Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient and scalable upcycling of oceanic carbon sources into bioplastic monomers

Abstract

Renewable electricity-driven capture and conversion of oceanic dissolved inorganic carbon into value-added chemicals offers a sustainable route towards negative carbon emissions and a circular carbon economy. Here we present an artificial ocean carbon recycling system that captures and converts oceanic carbon sources into biochemicals through a decoupled electro-biocatalytic hybrid process. The system captures CO2 from natural seawater under very dilute yet realistic dissolved inorganic carbon conditions (2.16 mM) with high capture efficiency (>70%), low energy consumption (3 kWh kgCO2−1) and long stability (536 h). Techno-economic analysis revealed a competitive cost of capture (US$229.9 tCO2−1). Using a highly efficient and stable bismuth-based electrocatalyst, CO2 was further converted into pure formic acid (800 mA cm−2 at −1.37 V) and subsequently transformed by engineered Vibrio natriegens into succinic acid (1.37 g l−1). Therefore, our electro-bioconversion system represents a solution to sustainable biochemical synthesis using the ocean carbon sink as a resource.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed artificial oceanic carbon capture and upcycling system.
Fig. 2: Capture of CO2 from seawater using our solid electrolyte electrolyser.
Fig. 3: Structural characterization of Bi-BEN.
Fig. 4: CO2RR performance and mechanistic studies of Bi-BEN and Bi NPs.
Fig. 5: Electrochemical production of formic acid and microbial conversion to succinate.
Fig. 6: Using formate synthesized from CO2 for microbial production of succinate.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information. The atomic coordinates of the optimized computational models are also provided in Supplementary Data 1. Other data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article  Google Scholar 

  2. Gruber, N. et al. Trends and variability in the ocean carbon sink. Nat. Rev. Earth Environ. 4, 119–134 (2023).

    Article  CAS  Google Scholar 

  3. Gattuso, J. P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

    Article  PubMed  Google Scholar 

  4. DeVries, T. The ocean carbon cycle. Annu. Rev. Environ. Resour. 47, 317–341 (2022).

    Article  Google Scholar 

  5. de Lannoy, C.-F. et al. Indirect ocean capture of atmospheric CO2: part I. Prototype of a negative emissions technology. Int. J. Greenh. Gas Control 70, 243–253 (2018).

    Article  Google Scholar 

  6. Rahimi, M., Khurram, A., Hatton, T. A. & Gallant, B. Electrochemical carbon capture processes for mitigation of CO2 emissions. Chem. Soc. Rev. 51, 8676–8695 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Yan, L., Bao, J., Shao, Y. & Wang, W. An electrochemical hydrogen-looping system for low-cost CO2 capture from seawater. ACS Energy Lett. 7, 1947–1952 (2022).

    Article  CAS  Google Scholar 

  8. Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).

    Article  CAS  Google Scholar 

  9. Cai, L., Li, H., Deng, J., Zhou, R. & Zeng, Q. Biological interactions with Prochlorococcus: implications for the marine carbon cycle. Trends Microbiol. 32, 280–291 (2023).

    Article  PubMed  Google Scholar 

  10. Zhang, C. et al. Eco-engineering approaches for ocean negative carbon emission. Sci. Bull. 67, 2564–2573 (2022).

    Article  CAS  Google Scholar 

  11. Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kwiatkowski, L. & Orr, J. C. Diverging seasonal extremes for ocean acidification during the twenty-first century. Nat. Clim. Change 8, 141–145 (2018).

    Article  CAS  Google Scholar 

  13. Taylor, L. L. et al. Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nat. Clim. Change 6, 402–406 (2016).

    Article  CAS  Google Scholar 

  14. Eisaman, M. D. Negative emissions technologies: the tradeoffs of air-capture economics. Joule 4, 516–520 (2020).

    Article  Google Scholar 

  15. Eisaman, M. D. et al. CO2 extraction from seawater using bipolar membrane electrodialysis. Energy Environ. Sci. 5, 7346–7352 (2012).

    Article  CAS  Google Scholar 

  16. Digdaya, I. A. et al. A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater. Nat. Commun. 11, 4412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharifian, R., Boer, L., Wagterveld, R. M. & Vermaas, D. A. Oceanic carbon capture through electrochemically induced in situ carbonate mineralization using bipolar membrane. Chem. Eng. J. 438, 135326 (2022).

    Article  CAS  Google Scholar 

  18. Kim, S. et al. Asymmetric chloride-mediated electrochemical process for CO2 removal from oceanwater. Energy Environ. Sci. 16, 2030–2044 (2023).

    Article  CAS  Google Scholar 

  19. Aleta, P., Refaie, A., Afshari, M., Hassan, A. & Rahimi, M. Direct ocean capture: the emergence of electrochemical processes for oceanic carbon removal. Energy Environ. Sci. 16, 4944–4967 (2023).

    Article  CAS  Google Scholar 

  20. Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    Article  CAS  Google Scholar 

  21. Zhu, P. et al. Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Fang, W. et al. Durable CO2 conversion in the proton-exchange membrane system. Nature 626, 86–91 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, C., Kotyk, J. F. K. & Sheehan, S. W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4, 2571–2586 (2018).

    Article  CAS  Google Scholar 

  24. Claassens, N. J., Cotton, C. A. R., Kopljar, D. & Bar-Even, A. Making quantitative sense of electromicrobial production. Nat. Catal. 2, 437–447 (2019).

    Article  CAS  Google Scholar 

  25. Tian, J. et al. Discovery and remodeling of Vibrio natriegens as a microbial platform for efficient formic acid biorefinery. Nat. Commun. 14, 7758 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, S. et al. Halide-guided active site exposure in bismuth electrocatalysts for selective CO2 conversion into formic acid. Nat. Catal. 6, 796–806 (2023).

    Article  CAS  Google Scholar 

  27. Zhang, M. et al. Engineering a conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability. Energy Environ. Sci. 14, 4998–5008 (2021).

    Article  CAS  Google Scholar 

  28. Zhu, J. et al. Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nat. Commun. 14, 4670 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, Y. et al. Enhancing local CO2 adsorption by l‐histidine incorporation for selective formate production over the wide potential window. Angew. Chem. Int. Ed. 62, e202313522 (2023).

    Article  CAS  Google Scholar 

  30. Deng, W., Zhang, P., Seger, B. & Gong, J. Unraveling the rate-limiting step of two-electron transfer electrochemical reduction of carbon dioxide. Nat. Commun. 13, 803 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fletcher, S. Tafel slopes from first principles. J. Solid State Electrochem 13, 537–549 (2009).

    Article  CAS  Google Scholar 

  32. Limaye, A. M., Zeng, J. S., Willard, A. P. & Manthiram, K. Bayesian data analysis reveals no preference for cardinal Tafel slopes in CO2 reduction electrocatalysis. Nat. Commun. 12, 703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, H., Gao, J., Raciti, D. & Hall, A. S. Promoting Cu-catalysed CO2 electroreduction to multicarbon products by tuning the activity of H2O. Nat. Catal. 6, 807–817 (2023).

    Article  CAS  Google Scholar 

  34. Shi, Y. et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat. Commun. 11, 3415 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yao, K. et al. Metal–organic framework derived dual-metal sites for electroreduction of carbon dioxide to HCOOH. Appl. Catal. B 311, 121377 (2022).

    Article  CAS  Google Scholar 

  36. Liu, C. et al. In situ reconstruction of Cu–N coordinated MOFs to generate dispersive Cu/Cu2O nanoclusters for selective electroreduction of CO2 to C2H4. ACS Catal. 12, 15230–15240 (2022).

    Article  CAS  Google Scholar 

  37. Yuan, Y. et al. In situ structural reconstruction to generate the active sites for CO2 electroreduction on bismuth ultrathin nanosheets. Adv. Energy Mater. 12, 2200970 (2022).

    Article  CAS  Google Scholar 

  38. Weinstock, M. T., Hesek, E. D., Wilson, C. M. & Gibson, D. G. Vibrio natriegens as a fast-growing host for molecular biology. Nat. Methods 13, 849–851 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, H. H. et al. Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi. Nat. Microbiol. 4, 1105–1113 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Bang, J. & Lee, S. Y. Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc. Natl Acad. Sci. USA 115, 9271–9279 (2018).

    Article  Google Scholar 

  41. Yishai, O., Goldbach, L., Tenenboim, H., Lindner, S. N. & Bar-Even, A. Engineered assimilation of exogenous and endogenous formate in Escherichia coli. ACS Synth. Biol. 6, 1722–1731 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Ferone, M., Raganati, F., Olivieri, G. & Marzocchella, A. Bioreactors for succinic acid production processes. Crit. Rev. Biotechnol. 39, 571–586 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Nelson, T. F. et al. Biodegradation of poly(butylene succinate) in soil laboratory incubations assessed by stable carbon isotope labelling. Nat. Commun. 13, 5691 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dalia, T. N. et al. Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in Vibrio natriegens. ACS Synth. Biol. 6, 1650–1655 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hoffart, E. et al. High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology. Appl. Environ. Microbiol. 83, e01614–e01617 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu, L. W. & Tang, Y. J. Current advances of succinate biosynthesis in metabolically engineered Escherichia coli. Biotechnol. Adv. 35, 1040–1048 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Xianbiao, F. et al. Scalable chemical interface confinement reduction BiOBr to bismuth porous nanosheets for electroreduction of carbon dioxide to liquid fuel. Adv. Funct. Mater. 32, 2107182 (2022).

    Article  Google Scholar 

  49. Chen, L. -W. et al. Controllable crystallization of two‐dimensional Bi nanocrystals with morphology‐boosted CO2 electroreduction in wide pH environments. Small 19, 2301639 (2023).

    Article  CAS  Google Scholar 

  50. Yang, Q. et al. Novel Bi‐doped amorphous SnOx nanoshells for efficient electrochemical CO2 reduction into formate at low overpotentials. Adv. Mater. 32, 2002822 (2020).

    Article  CAS  Google Scholar 

  51. He, Y. -C. et al. Integrated 3D open network of interconnected bismuthene arrays for energy‐efficient and electrosynthesis‐assisted electrocatalytic CO2 reduction. Small 18, 2105246 (2022).

    Article  CAS  Google Scholar 

  52. Ma, W. Monoclinic scheelite bismuth vanadate derived bismuthene nanosheets with rapid kinetics for electrochemically reducing carbon dioxide to formate. Adv. Funct. Mater. 31, 2006704 (2021).

    Article  CAS  Google Scholar 

  53. Xing, Y. et al. Bi@Sn core-shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv. Sci. 7, 1902989 (2020).

    Article  CAS  Google Scholar 

  54. Lv, L. e al. Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate. Angew. Chem. Int. Ed. 62, e202303117 (2023).

    Article  CAS  Google Scholar 

  55. Chen, L., Liu, Y., Kong, X., Geng, Z. & Zeng, J. Electrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate. Nano Res. 15, 10078–10083 (2022).

    Article  Google Scholar 

  56. Zeng, G. et al. Reconstruction of ultrahigh‐aspect‐ratio crystalline bismuth–organic hybrid nanobelts for selective electrocatalytic CO2 reduction to formate. Adv. Funct. Mater. 32, 2201125 (2022).

    Article  CAS  Google Scholar 

  57. Zhao, Y. et al. Spontaneously Sn-doped Bi/BiOx core–shell nanowires toward high-performance CO2 electroreduction to liquid fuel. Nano Lett. 21, 6907–6913 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Nguyen, D. T. N. et al. Metabolic engineering of the type I methanotroph Methylomonas sp. DH-1 for production of succinate from methane. Metab. Eng. 54, 170–179 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Mock, M., Schmid, A. & Bühler, K. Directed reaction engineering boosts succinate formation of Synechocystis sp. PCC 6803_Δ sll1625. Biotechnol. J. 15, 2000127 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.X. acknowledges the National Key Research and Development Program of China (2024YFB4105700), the NSFC (52171201) and the Natural Science Foundation of Sichuan Province (2025NSFJQ0017). X.G. acknowledges the NSFC (32230060, 32171426, 32522056), the Guangdong Basic and Applied Basic Research Foundation (2024B1515020102) and the Shenzhen Science and Technology Program (JCYJ20220818101804010, JCYJ20220531100006011 and RCYX20221008092901004). We thank beamline BL11B of the Shanghai Synchrotron Radiation Facility and Shenzhen Synthetic Biology Infrastructure for providing facilities. We extend our gratitude to W. Jiang and Y. Gu’s group for their generous provision of the starting V. natriegens strains.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceptualized by C.X. and was supervised by C.X. and X.G. C. Li prepared the catalysts with the help of B.Y. C. Li performed the catalytic tests. M.G., S.P. and M.H. performed the microbial experiments. C. Li, B.Y., H.Z. and Y.J. performed the catalyst characterization. C. Li, X.L., Q.J. and T.Z. designed the membrane electrode. C. Li, C. Liu and W.X. performed the XAFS measurements. C. Li, M.G., H.W., J.L., X.Z., Y.W., D.Z. and K.Z. helped in the data analysis. J.Z. and L.Z. performed the DFT calculations. C.X., C. Li, M.G. and X.G. wrote the paper with input from all of the authors. All of the authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Xiang Gao or Chuan Xia.

Ethics declarations

Competing interests

A provisional patent application (202310817899.5) based on the technology described in this work was filed in China on July 2023 by C.X. and C. Li. at the University of Electronic Science and Technology of China. The other authors declare no other competing interests.

Peer review

Peer review information

Nature Catalysis thanks Asmita Jana and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Figs. 1–54 and Tables 1–12.

Reporting Summary

Supplementary Data 1

Atomic coordinates of the optimized computational models used in this work.

Supplementary Data 2

Crystallographic data for the BEN molecule.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Source Data Fig. 6

Source data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Guo, M., Yang, B. et al. Efficient and scalable upcycling of oceanic carbon sources into bioplastic monomers. Nat Catal (2025). https://doi.org/10.1038/s41929-025-01416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41929-025-01416-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing