172 (Academic Press, 2017).
Jennings, P. âThe future of in vitro toxicologyâ. Toxicol. In Vitro 29, 1217â1221 (2015).
Nikolic, M., Sustersic, T. & Filipovic, N. In vitro models and on-chip systems: biomaterial interaction studies with tissues generated using lung epithelial and liver metabolic cell lines. Front. Bioeng. Biotechnol. 6, 120 (2018).
Zhu, D., Long, Q., Xu, Y. & Xing, J. Evaluating nanoparticles in preclinical research using microfluidic systems. Micromachines 10, 414 (2019).
Langhans, S. A. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front. Pharmacol. 9, 6 (2018).
Linnane, E., Haddad, S., Melle, F., Mei, Z. & Fairen-Jimenez, D. The uptake of metalâorganic frameworks: a journey into the cell. Chem. Soc. Rev. 51, 6065â6086 (2022).
Ernsting, M. J., Murakami, M., Roy, A. & Li, S.-D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control. Rel. 172, 782â794 (2013).
Park, J., Jiang, Q., Feng, D., Mao, L. & Zhou, H.-C. Size-controlled synthesis of porphyrinic metalâorganic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 138, 3518â3525 (2016).
Elliott, A. D. Confocal microscopy: principles and modern practices. Curr. Protoc. Cytom. 92, e68 (2020).
Paddock, S. W. & Eliceiri, K. W. in Confocal Microscopy: Methods and Protocols (ed. Paddock, S. W.) Ch. 2, 9â47 (Springer New York, 2014).
Sava Gallis, D. F., Butler, K. S., Agola, J. O., Pearce, C. J. & McBride, A. A. Antibacterial countermeasures via metalâorganic framework-supported sustained therapeutic release. ACS Appl. Mater. Interfaces 11, 7782â7791 (2019).
McKinnon, K. M. Flow cytometry: an overview. Curr. Protoc. Immunol. 120, 5.1.1â5.1.11 (2018).
Suzuki, H., Toyooka, T. & Ibuki, Y. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ. Sci. Technol. 41, 3018â3024 (2007).
Orellana-Tavra, C. et al. Tuning the endocytosis mechanism of Zr-based metalâorganic frameworks through linker functionalization. ACS Appl. Mater. Interfaces 9, 35516â35525 (2017). A discussion of the effect of metalâorganic framework surface chemistry on different endocytosis pathways to optimize in vitro drug delivery efficacy.
Cornelissen, M., Philippé, J., De Sitter, S. & De Ridder, L. Annexin V expression in apoptotic peripheral blood lymphocytes: an electron microscopic evaluation. Apoptosis 7, 41â47 (2002).
Luo, T. et al. Dimensional reduction enhances photodynamic therapy of metalâorganic nanophotosensitizers. J. Am. Chem. Soc. 144, 5241â5246 (2022).
Singh, N., Qutub, S. & Khashab, N. M. Biocompatibility and biodegradability of metalâorganic frameworks for biomedical applications. J. Mater. Chem. B 9, 5925â5934 (2021).
Carrillo-Carrión, C. et al. Plasmonic-assisted thermocyclizations in living cells using metalâorganic framework based nanoreactors. ACS Nano 15, 16924â16933 (2021).
Jafari, S. et al. Human plasma protein corona decreases the toxicity of pillar-layer metal organic framework. Sci. Rep. 10, 14569 (2020).
Li, R. et al. Solvent-free cyanosilylation of aldehydes and anti-cervical cancer activity of a highly porous zinc-MOF. J. Clust. Sci. 30, 1683â1691 (2019).
Jiao, G. et al. Limitations of MTT and CCK-8 assay for evaluation of graphene cytotoxicity. RSC Adv. 5, 53240â53244 (2015).
Mukherjee, P., Roy, S., Ghosh, D. & Nandi, S. K. Role of animal models in biomedical research: a review. Lab. Anim. Res. 38, 18 (2022).
Valcourt, D. M., Kapadia, C. H., Scully, M. A., Dang, M. N. & Day, E. S. Best practices for preclinical in vivo testing of cancer nanomedicines. Adv. Healthc. Mater. 9, 2000110 (2020).
Ehrman, R. N. et al. A scalable synthesis of adjuvanting antigen depots based on metalâorganic frameworks. Chem. Sci. 15, 2731â2744 (2024).
Lieschke, G. J. & Currie, P. D. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353â367 (2007).
Chakraborty, C., Sharma, A. R., Sharma, G. & Lee, S.-S. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J. Nanobiotechnol. 14, 65 (2016).
Ruyra, Ã. et al. Synthesis, culture medium stability, and in vitro and in vivo zebrafish embryo toxicity of metalâorganic framework nanoparticles. Chem. Eur. J. 21, 2508â2518 (2015).
Rojas, S. et al. Pushing the limits on the intestinal crossing of metalâorganic frameworks: an ex vivo and in vivo detailed study. ACS Nano 16, 5830â5838 (2022).
Demir, E., Demir, F. T. & Marcos, R. in Nanotoxicology in Safety Assessment of Nanomaterials (eds Henriqueta, L. & Maria, J. S) Ch. 12, 275â301 (Springer International Publishing, 2022).
Lopez-Chaves, C. et al. Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine 14, 1â12 (2018).
Foote, R. H. & Carney, E. W. The rabbit as a model for reproductive and developmental toxicity studies. Reprod. Toxicol. 14, 477â493 (2000).
Ghasemi, A. & Zahediasl, S. Normality tests for statistical analysis: a guide for non-statisticians. Int. J. Endocrinol. Metab. 10, 486â489 (2012).
Strasak, A. M., Zaman, Q., Pfeiffer, K. P., Göbel, G. & Ulmer, H. Statistical errors in medical research â a review of common pitfalls. Swiss Med. Wkly 137, 44â49 (2007).
Mishra, P., Pandey, C. M., Singh, U., Keshri, A. & Sabaretnam, M. Selection of appropriate statistical methods for data analysis. Ann. Card. Anaesth. 22, 297â301 (2019).
Wu, M.-X. & Yang, Y.-W. Metalâorganic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29, 1606134 (2017).
Mallakpour, S., Nikkhoo, E. & Hussain, C. M. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord. Chem. Rev. 451, 214262 (2022).
Saeb, M. R. et al. Metalâorganic frameworks (MOFs) for cancer therapy. Materials 14, 7277 (2021).
Jarai, B. M. et al. Evaluating UiO-66 metalâorganic framework nanoparticles as acid-sensitive carriers for pulmonary drug delivery applications. ACS Appl. Mater. Interfaces 12, 38989â39004 (2020).
Yang, L. et al. Pectin-coated iron-based metalâorganic framework nanoparticles for enhanced foliar adhesion and targeted delivery of fungicides. ACS Nano 18, 6533â6594 (2024).
Osorio-Toribio, G. et al. Controlled transdermal release of antioxidant ferulate by a porous Sc(III) MOF. iScience 23, 101156 (2020).
Rojas, S. & Horcajada, P. Understanding the incorporation and release of salicylic acid in metalâorganic frameworks for topical administration. Eur. J. Inorg. Chem. 2021, 1325â1331 (2021).
Chen, J. et al. Current status and prospects of MOFs in controlled delivery of Pt anticancer drugs. Dalton Trans. 52, 6226â6238 (2023).
Zhou, Y., Yang, T., Liang, K. & Chandrawati, R. Metalâorganic frameworks for therapeutic gas delivery. Adv. Drug Deliv. Rev. 171, 199â214 (2021).
Singh, R. et al. Potential of dual drug delivery systems: MOF as hybrid nanocarrier for dual drug delivery in cancer treatment. ChemistrySelect 7, e202201288 (2022).
Ma, D. et al. Multifunctional nano MOF drug delivery platform in combination therapy. Eur. J. Med. Chem. 261, 115884 (2023).
Yang, J. & Yang, Y.-W. Metalâorganic framework-based cancer theranostic nanoplatforms. VIEW 1, e20 (2020).
Shao, Y. et al. Engineering of upconverted metalâorganic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors. J. Am. Chem. Soc. 142, 3939â3946 (2020).
Fu, A., Tang, R., Hardie, J., Farkas, M. E. & Rotello, V. M. Promises and pitfalls of intracellular delivery of proteins. Bioconjugate Chem. 25, 1602â1608 (2014).
Liang, K. et al. Biomimetic mineralization of metalâorganic frameworks as protective coatings for biomacromolecules. Nat. Commun. 6, 7240 (2015).
Yang, X. et al. Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing. J. Am. Chem. Soc. 141, 3782â3786 (2019).
Feng, Y. et al. Antibodies@MOFs: an in vitro protective coating for preparation and storage of biopharmaceuticals. Adv. Mater. 31, 1805148 (2019).
Alsaiari, S. K. et al. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J. Am. Chem. Soc. 140, 143â146 (2018). Using the in situ encapsulation methodology to deliver CRISPRâCas9 gene editing machinery from a metalâorganic framework.
Chen, Y. et al. How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows. J. Am. Chem. Soc. 134, 13188â13191 (2012).
Wang, S. et al. DNA-functionalized metalâorganic framework nanoparticles for intracellular delivery of proteins. J. Am. Chem. Soc. 141, 2215â2219 (2019).
Chen, Y., Li, P., Modica, J. A., Drout, R. J. & Farha, O. K. Acid-resistant mesoporous metalâorganic framework toward oral insulin delivery: protein encapsulation, protection, and release. J. Am. Chem. Soc. 140, 5678â5681 (2018).
Thomas, C. E., Ehrhardt, A. & Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4, 346â358 (2003).
He, C., Lu, K., Liu, D. & Lin, W. Nanoscale metalâorganic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 136, 5181â5184 (2014). Breakthrough development of methodologies to deliver short interfering RNAs using metalâorganic frameworks.
Peng, S. et al. Metalâorganic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat. Commun. 9, 1293 (2018).
Teplensky, M. H. et al. A highly porous metalâorganic framework system to deliver payloads for gene knockdown. Chem 5, 2926â2941 (2019).
Cai, M. et al. Metal organic frameworks as drug targeting delivery vehicles in the treatment of cancer. Pharmaceutics 12, 232 (2020).
Zhou, Z., Vázquez-González, M. & Willner, I. Stimuli-responsive metalâorganic framework nanoparticles for controlled drug delivery and medical applications. Chem. Soc. Rev. 50, 4541â4563 (2021).
Simon-Yarza, T. et al. A smart metalâorganic framework nanomaterial for lung targeting. Angew. Chem. Int. Ed. 56, 15565â15569 (2017).
Fernández, M., Javaid, F. & Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. 9, 790â810 (2018).
Abánades Lázaro, I. et al. Mechanistic investigation into the selective anticancer cytotoxicity and immune system response of surface-functionalized, dichloroacetate-loaded, UiO-66 nanoparticles. ACS Appl. Mater. Interfaces 10, 5255â5268 (2018).
Chen, D. et al. In vivo targeting and positron emission tomography imaging of tumor with intrinsically radioactive metalâorganic frameworks nanomaterials. ACS Nano 11, 4315â4327 (2017).
Alt, K. et al. Self-assembly of oriented antibody-decorated metalâorganic framework nanocrystals for active-targeting applications. Adv. Mater. 34, 2106607 (2022).
Cherkasov, V. R. et al. Antibody-directed metalâorganic framework nanoparticles for targeted drug delivery. Acta Biomater. 103, 223â236 (2020).
Haddad, S. et al. Design of a functionalized metalâorganic framework system for enhanced targeted delivery to mitochondria. J. Am. Chem. Soc. 142, 6661â6674 (2020). Organelle targeted drug delivery by a surface-modified metalâorganic framework.
Chen, W.-H. et al. Stimuli-responsive nucleic acid-based polyacrylamide hydrogel-coated metalâorganic framework nanoparticles for controlled drug release. Adv. Funct. Mater. 28, 1705137 (2018).
Wang, H.-S. Metalâorganic frameworks for biosensing and bioimaging applications. Coord. Chem. Rev. 349, 139â155 (2017).
Taylor-Pashow, K. M. L., Della Rocca, J., Xie, Z., Tran, S. & Lin, W. Postsynthetic modifications of iron-carboxylate nanoscale metalâorganic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 131, 14261â14263 (2009).
Liu, D., Huxford, R. C. & Lin, W. Phosphorescent nanoscale coordination polymers as contrast agents for optical imaging. Angew. Chem. Int. Ed. 50, 3696â3700 (2011).
Nishiyabu, R. et al. Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions. J. Am. Chem. Soc. 131, 2151â2158 (2009).
Foucault-Collet, A. et al. Lanthanide near infrared imaging in living cells with Yb3+ nano metal organic frameworks. Proc. Natl Acad. Sci. USA 110, 17199â17204 (2013).
Lan, G., Ni, K. & Lin, W. Nanoscale metalâorganic frameworks for phototherapy of cancer. Coord. Chem. Rev. 379, 65â81 (2019).
He, C., Lu, K. & Lin, W. Nanoscale metalâorganic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 136, 12253â12256 (2014).
Ma, Y. et al. Heterogeneous nano metalâorganic framework fluorescence probe for highly selective and sensitive detection of hydrogen sulfide in living cells. Anal. Chem. 86, 11459â11463 (2014).
Nagarkar, S. S., Saha, T., Desai, A. V., Talukdar, P. & Ghosh, S. K. Metalâorganic framework based highly selective fluorescence turn-on probe for hydrogen sulphide. Sci. Rep. 4, 7053 (2014).
Lu, Y., Yan, B. & Liu, J.-L. Nanoscale metalâorganic frameworks as highly sensitive luminescent sensors for Fe2+ in aqueous solution and living cells. Chem. Commun. 50, 9969â9972 (2014).
Wu, Y., Han, J., Xue, P., Xu, R. & Kang, Y. Nano metalâorganic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Nanoscale 7, 1753â1759 (2015).
Carrillo-Carrión, C. Nanoscale metalâorganic frameworks as key players in the context of drug delivery: evolution toward theranostic platforms. Anal. Bioanal. Chem. 412, 37â54 (2020).
Xu, R. et al. Nanoscale metalâorganic frameworks for ratiometric oxygen sensing in live cells. J. Am. Chem. Soc. 138, 2158â2161 (2016).
Lan, G. et al. Multifunctional nanoscale metalâorganic layers for ratiometric pH and oxygen sensing. J. Am. Chem. Soc. 141, 18964â18969 (2019).
Gao, X. et al. RhB/UiO-66-N3 MOF-based ratiometric fluorescent detection and intracellular imaging of hydrogen sulfide. Sens. Actuators B 331, 129448 (2021).
Yi, J.-T., Chen, T.-T., Huo, J. & Chu, X. Nanoscale zeolitic imidazolate framework-8 for ratiometric fluorescence imaging of microRNA in living cells. Anal. Chem. 89, 12351â12359 (2017).
Ding, Z., Wang, C., Wang, S., Wu, L. & Zhang, X. Light-harvesting metalâorganic framework nanoprobes for ratiometric fluorescence energy transfer-based determination of pH values and temperature. Microchim. Acta 186, 476 (2019).
Xu, Z., Luo, T. & Lin, W. Nanoscale metalâorganic layers for biomedical applications. Acc. Mater. Res. 2, 944â953 (2021).
Ling, X. et al. Nanoscale metalâorganic layers detect mitochondrial dysregulation and chemoresistance via ratiometric sensing of glutathione and pH. J. Am. Chem. Soc. 143, 1284â1289 (2021).
Miller, S. E., Teplensky, M. H., Moghadam, P. Z. & Fairen-Jimenez, D. Metalâorganic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus 6, 20160027 (2016).
Olorunyomi, J. F., Geh, S. T., Caruso, R. A. & Doherty, C. M. Metalâorganic frameworks for chemical sensing devices. Mater. Horiz. 8, 2387â2419 (2021).
Ho, T.-L., Ho, H. C. & Hamilton, L. D. Biochemical significance of the hard and soft acids and bases principle. Chem.-Biol. Interact. 23, 65â84 (1978).
Schwöbel, J. A. H. et al. Measurement and estimation of electrophilic reactivity for predictive toxicology. Chem. Rev. 111, 2562â2596 (2011).
Bunzen, H. & Jirák, D. Recent advances in metalâorganic frameworks for applications in magnetic resonance imaging. ACS Appl. Mater. Interfaces 14, 50445â50462 (2022).
Böll, K., Zimpel, A., Dietrich, O., Wuttke, S. & Peller, M. Clinically approved MRI contrast agents as imaging labels for a porous iron-based MOF nanocarrier: a systematic investigation in a clinical MRI setting. Adv. Ther. 3, 1900126 (2020).
Jia, M. et al. Grafting of Gd-DTPA onto MOF-808 to enhance MRI performance for guiding photothermal therapy. J. Mater. Chem. B 9, 8631â8638 (2021).
Sene, S. et al. Maghemite-nanoMIL-100(Fe) bimodal nanovector as a platform for image-guided therapy. Chem 3, 303â322 (2017).
Zhao, H.-X. et al. Theranostic metalâorganic framework coreâshell composites for magnetic resonance imaging and drug delivery. Chem. Sci. 7, 5294â5301 (2016).
Wang, G. D., Chen, H., Tang, W., Lee, D. & Xie, J. Gd and Eu co-doped nanoscale metalâorganic framework as a T1âT2 dual-modal contrast agent for magnetic resonance imaging. Tomography 2, 179â187 (2016).
Dehghani, S. et al. The effect of size and aspect ratio of Fe-MIL-88B-NH2 metalâorganic frameworks on their relaxivity and contrast enhancement properties in MRI: in vitro and in vivo studies. J. Nanopart. Res. 20, 278 (2018).
Peller, M., Böll, K., Zimpel, A. & Wuttke, S. Metalâorganic framework nanoparticles for magnetic resonance imaging. Inorg. Chem. Front. 5, 1760â1779 (2018).
deKrafft, K. E. et al. Iodinated nanoscale coordination polymers as potential contrast agents for computed tomography. Angew. Chem. Int. Ed. 48, 9901â9904 (2009).
deKrafft, K. E., Boyle, W. S., Burk, L. M., Zhou, O. Z. & Lin, W. Zr- and Hf-based nanoscale metalâorganic frameworks as contrast agents for computed tomography. J. Mater. Chem. 22, 18139â18144 (2012).
Zhang, T. et al. BODIPY-containing nanoscale metalâorganic frameworks as contrast agents for computed tomography. J. Mater. Chem. B 5, 2330â2336 (2017).
Wang, C. et al. Synergistic assembly of heavy metal clusters and luminescent organic bridging ligands in metalâorganic frameworks for highly efficient X-ray scintillation. J. Am. Chem. Soc. 136, 6171â6174 (2014).
Xu, Z. et al. Monte Carlo simulation-guided design of a thorium-based metalâorganic framework for efficient radiotherapyâradiodynamic therapy. Angew. Chem. Int. Ed. 61, e202208685 (2022).
Lu, K. et al. Low-dose X-ray radiotherapyâradiodynamic therapy via nanoscale metalâorganic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600â610 (2018). Multimodal metalâorganic framework therapy combining radiotherapyâradiodynamic therapy with delivery of immunotherapeutics.
Shang, W. et al. Coreâshell gold nanorod@metalâorganic framework nanoprobes for multimodality diagnosis of glioma. Adv. Mater. 29, 1604381 (2017).
Liu, Y. et al. In situ polymerization on nanoscale metalâorganic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery. Biomaterials 218, 119365 (2019).
Liu, Y. et al. Novel CD-MOF NIR-II fluorophores for gastric ulcer imaging. Chin. Chem. Lett. 32, 3061â3065 (2021).
Cai, W. et al. Engineering phototheranostic nanoscale metalâorganic frameworks for multimodal imaging-guided cancer therapy. ACS Appl. Mater. Interfaces 9, 2040â2051 (2017).
Zhang, D. et al. Self-quenched metalâorganic particles as dual-mode therapeutic agents for photoacoustic imaging-guided second near-infrared window photochemotherapy. ACS Appl. Mater. Interfaces 10, 25203â25212 (2018).
Zeng, J.-Y., Zhang, M.-K., Peng, M.-Y., Gong, D. & Zhang, X.-Z. Porphyrinic metalâorganic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/chemotherapy of tumor. Adv. Funct. Mater. 28, 1705451 (2018).
Chen, X. et al. Facile synthesis of polypyrrole@metalâorganic framework coreâshell nanocomposites for dual-mode imaging and synergistic chemo-photothermal therapy of cancer cells. J. Mater. Chem. B 5, 1772â1778 (2017).
Freedman, L. P., Cockburn, I. M. & Simcoe, T. S. The economics of reproducibility in preclinical research. PLoS Biol. 13, e1002165 (2015).
Leroux, J.-C. Editorial: drug delivery: too much complexity, not enough reproducibility? Angew. Chem. Int. Ed. 56, 15170â15171 (2017).
Dirnagl, U., Duda, G. N., Grainger, D. W., Reinke, P. & Roubenoff, R. Reproducibility, relevance and reliability as barriers to efficient and credible biomedical technology translation. Adv. Drug Deliv. Rev. 182, 114118 (2022).
Bostrom, H. et al. How reproducible is the synthesis of Zrâporphyrin metalâorganic frameworks? An interlaboratory study. Adv. Mater. 36, 2304832 (2024). An interlaboratory study showing the difficulty in reproducing previously validated metalâorganic framework synthetic protocols.
Hughes, P., Marshall, D., Reid, Y., Parkes, H. & Gelber, C. The costs of using unauthenticated, over-passaged cell lines: how much more data do we need. BioTechniques 43, 575â586 (2007).
Riss, T. L. et al. in Assay Guidance Manual (eds Markossian, S., Grossman, A. & Brimacombe, K.) 403â427 (Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2013).
Bimler, D. Better living through coordination chemistry: a descriptive study of a prolific papermill that combines crystallography and medicine. Res. Sq. https://doi.org/10.21203/rs.3.rs-1537438/v1 (2022).
Horbach, S. P. J. M. & Halffman, W. The ghosts of HeLa: how cell line misidentification contaminates the scientific literature. PLoS ONE 12, e0186281 (2017).
Evans, J. D., Bon, V., Senkovska, I. & Kaskel, S. A universal standard archive file for adsorption data. Langmuir 37, 4222â4226 (2021).
Forgan, R. S. Reproducibility in research into metalâorganic frameworks in nanomedicine. Commun. Mater. 5, 46 (2024).
Lu, K. et al. Chlorin-based nanoscale metalâorganic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J. Am. Chem. Soc. 138, 12502â12510 (2016).
Nash, G. T. et al. Nanoscale metalâorganic layer isolates phthalocyanines for efficient mitochondria-targeted photodynamic therapy. J. Am. Chem. Soc. 143, 2194â2199 (2021).
Luo, T. et al. Nanoscale metalâorganic framework confines zinc-phthalocyanine photosensitizers for enhanced photodynamic therapy. J. Am. Chem. Soc. 143, 13519â13524 (2021).
Luo, T. et al. Nanoscale metalâorganic frameworks stabilize bacteriochlorins for type I and type II photodynamic therapy. J. Am. Chem. Soc. 142, 7334â7339 (2020).
Ni, K. et al. Nanoscale metalâorganic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat. Commun. 9, 2351 (2018).
Ni, K., Luo, T., Nash, G. T. & Lin, W. Nanoscale metalâorganic frameworks for cancer immunotherapy. Acc. Chem. Res. 53, 1739â1748 (2020).
Ni, K. et al. Nanoscale metalâorganic framework co-delivers TLR-7 agonists and anti-CD47 antibodies to modulate macrophages and orchestrate cancer immunotherapy. J. Am. Chem. Soc. 142, 12579â12584 (2020).
Ni, K. et al. Nanoscale metalâorganic frameworks for X-ray activated in situ cancer vaccination. Sci. Adv. 6, eabb5223 (2020).
Luo, T. et al. A 2D nanoradiosensitizer enhances radiotherapy and delivers STING agonists to potentiate cancer immunotherapy. Adv. Mater. 34, 2110588 (2022).
Wijesundara, Y. H., Howlett, T. S., Kumari, S. & Gassensmith, J. J. The promise and potential of metalâorganic frameworks and covalent organic frameworks in vaccine nanotechnology. Chem. Rev. 124, 3013â3036 (2024). A comprehensive overview of the potential of metalâorganic frameworks in immunology.
Miao, Y.-B. et al. Engineering a nanoscale Al-MOF-armored antigen carried by a âTrojan Horseâ-like platform for oral vaccination to induce potent and long-lasting immunity. Adv. Funct. Mater. 29, 1904828 (2019).
Kumari, S. et al. Biolistic delivery of liposomes protected in metalâorganic frameworks. Proc. Natl Acad. Sci. USA 120, e2218247120 (2023).
Wijesundara, Y. H. et al. Carrier gas triggered controlled biolistic delivery of DNA and protein therapeutics from metalâorganic frameworks. Chem. Sci. 13, 13803â13814 (2022).
Pouyanfar, N., Ahmadi, M., Ayyoubzadeh, S. M. & Ghorbani-Bidkorpeh, F. Drug delivery system tailoring via metalâorganic framework property prediction using machine learning: a disregarded approach. Mater. Today Commun. 38, 107938 (2024).
Acknowledgements
A.E., D.F.-J. and R.S.F. thank the EPSRC for funding (EP/S009000/1). R.G. acknowledges funding from ANR-20-CE19-0020. I.A.L. and M.G.-M. thank financial support from LCF/BQ/PR23/11980041 and MCIN/AEI/10.13039/501100011033 (TED2021-132729A-I00), respectively. T.L. and W.L. thank the National Cancer Institute for funding (1R01CA253655).
Author information
Authors and Affiliations
Contributions
Introduction (R.S.F.); Experimentation (I.A.L., M.G.-M., M.D., R.G. and A.E.); Results (R.G., M.D., I.A.L., M.G.-M., A.E., X.C. and D.F.-J.); Applications (W.L., T.L., R.G. and M.D.); Reproducibility and data deposition (R.S.F.); Limitations and optimizations (R.S.F., W.L. and T.L.); Outlook (R.S.F., W.L. and T.L.); Overview of the Primer (R.S.F. and A.E.).
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Activation
-
The process of removing unreacted reagents and/or solvents from the pores of a synthesized metalâorganic framework to maximize the available porosity and molecular storage capacity.
- Burst release
-
Rapid release of cargo from a drug delivery system.
- Coordinative functionalization
-
Postsynthetic modification involving formation of a coordinative bond between the metalâorganic framework and the functionality, typically occurring at the inorganic secondary building unit.
- Covalent conjugation
-
Postsynthetic modification involving formation of a covalent bond between the metalâorganic framework and the functionality, typically occurring at the organic linker.
- Defect loading
-
The process of loading a drug within a metalâorganic framework by deliberately incorporating it as a charge-balancing defect during synthesis. This requires the drug to have a coordinating unit to allow it to replace a linker at the secondary building unit during metalâorganic framework synthesis.
- Drug delivery systems
-
Also known as drug delivery devices and drug delivery vectors. A formulation or device that enhances the uptake and efficacy of a specific drug within the body.
- Drug loading
-
A measure of the loading capacity of a drug delivery system that is defined as the mass of the drug divided by the mass of the carrier and converted to a percentage. Note that this measure can result in >100% drug loading values and is distinct from the alternative wt% loading measure.
- Encapsulation efficiency
-
A measure of the uptake efficiency of a drug delivery system for a specific analyte, which is calculated as the percentage of drug encapsulated from the total amount of drug contacted with the drug delivery system in a loading experiment.
- Hard inorganic systems
-
A classification of drug delivery systems that includes inorganic systems such as noble metal nanoparticles, mesoporous silica, layered double hydroxides and metalâorganic frameworks that are characterized by high drug loading values but often poorer biocompatibility and clearance.
- Modulated self-assembly
-
Synthetic protocols for metalâorganic frameworks in which additives are used to control pH and coordinative equilibria during self-assembly and so influence phase formation and/or metalâorganic framework physical properties such as size, porosity and defectivity.
- Organic linkers
-
Multitopic organic ligands used to construct metalâorganic frameworks, typically carboxylates, phosphonates or N-donor heterocycles.
- Pearsonâs hard and soft acids and bases principle
-
Qualitatively, hard Lewis acids will be more stabilized by hard Lewis bases, and similarly soft Lewis acids will be more stabilized by soft Lewis bases, which can explain stability (and selectivity) of metal coordination chemistry.
- Secondary building unit
-
(SBU). Inorganic metal ions or clusters that connect the organic linkers into the metalâorganic framework structure.
- Soft organic systems
-
A classification of drug delivery systems that includes organic, often polymer-based systems, such as liposomes or lipid nanoparticles, that are characterized by excellent biocompatibility and clearance but often low drug loading values.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Abánades Lázaro, I., Chen, X., Ding, M. et al. Metalâorganic frameworks for biological applications. Nat Rev Methods Primers 4, 42 (2024). https://doi.org/10.1038/s43586-024-00320-8
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-024-00320-8
This article is cited by
-
Modulating metal-organic frameworks by surface engineering of stearic acid modification for follicular drug delivery and enhanced hair growth promotion
Journal of Nanobiotechnology (2025)
-
Concurrent photocatalytic degradation of organic pollutants using smart magnetically cellulose-based metal organic framework nanocomposite
Scientific Reports (2025)
-
Improving the drug delivery performance of ZIF-8 with amine functionalization as a 5-fluorouracil nanocarrier
Scientific Reports (2025)
-
Review: synthesis, characterization, and cutting-edge biomedical applications of metalâorganic framework-based nanomaterials
Journal of Materials Science (2025)
-
Chromium-based itaconic acid-functionalized MOF: a microcarrier for sustained drug release, synergistic antibacterial effect with metronidazole, and enhanced infection control
Journal of Sol-Gel Science and Technology (2025)


