Abstract
Airway mucus has a crucial role in protecting against inhaled pathogens and regulating water homeostasis, but it can also diminish the efficacy of therapeutic pulmonary delivery. Recent development in inhalable materials and biologics has introduced strategies to modify mucus properties, strengthening mucosal protection, advancing drug delivery and targeting and supporting effective water regulation. In this Review, we thoroughly examine the structure and function of airway mucus, along with the challenges and opportunities it presents for inhaled treatments. We explore new methods that enhance the protective role of mucus through physical reinforcement, pathogen neutralization, muco-trapping and rehydration, as well as strategies that overcome the mucus barrier to improve drug delivery, including physical modulation, mucoadhesive design, muco-penetrating design, mucolytics and active targeting. Finally, we discuss the clinical implications of these promising strategies, emphasizing the need to balance mucosal function with optimized therapeutic delivery. We seek to explore prospective ways to improve inhalation therapies for both infectious and chronic lung diseases by reviewing recent progress in inhalable materials and biologics.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Edwards, D. A. et al. Global warming risks dehydrating and inflaming human airways. Commun. Earth Environ. 6, 193 (2025).
Lillehoj, E. P. & Kim, K. C. Airway mucus: its components and function. Arch. Pharm. Res. 25, 770â780 (2002).
Ridley, C. & Thornton, D. J. Mucins: the frontline defence of the lung. Biochem. Soc. Trans. 46, 1099â1106 (2018).
Hill, D. B., Button, B., Rubinstein, M. & Boucher, R. C. Physiology and pathophysiology of human airway mucus. Physiol. Rev. 102, 1757â1836 (2022).
Zanin, M., Baviskar, P., Webster, R. & Webby, R. The interaction between respiratory pathogens and mucus. Cell Host Microbe 19, 159â168 (2016).
Evans, C. M. & Koo, J. S. Airway mucus: the good, the bad, the sticky. Pharmacol. Ther. 121, 332â348 (2009).
Labiris, N. R. & Dolovich, M. B. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol. 56, 588â599 (2003).
Subramani, P. K., Remya, P., Narayanasamy, D. & Kumar, P. The role of pulmonary drug delivery in modern therapeutics: an overview. Cureus 16, e68639 (2024).
He, S. et al. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J. Nanobiotechnol. 20, 101 (2022).
Nyström, A. & Bruckner-Tuderman, L. Gene therapy for epidermolysis bullosa: sticky business. Mol. Ther. 24, 2035â2036 (2016).
Chen, D., Liu, J., Wu, J. & Suk, J. S. Enhancing nanoparticle penetration through airway mucus to improve drug delivery efficacy in the lung. Expert Opin. Drug Deliv. 18, 595â606 (2021).
Yue, L. et al. Inhaled drug delivery: past, present, and future. Nano Today 52, 101942 (2023).
Pangeni, R. et al. Airway mucus in pulmonary diseases: muco-adhesive and muco-penetrating particles to overcome the airway mucus barriers. Int. J. Pharm. 634, 122661 (2023).
Lai, S. K., Wang, Y.-Y., Wirtz, D. & Hanes, J. Micro-and macrorheology of mucus. Adv. Drug Deliv. Rev. 61, 86â100 (2009).
Brockhausen, I., Schachter, H. & Stanley, P. in Essentials of Glycobiology 2nd edn Ch. 9 (eds Varki, A. et al.) (Cold Spring Harbor Laboratory Press, 2009).
Stanley, P., Sundaram, S., Tang, J. & Shi, S. Molecular analysis of three gain-of-function CHO mutants that add the bisecting GlcNAc to N-glycans. Glycobiology 15, 43â53 (2005).
Button, B. et al. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337, 937â941 (2012).
Ganesan, S., Comstock, A. T. & Sajjan, U. S. Barrier function of airway tract epithelium. Tissue Barriers 1, e24997 (2013).
Lai, S. K., Wang, Y.-Y., Cone, R., Wirtz, D. & Hanes, J. Altering mucus rheology to âsolidifyâ human mucus at the nanoscale. PLoS ONE 4, e4294 (2009).
Fais, F. et al. Drug-free nasal spray as a barrier against SARS-CoV-2 and its delta variant: in vitro study of safety and efficacy in human nasal airway epithelia. Int. J. Mol. Sci. 23, 4062 (2022).
Joseph, J. et al. Toward a radically simple multi-modal nasal spray for preventing respiratory infections. Adv. Mater. 36, 2406348 (2024).
Zaderer, V. et al. ColdZyme protects airway epithelia from infection with BA.4/5. Respir. Res. 23, 300 (2022).
Posch, W. et al. ColdZyme maintains integrity in SARS-CoV-2-infected airway epithelia. mBio 12, 00904-21 (2021).
Moakes, R. J., Davies, S. P., Stamataki, Z. & Grover, L. M. Formulation of a composite nasal spray enabling enhanced surface coverage and prophylaxis of SARS-COV-2. Adv. Mater. 33, 2008304 (2021).
Bentley, K. & Stanton, R. J. Hydroxypropyl methylcellulose-based nasal sprays effectively inhibit in vitro SARS-CoV-2 infection and spread. Viruses 13, 2345 (2021).
Eccles, R. et al. Efficacy and safety of an antiviral iota-carrageenan nasal spray: a randomized, double-blind, placebo-controlled exploratory study in volunteers with early symptoms of the common cold. Respir. Res. 11, 1â10 (2010).
Robinson, T. E., Moakes, R. J. & Grover, L. M. Low acyl gellan as an excipient to improve the sprayability and mucoadhesion of iota carrageenan in a nasal spray to prevent infection with SARS-CoV-2. Front. Med. Technol. 3, 687681 (2021).
PyrÄ, K. et al. SARS-CoV-2 inhibition using a mucoadhesive, amphiphilic chitosan that may serve as an anti-viral nasal spray. Sci. Rep. 11, 20012 (2021).
Masutomi, Y., Goto, T. & Ichikawa, T. Mouth breathing reduces oral function in adolescence. Sci. Rep. 14, 3810 (2024).
Mei, X. et al. An inhaled bioadhesive hydrogel to shield non-human primates from SARS-CoV-2 infection. Nat. Mater. 22, 903â912 (2023).
Deng, J. et al. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20, 229â236 (2021).
Haut, B. et al. Comprehensive analysis of heat and water exchanges in the human lungs. Front. Physiol. 12, 649497 (2021).
Crouzier, T. A defensive blanket against viral infection of the lungs. Nat. Mater. 22, 803â804 (2023).
Balmforth, D. et al. Evaluating the efficacy and safety of a novel prophylactic nasal spray in the prevention of SARS-CoV-2 infection: a multi-centre, double blind, placebo-controlled, randomised trial. J. Clin. Virol. 155, 105248 (2022).
Bovard, D. et al. Iota-carrageenan extracted from red algae is a potent inhibitor of SARS-CoV-2 infection in reconstituted human airway epithelia. Biochem. Biophys. Rep. 29, 101187 (2022).
Paull, J. R. et al. Protective effects of astodrimer sodium 1% nasal spray formulation against SARS-CoV-2 nasal challenge in K18-hACE2 mice. Viruses 13, 1656 (2021).
Baum, A. et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 369, 1014â1018 (2020).
Dussupt, V. et al. Low-dose in vivo protection and neutralization across SARS-CoV-2 variants by monoclonal antibody combinations. Nat. Immunol. 22, 1503â1514 (2021).
Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584, 115â119 (2020).
Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290â295 (2020).
Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584, 437â442 (2020).
Shi, R. et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 584, 120â124 (2020).
Rogers, T. F. et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science 369, 956â963 (2020).
Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443â449 (2020).
Oti, V. B., Idris, A. & McMillan, N. A. Intranasal antivirals against respiratory syncytial virus: the current therapeutic development landscape. Expert Rev. Anti Infect. Ther. 22, 647â657 (2024).
Yang, B. et al. ZMapp reinforces the airway mucosal barrier against Ebola virus. J. Infect. Dis. 218, 901â910 (2018).
Yang, Z., Li, C., Song, Y., Ying, T. & Wu, Y. Inhalable antibodies for the treatment of COVID-19. Innovation 3, 100328 (2022).
Zhang, H. et al. Advances in developing ACE2 derivatives against SARS-CoV-2. Lancet Microbe 4, e369âe378 (2023).
Tu, B., Gao, Y., An, X., Wang, H. & Huang, Y. Localized delivery of nanomedicine and antibodies for combating COVID-19. Acta Pharm. Sin. B 13, 1828â1846 (2023).
El-Shennawy, L. et al. Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nat. Commun. 13, 405 (2022).
Kuate, S., Cinatl, J., Doerr, H. W. & Ãberla, K. Exosomal vaccines containing the S protein of the SARS coronavirus induce high levels of neutralizing antibodies. Virology 362, 26â37 (2007).
Li, G. et al. The therapeutic potential of exosomes in immunotherapy. Front. Immunol. 15, 1424081 (2024).
Wu, C. et al. Neutralization of SARS-CoV-2 pseudovirus using ACE2-engineered extracellular vesicles. Acta Pharm. Sin. B 12, 1523â1533 (2022).
Xie, F. et al. Engineering extracellular vesicles enriched with palmitoylated ACE2 as COVID-19 therapy. Adv. Mater. 33, 2103471 (2021).
Li, Z. et al. Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19. Nat. Nanotechnol. 16, 942â951 (2021).
Conde, J., Langer, R. & Rueff, J. mRNA therapy at the convergence of genetics and nanomedicine. Nat. Nanotechnol. 18, 537â540 (2023).
Chen, M. et al. Nanotraps for the containment and clearance of SARS-CoV-2. Matter 4, 2059â2082 (2021).
Fang, R. H., Kroll, A. V., Gao, W. & Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 30, 1706759 (2018).
Liu, Y., Yao, S., Deng, L., Ming, J. & Zeng, K. Different mechanisms of action of isolated epiphytic yeasts against Penicillium digitatum and Penicillium italicum on citrus fruit. Postharvest Biol. Technol. 152, 100â110 (2019).
Liu, J., Spruijt, E., Miserez, A. & Langer, R. Peptide-based liquid droplets as emerging delivery vehicles. Nat. Rev. Mater. 8, 139â141 (2023).
Zhang, Q. et al. Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett. 20, 5570â5574 (2020).
Zhang, H. et al. Inhalable nanocatchers for SARS-CoV-2 inhibition. Proc. Natl Acad. Sci. USA 118, e2102957118 (2021).
Mahmudpour, M., Roozbeh, J., Keshavarz, M., Farrokhi, S. & Nabipour, I. COVID-19 cytokine storm: the anger of inflammation. Cytokine 133, 155151 (2020).
Wang, Z. et al. Inhaled ACE2-engineered microfluidic microsphere for intratracheal neutralization of COVID-19 and calming of the cytokine storm. Matter 5, 336â362 (2022).
Paiardi, G. et al. The binding of heparin to spike glycoprotein inhibits SARS-CoV-2 infection by three mechanisms. J. Biol. Chem. 298, 101507 (2022).
Ai, X. et al. Surface glycan modification of cellular nanosponges to promote SARS-CoV-2 inhibition. J. Am. Chem. Soc. 143, 17615â17621 (2021).
Qi, Y. et al. Delivery of therapeutic levels of heparin and low-molecular-weight heparin through a pulmonary route. Proc. Natl Acad. Sci. USA 101, 9867â9872 (2004).
Tu, B. et al. Inhaled heparin polysaccharide nanodecoy against SARS-CoV-2 and variants. Acta Pharm. Sin. B 12, 3187 (2022).
Clausen, T. M. et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell 183, 1043â1057.e15 (2020).
Baranova, E., Shastina, N. & Shvets, V. Polyanionic inhibitors of HIV adsorption. Russ. J. Bioorg. Chem. 37, 527â542 (2011).
Gao, Y., Liu, W., Wang, W., Zhang, X. & Zhao, X. The inhibitory effects and mechanisms of 3, 6-O-sulfated chitosan against human papillomavirus infection. Carbohydr. Polym. 198, 329â338 (2018).
Karthik, R., Manigandan, V., Saravanan, R., Rajesh, R. P. & Chandrika, B. Structural characterization and in vitro biomedical activities of sulfated chitosan from Sepia pharaonis. Int. J. Biol. Macromol. 84, 319â328 (2016).
Li, X., Wu, P., Gao, G. F. & Cheng, S. Carbohydrate-functionalized chitosan fiber for influenza virus capture. Biomacromolecules 12, 3962â3969 (2011).
Schaefer, A. & Lai, S. K. The biophysical principles underpinning muco-trapping functions of antibodies. Hum. Vaccin. Immunother. 18, 1939605 (2022).
Wang, Y.-Y. et al. IgG in cervicovaginal mucus traps HSV and prevents vaginal herpes infections. Mucosal Immunol. 7, 1036â1044 (2014).
Wang, Y.-Y. et al. Influenza-binding antibodies immobilise influenza viruses in fresh human airway mucus. Eur. Respir. J. 49, 1601709 (2017).
McSweeney, M. D. et al. Inhaled âmuco-trappingâ monoclonal antibody effectively treats established respiratory syncytial virus (RSV) infections. Adv. Sci. 11, 2306729 (2024).
Syed, Y. Y. Regdanvimab: first approval. Drugs 81, 2133â2137 (2021).
McSweeney, M. D. et al. Stable nebulization and muco-trapping properties of regdanvimab/IN-006 support its development as a potent, dose-saving inhaled therapy for COVID-19. Bioeng. Transl. Med. 8, e10391 (2023).
Moench, T. R. et al. A randomized, double-blind, phase 1, single- and multiple-dose placebo-controlled study of the safety and pharmacokinetics of IN-006, an inhaled antibody treatment for COVID-19 in healthy volunteers. EBioMedicine 113, 105582 (2025).
Wessler, T. et al. Using computational modeling to optimize the design of antibodies that trap viruses in mucus. ACS Infect. Dis. 2, 82â92 (2016).
Müller, W. E. et al. Morphogenetic (mucin expression) as well as potential anti-corona viral activity of the marine secondary metabolite polyphosphate on A549 cells. Mar. Drugs 18, 639 (2020).
Roy, S., Jaiswar, A. & Sarkar, R. Dynamic asymmetry exposes 2019-nCoV prefusion spike. J. Phys. Chem. Lett. 11, 7021â7027 (2020).
Saltzman, W. M., Radomsky, M. L., Whaley, K. J. & Cone, R. A. Antibody diffusion in human cervical mucus. Biophys. J. 66, 508â515 (1994).
Cruz-Teran, C. et al. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Adv. Drug Deliv. Rev. 169, 100â117 (2021).
Abrami, M. et al. Mucus structure, viscoelastic properties, and composition in chronic respiratory diseases. Int. J. Mol. Sci. 25, 1933 (2024).
Edwards, D. A. & Chung, K. F. Mucus transpiration as the basis for chronic cough and cough hypersensitivity. Lung 202, 17â24 (2024).
Wark, P., McDonald, V. M. & Smith, S. Nebulised hypertonic saline for cystic fibrosis. Cochrane Database Syst. Rev. 6, CD001506 (2023).
Edwards, D. A. et al. Exhaled aerosol increases with COVID-19 infection, age, and obesity. Proc. Natl Acad. Sci. USA 118, e2021830118 (2021).
Pritchard, M. F. et al. A new class of safe oligosaccharide polymer therapy to modify the mucus barrier of chronic respiratory disease. Mol. Pharm. 13, 863â872 (2016).
Cho, D. Y. et al. Glutathione and bicarbonate nanoparticles improve mucociliary transport in cystic fibrosis epithelia. Int. Forum Allergy Rhinol. 14, 1026â1035 (2024).
Ehre, C. et al. Overexpressing mouse model demonstrates the protective role of Muc5ac in the lungs. Proc. Natl Acad. Sci. USA 109, 16528â16533 (2012).
Roy, M. G. et al. Muc5b is required for airway defence. Nature 505, 412â416 (2014).
Chhin, B. et al. Ciliary beating recovery in deficient human airway epithelial cells after lentivirus ex vivo gene therapy. PLoS Genet. 5, e1000422 (2009).
Coraux, C., Roux, J., Jolly, T. & Birembaut, P. Epithelial cellâextracellular matrix interactions and stem cells in airway epithelial regeneration. Proc. Am. Thorac. Soc. 5, 689â694 (2008).
Mehrban, N. et al. α-Helical peptides on plasma-treated polymers promote ciliation of airway epithelial cells. Mater. Sci. Eng. C 122, 111935 (2021).
Zahm, J.-M., Milliot, M., Bresin, A., Coraux, C. & Birembaut, P. The effect of hyaluronan on airway mucus transport and airway epithelial barrier integrity: potential application to the cytoprotection of airway tissue. Matrix Biol. 30, 389â395 (2011).
Ahmad, J. et al. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol. Sci. Appl. 8, 55â66 (2015).
Newman, S. P. Drug delivery to the lungs: challenges and opportunities. Ther. Deliv. 8, 647â661 (2017).
Baryakova, T. H., Pogostin, B. H., Langer, R. & McHugh, K. J. Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems. Nat. Rev. Drug Discov. 22, 387â409 (2023).
Haidl, P., Heindl, S., Siemon, K., Bernacka, M. & Cloes, R. M. Inhalation device requirements for patientsâ inhalation maneuvers. Respir. Med. 118, 65â75 (2016).
ScherlieÃ, R., Bock, S., Bungert, N., Neustock, A. & Valentin, L. Particle engineering in dry powders for inhalation. Eur. J. Pharm. Sci. 172, 106158 (2022).
Edwards, D. A. et al. Large porous particles for pulmonary drug delivery. Science 276, 1868â1872 (1997).
Edwards, D. A., Ben-Jebria, A. & Langer, R. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J. Appl. Physiol. 85, 379â385 (1998).
Vanbever, R. et al. Formulation and physical characterization of large porous particles for inhalation. Pharm. Res. 16, 1735â1742 (1999).
Bartus, R. T. et al. A pulmonary formulation of L-dopa enhances its effectiveness in a rat model of Parkinsonâs disease. J. Pharmacol. Exp. Ther. 310, 828â835 (2004).
Paik, J. Levodopa inhalation powder: a review in Parkinsonâs disease. Drugs 80, 821â828 (2020).
Lee, W.-H., Loo, C.-Y., Traini, D. & Young, P. M. Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian J. Pharm. Sci. 10, 481â489 (2015).
Lee, W.-H. et al. The potential to treat lung cancer via inhalation of repurposed drugs. Adv. Drug Deliv. Rev. 133, 107â130 (2018).
Huang, X. et al. The landscape of mRNA nanomedicine. Nat. Med. 28, 2273â2287 (2022).
El-Sherbiny, I. M., El-Baz, N. M. & Yacoub, M. H. Inhaled nano- and microparticles for drug delivery. Glob. Cardiol. Sci. Pract. 2015, 2 (2015).
Kuzmov, A. & Minko, T. Nanotechnology approaches for inhalation treatment of lung diseases. J. Control. Release 219, 500â518 (2015).
Hickey, A. J. Emerging trends in inhaled drug delivery. Adv. Drug Deliv. Rev. 157, 63â70 (2020).
Gao, J., Karp, J. M., Langer, R. & Joshi, N. The future of drug delivery. Chem. Mater. 35, 359â363 (2023).
Murgia, X., Loretz, B., Hartwig, O., Hittinger, M. & Lehr, C.-M. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv. Drug Deliv. Rev. 124, 82â97 (2018).
Newby, J. M. et al. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery. Adv. Drug Deliv. Rev. 124, 64â81 (2018).
Arredouani, M. et al. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J. Exp. Med. 200, 267â272 (2004).
Brune, K., Frank, J., Schwingshackl, A., Finigan, J. & Sidhaye, V. K. Pulmonary epithelial barrier function: some new players and mechanisms. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L731âL745 (2015).
Rezaee, F. & Georas, S. N. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am. J. Respir. Cell Mol. Biol. 50, 857â869 (2014).
Bustamante-Marin, X. M. & Ostrowski, L. E. Cilia and mucociliary clearance. Cold Spring Harb. Perspect. Biol. 9, a028241 (2017).
Murgia, X., de Souza Carvalho, C. & Lehr, C.-M. Overcoming the pulmonary barrier: new insights to improve the efficiency of inhaled therapeutics. Eur. J. Nanomed. 6, 157â169 (2014).
Ruge, C. A., Kirch, J. & Lehr, C.-M. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers â therapeutic possibilities and technological challenges. Lancet Respir. Med. 1, 402â413 (2013).
Eshaghi, B. et al. The role of engineered materials in mucosal vaccination strategies. Nat. Rev. Mater. 9, 29â45 (2024).
Wang, E. Y., Sarmadi, M., Ying, B., Jaklenec, A. & Langer, R. Recent advances in nano- and micro-scale carrier systems for controlled delivery of vaccines. Biomaterials 303, 122345 (2023).
Tang, Z. et al. A materials-science perspective on tackling COVID-19. Nat. Rev. Mater. 5, 847â860 (2020).
Heyder, J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc. Am. Thorac. Soc. 1, 315â320 (2004).
Martonen, T. B. & Katz, I. M. Deposition patterns of aerosolized drugs within human lungs: effects of ventilatory parameters. Pharm. Res. 10, 871â878 (1993).
Sturm, R. & Hofmann, W. A theoretical approach to the deposition and clearance of fibers with variable size in the human respiratory tract. J. Hazard. Mater. 170, 210â218 (2009).
Wang, C. C. et al. Airborne transmission of respiratory viruses. Science 373, eabd9149 (2021).
Sardeli, C. et al. Inhaled chemotherapy adverse effects: mechanisms and protection methods. Lung Cancer Manag. 8, LMT19 (2019).
Wang, X. et al. Effects of L-leucine on the properties of spray-dried swellable microparticles with wrinkled surfaces for inhalation therapy of pulmonary fibrosis. Int. J. Pharm. 610, 121223 (2021).
Hassan, M. S. & Lau, R. W. M. Effect of particle shape on dry particle inhalation: study of flowability, aerosolization, and deposition properties. AAPS PharmSciTech 10, 1252â1262 (2009).
Liu, C., Jiang, X., Gan, Y. & Yu, M. Engineering nanoparticles to overcome the mucus barrier for drug delivery: design, evaluation and state-of-the-art. Med. Drug Discov. 12, 100110 (2021).
Das Neves, J., Bahia, M. F., Amiji, M. M. & Sarmento, B. Mucoadhesive nanomedicines: characterization and modulation of mucoadhesion at the nanoscale. Expert Opin. Drug Deliv. 8, 1085â1104 (2011).
Pardeshi, C. V., Agnihotri, V. V., Patil, K. Y., Pardeshi, S. R. & Surana, S. J. Mannose-anchored N,N,N-trimethyl chitosan nanoparticles for pulmonary administration of etofylline. Int. J. Biol. Macromol. 165, 445â459 (2020).
Shi, X. et al. In vivo approach of simply constructed pyrazinamide conjugated chitosan-g-polycaprolactone micelles for methicillin resistance Staphylococcus aureus. Int. J. Biol. Macromol. 158, 636â647 (2020).
Yuan, X. et al. Mucoadhesive guargum hydrogel inter-connected chitosan-g-polycaprolactone micelles for rifampicin delivery. Carbohydr. Polym. 206, 1â10 (2019).
Perrone, M. et al. Preactivated thiolated glycogen as mucoadhesive polymer for drug delivery. Eur. J. Pharm. Biopharm. 119, 161â169 (2017).
Racaniello, G. F. et al. Spray-dried mucoadhesive microparticles based on S-protected thiolated hydroxypropyl-β-cyclodextrin for budesonide nasal delivery. Int. J. Pharm. 603, 120728 (2021).
Watchorn, J., Stuart, S., Burns, D. C. & Gu, F. X. Mechanistic influence of polymer species, molecular weight, and functionalization on mucinâpolymer binding interactions. ACS Appl. Polym. Mater. 4, 7537â7546 (2022).
Schuster, B. S., Suk, J. S., Woodworth, G. F. & Hanes, J. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials 34, 3439â3446 (2013).
Suk, J. S. et al. The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials 30, 2591â2597 (2009).
Coucke, D. et al. Spray-dried powders of starch and crosslinked poly(acrylic acid) as carriers for nasal delivery of inactivated influenza vaccine. Vaccine 27, 1279â1286 (2009).
Vasquez-MartÃnez, N., Guillen, D., Moreno-Mendieta, S. A., Sanchez, S. & RodrÃguez-Sanoja, R. The role of mucoadhesion and mucopenetration in the immune response induced by polymer-based mucosal adjuvants. Polymers 15, 1615 (2023).
Gao, X. et al. Mucus adhesion vs. mucus penetration? Screening nanomaterials for nasal inhalation by MD simulation. J. Control. Release 353, 366â379 (2023).
Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101â124 (2021).
Murgia, X. et al. Size-limited penetration of nanoparticles into porcine respiratory mucus after aerosol deposition. Biomacromolecules 17, 1536â1542 (2016).
Boylan, N. J. et al. Highly compacted DNA nanoparticles with low MW PEG coatings: in vitro, ex vivo and in vivo evaluation. J. Control. Release 157, 72â79 (2012).
Chen, D. et al. A two-pronged pulmonary gene delivery strategy: a surface-modified fullerene nanoparticle and a hypotonic vehicle. Angew. Chem. Int. Ed. 60, 15225â15229 (2021).
Guo, Y. et al. Mucus penetration of surface-engineered nanoparticles in various pH microenvironments. ACS Nano 17, 2813â2828 (2023).
Huang, G. et al. To enhance mucus penetration and lung absorption of drug by inhalable nanocrystals-in-microparticles. Pharmaceutics 14, 538 (2022).
Huang, X. et al. Protein nanocages that penetrate airway mucus and tumor tissue. Proc. Natl Acad. Sci. USA 114, E6595âE6602 (2017).
Huckaby, J. T. & Lai, S. K. PEGylation for enhancing nanoparticle diffusion in mucus. Adv. Drug Deliv. Rev. 124, 125â139 (2018).
Kim, Y. C. et al. Strategy to enhance dendritic cell-mediated DNA vaccination in the lung. Adv. Ther. 3, 2000013 (2020).
Lai, S. K. et al. Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus. Biomaterials 32, 6285â6290 (2011).
Mastorakos, P. et al. Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy. Proc. Natl Acad. Sci. USA 112, 8720â8725 (2015).
Porsio, B., Craparo, E. F., Mauro, N., Giammona, G. & Cavallaro, G. Mucus and cell-penetrating nanoparticles embedded in nano-into-micro formulations for pulmonary delivery of ivacaftor in patients with cystic fibrosis. ACS Appl. Mater. Interfaces 10, 165â181 (2018).
Suk, J. S. et al. Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier. J. Control. Release 178, 8â17 (2014).
Wang, Y.-Y. et al. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that âslipâ through the human mucus barrier. Angew. Chem. Int. Ed. 47, 9726 (2008).
Yang, M. et al. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew. Chem. 50, 2597 (2011).
Hu, M., Li, X., You, Z., Cai, R. & Chen, C. Physiological barriers and strategies of lipid-based nanoparticles for nucleic acid drug delivery. Adv. Mater. 36, 2303266 (2024).
Witten, J., Hu, Y., Langer, R. & Anderson, D. G. Recent advances in nanoparticulate RNA delivery systems. Proc. Natl Acad. Sci. USA 121, e2307798120 (2024).
Paul, P. K., Nakpheng, T., Paliwal, H., Ananth, K. P. & Srichana, T. Inhalable solid lipid nanoparticles of levofloxacin for potential tuberculosis treatment. Int. J. Pharm. 660, 124309 (2024).
De Leo, V. et al. Preparation of drug-loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases. Int. J. Pharm. 545, 378â388 (2018).
Scialabba, C., Craparo, E. F., Cabibbo, M., Drago, S. E. & Cavallaro, G. Exploiting inhalable microparticles incorporating hybrid polymer-lipid nanoparticles loaded with Iloprost manages lung hyper-inflammation. Int. J. Pharm. 666, 124813 (2024).
Tafech, B. et al. Exploring mechanisms of lipid nanoparticleâmucus interactions in healthy and cystic fibrosis conditions. Adv. Healthc. Mater. 13, 2304525 (2024).
Popov, A., Enlow, E., Bourassa, J. & Chen, H. Mucus-penetrating nanoparticles made with âmucoadhesiveâ poly (vinyl alcohol). Nanomed. Nanotechnol. Biol. Med. 12, 1863â1871 (2016).
Mansfield, E. D. et al. Side chain variations radically alter the diffusion of poly (2-alkyl-2-oxazoline) functionalised nanoparticles through a mucosal barrier. Biomater. Sci. 4, 1318â1327 (2016).
Nafee, N., Forier, K., Braeckmans, K. & Schneider, M. Mucus-penetrating solid lipid nanoparticles for the treatment of cystic fibrosis: proof of concept, challenges and pitfalls. Eur. J. Pharm. Biopharm. 124, 125â137 (2018).
Castellani, S. et al. Mucopenetration study of solid lipid nanoparticles containing magneto sensitive iron oxide. Eur. J. Pharm. Biopharm. 178, 94â104 (2022).
Li, M. et al. Modified PEG-lipids enhance the nasal mucosal immune capacity of lipid nanoparticle mRNA vaccines. Pharmaceutics 16, 1423 (2024).
Kim, J. et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. ACS Nano 16, 14792â14806 (2022).
Soto, M. R. et al. Discovery of peptides for ligand-mediated delivery of mRNA lipid nanoparticles to cystic fibrosis lung epithelia. Mol. Ther. Nucleic Acids 35, 102375 (2024).
Conte, G. et al. Hybrid lipid/polymer nanoparticles to tackle the cystic fibrosis mucus barrier in siRNA delivery to the lungs: does PEGylation make the difference? ACS Appl. Mater. Interfaces 14, 7565â7578 (2022).
Fang, Y. et al. Cleavable PEGylation: a strategy for overcoming the âPEG dilemmaâ in efficient drug delivery. Drug Deliv. 24, 22â32 (2017).
Degors, I. M., Wang, C., Rehman, Z. U. & Zuhorn, I. S. Carriers break barriers in drug delivery: endocytosis and endosomal escape of gene delivery vectors. Acc. Chem. Res. 52, 1750â1760 (2019).
Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059â1068 (2021).
Mahmoudzadeh, M., Magarkar, A., Koivuniemi, A., Róg, T. & Bunker, A. Mechanistic insight into how PEGylation reduces the efficacy of pH-sensitive liposomes from molecular dynamics simulations. Mol. Pharm. 18, 2612â2621 (2021).
Labouta, H. I. et al. Role of drug delivery technologies in the success of COVID-19 vaccines: a perspective. Drug Deliv. Transl. Res. 12, 2581â2588 (2022).
Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078â1094 (2021).
Patel, A. K. et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv. Mater. 31, 1805116 (2019).
Chen, Z. Surface hydration and antifouling activity of zwitterionic polymers. Langmuir 38, 4483â4489 (2022).
Qu, K. et al. Structures, properties, and applications of zwitterionic polymers. ChemPhysMater 1, 294â309 (2022).
Ma, Y. et al. pH-mediated mucus penetration of zwitterionic polydopamine-modified silica nanoparticles. Nano Lett. 23, 7552â7560 (2023).
Hu, S. et al. Zwitterionic polydopamine modified nanoparticles as an efficient nanoplatform to overcome both the mucus and epithelial barriers. Chem. Eng. J. 428, 132107 (2022).
Hernandez, K. E. C., Lee, J., Kim, S., Cartwright, Z. & Herrera-Alonso, M. Boronic acid-mediated mucin/surface interactions of zwitterionic polymer brushes. Soft Matter 21, 3125â3136 (2025).
Cao, Z. & Jiang, S. Super-hydrophilic zwitterionic poly (carboxybetaine) and amphiphilic non-ionic poly (ethylene glycol) for stealth nanoparticles. Nano Today 7, 404â413 (2012).
Jiang, S. & Cao, Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22, 920â932 (2010).
Zhang, Y. et al. Fundamentals and applications of zwitterionic antifouling polymers. J. Phys. D Appl. Phys. 52, 403001 (2019).
de Sousa, I. P. et al. Mucus permeating carriers: formulation and characterization of highly densely charged nanoparticles. Eur. J. Pharm. Biopharm. 97, 273â279 (2015).
Bogaert, B. et al. Selective replacement of cholesterol with cationic amphiphilic drugs enables the design of lipid nanoparticles with improved RNA delivery. Nano Lett. 24, 2961â2971 (2024).
Aghapour, M. et al. Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. Eur. Respir. Rev. 31, 210112 (2022).
Jiang, A. Y. et al. Zwitterionic polymer-functionalized lipid nanoparticles for the nebulized delivery of mRNA. J. Am. Chem. Soc. 146, 32567â32574 (2024).
Wang, W. et al. Engineered lipid liquid crystalline nanoparticles as an inhaled nanoplatform for mucus penetration enhancement. Drug Deliv. Transl. Res. 13, 2834â2846 (2023).
Carneiro, S. P., Greco, A., Chiesa, E., Genta, I. & Merkel, O. M. Shaping the future from the small scale: dry powder inhalation of CRISPRâCas9 lipid nanoparticles for the treatment of lung diseases. Expert Opin. Drug Deliv. 20, 471â487 (2023).
Shak, S., Capon, D. J., Hellmiss, R., Marsters, S. A. & Baker, C. L. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc. Natl Acad. Sci. USA 87, 9188â9192 (1990).
Dawson, M., Wirtz, D. & Hanes, J. Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J. Biol. Chem. 278, 50393â50401 (2003).
Carlson, T., Lock, J. & Carrier, R. Engineering the mucus barrier. Annu. Rev. Biomed. Eng. 20, 197â220 (2018).
Müller, C. et al. Preparation and characterization of mucus-penetrating papain/poly (acrylic acid) nanoparticles for oral drug delivery applications. J. Nanopart. Res. 15, 1â13 (2013).
Henke, M. O. & Ratjen, F. Mucolytics in cystic fibrosis. Paediatr. Respir. Rev. 8, 24â29 (2007).
App, E. et al. Dose-finding and 24-h monitoring for efficacy and safety of aerosolized Nacystelyn in cystic fibrosis. Eur. Respir. J. 19, 294â302 (2002).
Vasconcellos, C. A. et al. Reduction in viscosity of cystic fibrosis sputum in vitro by gelsolin. Science 263, 969â971 (1994).
Rubin, B. K., Kater, A. P. & Goldstein, A. L. Thymosin β4 sequesters actin in cystic fibrosis sputum and decreases sputum cohesivity in vitro. Chest 130, 1433â1440 (2006).
Macciò, A., Madeddu, C., Panzone, F. & Mantovani, G. Carbocysteine: clinical experience and new perspectives in the treatment of chronic inflammatory diseases. Expert Opin. Pharmacother. 10, 693â703 (2009).
Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92â96 (2015).
Netsomboon, K. & Bernkop-Schnürch, A. Mucoadhesive vs. mucopenetrating particulate drug delivery. Eur. J. Pharm. Biopharm. 98, 76â89 (2016).
Charbaji, R. et al. Design and testing of efficient mucus-penetrating nanogels â pitfalls of preclinical testing and lessons learned. Small 17, 2007963 (2021).
Müller, C., Perera, G., König, V. & Bernkop-Schnürch, A. Development and in vivo evaluation of papain-functionalized nanoparticles. Eur. J. Pharm. Biopharm. 87, 125â131 (2014).
Cheng, K. & Kalluri, R. Guidelines for clinical translation and commercialization of extracellular vesicles and exosomes based therapeutics. Extracell. Vesicle 2, 100029 (2023).
Zhang, Y. et al. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomed. 15, 6917â6934 (2020).
Hessvik, N. P. & Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 75, 193â208 (2018).
Dinh, P.-U. C. et al. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat. Commun. 11, 1064 (2020).
Wang, Z. et al. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine. Nat. Biomed. Eng. 6, 791â805 (2022).
Liu, M., Hu, S., Yan, N., Popowski, K. D. & Cheng, K. Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat. Nanotechnol. 19, 565â575 (2024).
Raimondo, T. M., Reed, K., Shi, D., Langer, R. & Anderson, D. G. Delivering the next generation of cancer immunotherapies with RNA. Cell 186, 1535â1540 (2023).
Popowski, K. D. et al. Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter 5, 2960â2974 (2022).
Popowski, K. D. et al. Inhalable exosomes outperform liposomes as mRNA and protein drug carriers to the lung. Extracell. Vesicle 1, 100002 (2022).
Warren, M. R. et al. Milk exosomes with enhanced mucus penetrability for oral delivery of siRNA. Biomater. Sci. 9, 4260â4277 (2021).
Zhang, C. et al. Milk exosomes anchored with hydrophilic and zwitterionic motifs enhance mucus permeability for applications in oral gene delivery. Biomater. Sci. 12, 634â649 (2024).
Rezaie, J., Feghhi, M. & Etemadi, T. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun. Signal. 20, 145 (2022).
Chae, J., Choi, Y., Tanaka, M. & Choi, J. Inhalable nanoparticles delivery targeting alveolar macrophages for the treatment of pulmonary tuberculosis. J. Biosci. Bioeng. 132, 543â551 (2021).
Kirtane, A. R. et al. Nanotechnology approaches for global infectious diseases. Nat. Nanotechnol. 16, 369â384 (2021).
Truzzi, E. et al. In vivo biodistribution of respirable solid lipid nanoparticles surface-decorated with a mannose-based surfactant: a promising tool for pulmonary tuberculosis treatment? Nanomaterials 10, 568 (2020).
Yu, W., Liu, C., Liu, Y., Zhang, N. & Xu, W. Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages. Pharm. Res. 27, 1584â1596 (2010).
Tang, Z. et al. Inhaled mRNA nanoparticles dual-targeting cancer cells and macrophages in the lung for effective transfection. Proc. Natl Acad. Sci. USA 120, e2304966120 (2023).
Tagalakis, A. D. et al. A receptor-targeted nanocomplex vector system optimized for respiratory gene transfer. Mol. Ther. 16, 907â915 (2008).
Zhang, M. et al. Airway epithelial cell-specific delivery of lipid nanoparticles loading siRNA for asthma treatment. J. Control. Release 352, 422â437 (2022).
Kan, S. et al. TLR7 agonist loaded airway epithelial targeting nanoparticles stimulate innate immunity and suppress viral replication in human bronchial epithelial cells. Int. J. Pharm. 617, 121586 (2022).
Fleck, L. M. The costs of caring: who pays? Who profits? Who panders? Hastings Cent. Rep. 36, 13â17 (2006).
Zhang, F. et al. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat. Mater. 21, 1324â1332 (2022).
Zhang, F. et al. Biohybrid microrobots locally and actively deliver drug-loaded nanoparticles to inhibit the progression of lung metastasis. Sci. Adv. 10, eadn6157 (2024).
Li, Z. et al. Inhalable biohybrid microrobots: a non-invasive approach for lung treatment. Nat. Commun. 16, 666 (2025).
Zhou, J. et al. Codelivery of antigens and adjuvant in polymeric nanoparticles coated with native parasite membranes induces protective mucosal immunity against Giardia lamblia. J. Infect. Dis. 226, 319â323 (2022).
Bjanes, E. et al. Outer membrane vesicle-coated nanoparticle vaccine protects against Acinetobacter baumannii pneumonia and sepsis. Adv. Nanobiomed. Res. 3, 2200130 (2023).
Krishnan, N. et al. Bacterial membrane vesicles for vaccine applications. Adv. Drug Deliv. Rev. 185, 114294 (2022).
John, A. E. et al. Translational pharmacology of an inhaled small molecule αvβ6 integrin inhibitor for idiopathic pulmonary fibrosis. Nat. Commun. 11, 4659 (2020).
Zhu, M. et al. A novel inhalable nanobody targeting IL-4Rα for the treatment of asthma. J. Allergy Clin. Immunol. 154, 1008â1021 (2024).
Detalle, L. et al. Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection. Antimicrob. Agents Chemother. 60, 6â13 (2016).
Van Heeke, G. et al. Nanobodies as inhaled biotherapeutics for lung diseases. Pharmacol. Ther. 169, 47â56 (2017).
Hida, K. et al. Common gene therapy viral vectors do not efficiently penetrate sputum from cystic fibrosis patients. PLoS ONE 6, e19919 (2011).
Duncan, G. A. et al. An adeno-associated viral vector capable of penetrating the mucus barrier to inhaled gene therapy. Mol. Ther. Methods Clin. Dev. 9, 296â304 (2018).
Vahey, M. D. & Fletcher, D. A. Influenza A virus surface proteins are organized to help penetrate host mucus. eLife 8, e43764 (2019).
Ribbeck, K. Do viruses use vectors to penetrate mucus barriers? Biosci. Hypotheses 2, 359â362 (2009).
Yoo, J., Park, C., Yi, G., Lee, D. & Koo, H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 11, 640 (2019).
Yu, Y., Ni, M., Zheng, Y. & Huang, Y. Airway epithelial-targeted nanoparticle reverses asthma in inhalation therapy. J. Control. Release 367, 223â234 (2024).
Valente, A. X., Langer, R., Stone, H. A. & Edwards, D. A. Recent advances in the development of an inhaled insulin product. Biodrugs 17, 9â17 (2003).
Abubakar-Waziri, H. et al. Inhaled alkaline hypertonic divalent salts reduce refractory chronic cough frequency. ERJ Open Res. 10, 00241â02024 (2024).
Charrier, C. et al. Cysteamine (Lynovex), a novel mucoactive antimicrobial & antibiofilm agent for the treatment of cystic fibrosis. Orphanet J. Rare Dis. 9, 1â11 (2014).
Devereux, G. et al. Cysteamine as a future intervention in cystic fibrosis against current and emerging pathogens: a patient-based ex vivo study confirming its antimicrobial and mucoactive potential in sputum. EBioMedicine 2, 1507â1512 (2015).
Ferrari, E. et al. Cysteamine re-establishes the clearance of Pseudomonas aeruginosa by macrophages bearing the cystic fibrosis-relevant F508del-CFTR mutation. Cell Death Dis. 8, e2544 (2018).
Boyle, M. P. & De Boeck, K. A new era in the treatment of cystic fibrosis: correction of the underlying CFTR defect. Lancet Respir. Med. 1, 158â163 (2013).
Tosco, A. et al. A novel treatment of cystic fibrosis acting on-target: cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR. Cell Death Differ. 23, 1380â1393 (2016).
Li, B. et al. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. Nat. Mater. 23, 1002â1008 (2024).
Witten, J. et al. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02490-y (2024).
Xu, Y. et al. AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery. Nat. Commun. 15, 6305 (2024).
Langer, R. & Peppas, N. A. A bright future in medicine for chemical engineering. Nat. Chem. Eng. 1, 10â12 (2024).
Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16, 725â733 (2021).
Sarmadi, M. et al. Modeling, design, and machine learning-based framework for optimal injectability of microparticle-based drug formulations. Sci. Adv. 6, eabb6594 (2020).
Yu, F., Wei, C., Deng, P., Peng, T. & Hu, X. Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles. Sci. Adv. 7, eabf4130 (2021).
Kumar, G. & Ardekani, A. M. Machine-learning framework to predict the performance of lipid nanoparticles for nucleic acid delivery. ACS Appl. Bio Mater. 8, 3717â3727 (2025).
Ãztürk, A. A., Gündüz, A. B. & Ozisik, O. Supervised machine learning algorithms for evaluation of solid lipid nanoparticles and particle size. Comb. Chem. High Throughput Screen. 21, 693â699 (2018).
Bae, S. H. et al. Rational design of lipid nanoparticles for enhanced mRNA vaccine delivery via machine learning. Small 21, 2405618 (2025).
Ding, D. Y., Zhang, Y., Jia, Y. & Sun, J. Machine learning-guided lipid nanoparticle design for mRNA delivery. Preprint at https://arxiv.org/abs/2308.01402 (2023).
Harrison, P. J. et al. Deep-learning models for lipid nanoparticle-based drug delivery. Nanomedicine 16, 1097â1110 (2021).
Hanafy, B. I. et al. Advancing cellular-specific delivery: machine learning insights into lipid nanoparticles design and cellular tropism. Adv. Healthc. Mater. 14, 2500383 (2025).
Sun, Z. Developing Graph Based Chemical Representation for Synthetic Lipid and Evaluating its Application for AI-based Predication for siRNA Delivery. MSc Thesis, Tufts Univ. (2021).
Lu, Z. et al. Noise-resistant graph neural networks with manifold consistency and label consistency. Expert Syst. Appl. 245, 123120 (2024).
Moayedpour, S. et al. Representations of lipid nanoparticles using large language models for transfection efficiency prediction. Bioinformatics 40, btae342 (2024).
Wu, K. et al. Predicting pharmacodynamic effects through early drug discovery with artificial intelligence-physiologically based pharmacokinetic (AI-PBPK) modelling. Front. Pharmacol. 15, 1330855 (2024).
Agrahari, V., Choonara, Y. E., Mosharraf, M., Patel, S. K. & Zhang, F. The role of artificial intelligence and machine learning in accelerating the discovery and development of nanomedicine. Pharm. Res. 41, 2289â2297 (2024).
de Witt, C. S. & Hornigold, T. Stratospheric aerosol injection as a deep reinforcement learning problem. Preprint at https://arxiv.org/abs/1905.07366 (2019).
Maharjan, R., Kim, K. H., Lee, K., Han, H.-K. & Jeong, S. H. Machine learning-driven optimization of mRNA-lipid nanoparticle vaccine quality with XGBoost/Bayesian method and ensemble model approaches. J. Pharm. Anal. 14, 100996 (2024).
Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410â1415 (2023).
Jiang, A. Y. et al. Combinatorial development of nebulized mRNA delivery formulations for the lungs. Nat. Nanotechnol. 19, 364â375 (2024).
Xue, L. et al. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery. Nat. Nanotechnol. 20, 132â143 (2025).
Han, X. et al. Fast and facile synthesis of amidine-incorporated degradable lipids for versatile mRNA delivery in vivo. Nat. Chem. 16, 1687â1697 (2024).
Xue, L. et al. High-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models. Nat. Commun. 15, 1884 (2024).
Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901â910 (2023).
Swingle, K. L. et al. Placenta-tropic VEGF mRNA lipid nanoparticles ameliorate murine pre-eclampsia. Nature 637, 412â421 (2025).
Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060â2065 (2017).
Da Silva Sanchez, A. J. et al. Universal barcoding predicts in vivo ApoE-independent lipid nanoparticle delivery. Nano Lett. 22, 4822â4830 (2022).
Radmand, A. et al. Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart. Proc. Natl Acad. Sci. USA 121, e2307801120 (2024).
Bonengel, S., Prüfert, F., Perera, G., Schauer, J. & Bernkop-Schnürch, A. Polyethylene imine-6-phosphogluconic acid nanoparticles â a novel zeta potential changing system. Int. J. Pharm. 483, 19â25 (2015).
Chen, W. et al. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery. Sci. Adv. 8, eabk1792 (2022).
Ying, B. et al. An electroadhesive hydrogel interface prolongs porcine gastrointestinal mucosal theranostics. Sci. Transl Med. 17, eadq1975 (2025).
Subramanian, D. A., Langer, R. & Traverso, G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J. Nanobiotechnol. 20, 362 (2022).
Srinivasan, S. S. et al. RoboCap: robotic mucus-clearing capsule for enhanced drug delivery in the gastrointestinal tract. Sci. Robot. 7, eabp9066 (2022).
Abramson, A. et al. Ingestible transiently anchoring electronics for microstimulation and conductive signaling. Sci. Adv. 6, eaaz0127 (2020).
Edwards, D. A. Global warming risks dehydrating and inflaming human airways. Commun. Earth Environ. 6, 193 (2025).
Fahy, J. V. & Dickey, B. F. Airway mucus function and dysfunction. N. Engl. J. Med. 363, 2233â2247 (2010).
Hasnain, S. Z. et al. Muc5ac: a critical component mediating the rejection of enteric nematodes. J. Exp. Med. 208, 893â900 (2011).
Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064â15069 (2008).
Kawakubo, M. et al. Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science 305, 1003â1006 (2004).
Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295, 1726â1729 (2002).
Tan, A., De La Peña, H. & Seifalian, A. M. The application of exosomes as a nanoscale cancer vaccine. Int. J. Nanomed. 889â900 (2010).
Nair, P. et al. The effects of an epithelial barrier protective cationic aerosol on allergen-induced airway inflammation in asthma: a randomized, placebo-controlled clinical trial. Clin. Exp. Allergy 44, 1200â1203 (2014).
Johler, S. M., Rejman, J., Guan, S. & Rosenecker, J. Nebulisation of IVT mRNA complexes for intrapulmonary administration. PLoS ONE 10, e0137504 (2015).
Stuart-Low, W. Mucin in desiccation, irritation, and ulceration of mucous membranes. Lancet 158, 972â976 (1901).
Hilding, A. Phagocytosis, mucous flow, and ciliary action. Arch. Environ. Health Int. J. 6, 61â73 (1963).
Green, G. M., Jakab, G. J., Low, R. B. & Davis, G. S. Defense mechanisms of the respiratory membrane. Am. Rev. Respir. Dis. 115, 479â514 (1977).
Eccles, R. et al. Efficacy and safety of an antiviral iota-carrageenan nasal spray: a randomized, double-blind, placebo-controlled exploratory study in volunteers with early symptoms of the common cold. Respir. Res. 11, 108 (2010).
Khan, A. et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit. Care 21, 234 (2017).
Urano, E. et al. An inhaled ACE2 decoy confers protection against SARS-CoV-2 infection in preclinical models. Sci. Transl Med. 15, eadi2623 (2023).
Holgate, S., Baldwin, C. & Tattersfield, A. β-Adrenergic agonist resistance in normal human airways. Lancet 310, 375â377 (1977).
Maggregor, A. G. Drug industry. Br. Med. J. 1, 696 (1968).
Sturgess, J. M. Structural organization of mucus in the lung. In Pulmonary Macrophage and Epithelial Cells: Proc. Sixteenth Annu. Hanford Biol. Symp. (eds Sanders, C. L. et al.) 149â161 (1977).
Illum, L., Jørgensen, H., Bisgaard, H., Krogsgaard, O. & Rossing, N. Bioadhesive microspheres as a potential nasal drug delivery system. Int. J. Pharm. 39, 189â199 (1987).
Lai, S. K., Wang, Y.-Y. & Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 158â171 (2009).
Tang, B. C. et al. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc. Natl Acad. Sci. USA 106, 19268â19273 (2009).
Meers, P. et al. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J. Antimicrob. Chemother. 61, 859â868 (2008).
Bissonnette, E. Y., Lauzon-Joset, J.-F., Debley, J. S. & Ziegler, S. F. Cross-talk between alveolar macrophages and lung epithelial cells is essential to maintain lung homeostasis. Front. Immunol. 11, 583042 (2020).
Madl, A. K. & Pinkerton, K. E. Health effects of inhaled engineered and incidental nanoparticles. Crit. Rev. Toxicol. 39, 629â658 (2009).
Jiao, J. & Zhang, L. Influence of intranasal drugs on human nasal mucociliary clearance and ciliary beat frequency. Allergy Asthma Immunol. Res. 11, 306â319 (2018).
Inoue, D. et al. The relationship between in vivo nasal drug clearance and in vitro nasal mucociliary clearance: application to the prediction of nasal drug absorption. Eur. J. Pharm. Sci. 117, 21â26 (2018).
Grubb, B. R. et al. Reduced mucociliary clearance in old mice is associated with a decrease in Muc5b mucin. Am. J. Physiol. Lung Cell. Mol. Physiol. 310, L860âL867 (2016).
Lai, S. K., Wang, Y.-Y., Hida, K., Cone, R. & Hanes, J. Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc. Natl Acad. Sci. USA 107, 598â603 (2010).
Munkholm, M. & Mortensen, J. Mucociliary clearance: pathophysiological aspects. Clin. Physiol. Funct. Imaging 34, 171â177 (2014).
Linden, S., Sutton, P., Karlsson, N., Korolik, V. & McGuckin, M. Mucins in the mucosal barrier to infection. Mucosal Immunol. 1, 183â197 (2008).
Bustos, N. A., Ribbeck, K. & Wagner, C. E. The role of mucosal barriers in disease progression and transmission. Adv. Drug Deliv. Rev. 200, 115008 (2023).
Sharma, L., Feng, J., Britto, C. J. & Dela Cruz, C. S. Mechanisms of epithelial immunity evasion by respiratory bacterial pathogens. Front. Immunol. 11, 91 (2020).
Muggeo, A., Coraux, C. & Guillard, T. Current concepts on Pseudomonas aeruginosa interaction with human airway epithelium. PLoS Pathog. 19, e1011221 (2023).
Li, Y. & Tang, X. X. Abnormal airway mucus secretion induced by virus infection. Front. Immunol. 12, 701443 (2021).
Dickey, B. F., Chen, J. & Peebles, R. S. Airway mucus dysfunction in COVID-19. Am. J. Respir. Crit. Care Med. 206, 1304â1306 (2022).
Chilvers, M. et al. The effects of coronavirus on human nasal ciliated respiratory epithelium. Eur. Respir. J. 18, 965â970 (2001).
Meyerholz, D. K. & Reznikov, L. R. Influence of SARS-CoV-2 on airway mucus production: a review and proposed model. Vet. Pathol. 59, 578â585 (2022).
Roche, N., Chinet, T. & Huchon, G. Allergic and nonallergic interactions between house dust mite allergens and airway mucosa. Eur. Respir. J. 10, 719â726 (1997).
Lloyd, C. & Robinson, D. Allergen-induced airway remodelling. Eur. Respir. J. 29, 1020â1032 (2007).
Dahl, Ã Pollen lipids can play a role in allergic airway inflammation. Front. Immunol. 9, 2816 (2018).
Reinmuth-Selzle, K. et al. Air pollution and climate change effects on allergies in the Anthropocene: abundance, interaction, and modification of allergens and adjuvants. Environ. Sci. Technol. 51, 4119â4141 (2017).
Huff, R. D., Carlsten, C. & Hirota, J. A. An update on immunologic mechanisms in the respiratory mucosa in response to air pollutants. J. Allergy Clin. Immunol. 143, 1989â2001 (2019).
Idrose, N. S. et al. Outdoor pollen-related changes in lung function and markers of airway inflammation: a systematic review and meta-analysis. Clin. Exp. Allergy 51, 636â653 (2021).
Michel, F. B., Marty, J. P., Quet, L. & Cour, P. Penetration of inhaled pollen into the respiratory tract. Am. Rev. Respir. Dis. 115, 609â616 (1977).
Vinhas, R. et al. Pollen proteases compromise the airway epithelial barrier through degradation of transmembrane adhesion proteins and lung bioactive peptides. Allergy 66, 1088â1098 (2011).
Roth-Walter, F. et al. Mucosal targeting of allergen-loaded microspheres by Aleuria aurantia lectin. Vaccine 23, 2703â2710 (2005).
Whetstone, C. E., Ranjbar, M., Omer, H., Cusack, R. P. & Gauvreau, G. M. The role of airway epithelial cell alarmins in asthma. Cells 11, 1105 (2022).
Ciprandi, G. et al. From IgE to clinical trials of allergic rhinitis. Expert Rev. Clin. Immunol. 11, 1321â1333 (2015).
Bonser, L. R. & Erle, D. J. Airway mucus and asthma: the role of MUC5AC and MUC5B. J. Clin. Med. 6, 112 (2017).
Acknowledgements
K.C. thanks grant support from the US National Institute of Health and American Heart Association. S.W.Z. and K.C. also thank C. Kaganov and her late husband A.L. Kaganov for their generous support that helped to make this work possible.
Author information
Authors and Affiliations
Contributions
S.W.Z. searched and summarized literature for the article. All authors contributed substantially to the discussion. S.W.Z. drafted the article. All authors edited and approved the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
D.A.E. is a co-founder of Sensory Cloud. K.C. is a co-founder of BreStem Therapeutics. A complete list of R.L.âs competing interests is provided in the Supplementary information. S.W.Z. declares no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Jae-Won Shin and Daniela Traini, who co-reviewed with Jerry Wong, for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, S.W., Edwards, D.A., Langer, R. et al. Inhalable materials and biologics for lung defence and drug delivery. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00841-y
Accepted:
Published:
DOI: https://doi.org/10.1038/s41578-025-00841-y


