Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coordination chemistry in advanced redox-active electrolyte designs

Abstract

Coordination chemistry is central to the development of redox-active electrolytes for various applications, including electroplating, molecular screening, biomedicine, artificial synthesis and energy storage. This Review focuses on the role of coordination chemistry in the design of redox-active electrolytes for aqueous redox flow batteries. We analyse the key thermodynamic and kinetic properties of electrolytes through the framework of crystal-field theory, emphasizing how ligand properties, ligand-field effects and entropy influence redox potential, solubility and structural stability. We also discuss how coordination chemistry fine-tunes microscopic dynamic properties, thereby influencing electrochemical performance. In addition, we discuss characterization techniques that enable deep insight into the structure–function relationships of coordination-based electrolytes. Finally, we outline future directions for rational electrolyte design guided by coordination chemistry principles, with the aim to produce next-generation aqueous redox flow batteries with enhanced performance and tunability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of coordination chemistry and its application in aqueous redox flow batteries.
Fig. 2: Electron configuration of central metal ions and their coordination properties.
Fig. 3: Three factors affecting metal-ion properties.
Fig. 4: Thermodynamic properties of redox-active metal–ligand complexes.
Fig. 5: Kinetic properties of aqueous redox flow batteries.
Fig. 6: Structural and operando characterization techniques for coordination complexes.

Similar content being viewed by others

References

  1. Walsh, F. C., Wang, S. & Zhou, N. The electrodeposition of composite coatings: diversity, applications and challenges. Curr. Opin. Electrochem. 20, 8–19 (2020).

    Article  CAS  Google Scholar 

  2. Wang, W., Yang, T., Harris, W. H. & Gomez-Bombarelli, R. Active learning and neural network potentials accelerate molecular screening of ether-based solvate ionic liquids. Chem. Commun. 56, 8920–8923 (2020).

    Article  CAS  Google Scholar 

  3. More, S. et al. Rheological properties of synovial fluid due to viscosupplements: a review for osteoarthritis remedy. Comput. Meth. Prog. Biomed. 196, 105644 (2020).

    Article  CAS  Google Scholar 

  4. Lan, R., Irvine, J. T. & Tao, S. Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci. Rep. 3, 1145 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Choi, C. et al. A review of vanadium electrolytes for vanadium redox flow batteries. Renew. Sust. Energy Rev. 69, 263–274 (2017).

    Article  CAS  Google Scholar 

  6. Chen, J. et al. Electrolyte solvation chemistry to construct an anion-tuned interphase for stable high-temperature lithium metal batteries. eScience 3, 100135 (2023).

    Article  Google Scholar 

  7. Barrett, J. Inorganic Chemistry in Aqueous Solution Vol. 21 (The Royal Society of Chemistry, 2003).

  8. Skyllas-Kazacos, M. Review — highlights of UNSW all-vanadium redox battery development: 1983 to present. J. Electrochem. Soc. 169, 070513 (2022).

    Article  CAS  Google Scholar 

  9. Raub, C. in Metal Plating and Patination (eds Niece, S. L. & Craddock, P.) 284–290 (Butterworth-Heinemann, 1993).

  10. Pedersen, C. J. The discovery of crown ethers (Noble Lecture). Angew. Chem. Int. Ed. 27, 1021–1027 (1988).

    Article  Google Scholar 

  11. Eschenmoser, A. Vitamin B12: experiments concerning the origin of its molecular structure. Angew. Chem. Int. Ed. 27, 5–39 (1988).

    Article  Google Scholar 

  12. Park, M., Ryu, J., Wang, W. & Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2, 1–18 (2016).

    Article  Google Scholar 

  13. Soloveichik, G. L. Flow batteries: current status and trends. Chem. Rev. 115, 11533–11558 (2015).

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, C., Yuan, Z. & Li, X. Designing better flow batteries: an overview on fifty years’ research. ACS Energy Lett. 9, 3456–3473 (2024).

    Article  CAS  Google Scholar 

  15. Handy, L. L. & Gregory, N. W. Structural properties of chromium(III) iodide and some chromium(III) mixed halides. J. Am. Chem. Soc. 74, 891–893 (1952).

    Article  CAS  Google Scholar 

  16. Ogard, A. E. & Taube, H. Halides as bridging groups for electron transfer in the systems Cr++ + (NH3)5CrX++. J. Am. Chem. Soc. 80, 1084–1089 (1958).

    Article  CAS  Google Scholar 

  17. Hunt, J. B. & Earley, J. The effect of some non-bridging ligands on the Cr(II)–Cr(III) oxidation. J. Am. Chem. Soc. 82, 5312–5314 (1960).

    Article  CAS  Google Scholar 

  18. Weaver, M. J. & Anson, F. C. Distinguishing between inner- and outer-sphere electrode reactions. reactivity patterns for some chromium(III)–chromium(II) electron-transfer reactions at mercury electrodes. Inorg. Chem. 15, 1871–1881 (1976).

    Article  CAS  Google Scholar 

  19. Thaller, L. H. Recent Advances in Redox Flow Cell Storage Systems (National Aeronautics and Space Administration, 1976).

  20. Tolmachev, Y. V. Review — flow batteries from 1879 to 2022 and beyond. J. Electrochem. Soc. 170, 030505 (2023).

    Article  CAS  Google Scholar 

  21. Noack, J., Roznyatovskaya, N., Herr, T. & Fischer, P. The chemistry of redox-flow batteries. Angew. Chem. Int. Ed. 54, 9776–9809 (2015).

    Article  CAS  Google Scholar 

  22. Li, Z. & Lu, Y. C. Material design of aqueous redox flow batteries: fundamental challenges and mitigation strategies. Adv. Mater. 32, e2002132 (2020).

    Article  PubMed  Google Scholar 

  23. Sun, C. & Zhang, H. Review of the development of first-generation redox flow batteries: iron–chromium system. ChemSusChem 15, e202101798 (2022).

    Article  PubMed  CAS  Google Scholar 

  24. Belongia, S., Wang, X. & Zhang, X. Progresses and perspectives of all‐iron aqueous redox flow batteries. Adv. Funct. Mater. 34, 2302077 (2023).

    Article  Google Scholar 

  25. Lei, J., Jiang, L. & Lu, Y.-C. Emerging aqueous manganese-based batteries: fundamental understanding, challenges, and opportunities. Chem. Phys. Rev. 4, 021307 (2023).

    Article  CAS  Google Scholar 

  26. Park, J. et al. Recent progress in high-voltage aqueous zinc-based hybrid redox flow batteries. Chem-Asian J. 18, e202201052 (2023).

    Article  PubMed  CAS  Google Scholar 

  27. Zhao, Y. et al. Thermodynamic and kinetic insights for manipulating aqueous Zn battery chemistry: towards future grid-scale renewable energy storage systems. eScience 5, 100331 (2024).

    Article  Google Scholar 

  28. Piro, N. A., Robinson, J. R., Walsh, P. J. & Schelter, E. J. The electrochemical behavior of cerium (III/IV) complexes: thermodynamics, kinetics and applications in synthesis. Coord. Chem. Rev. 260, 21–36 (2014).

    Article  CAS  Google Scholar 

  29. Horn, M. R. et al. Polyoxometalates (POMs): from electroactive clusters to energy materials. Energy Environ. Sci. 14, 1652–1700 (2021).

    Article  CAS  Google Scholar 

  30. Wei, X. et al. Materials and systems for organic redox flow batteries: status and challenges. ACS Energy Lett. 2, 2187–2204 (2017).

    Article  CAS  Google Scholar 

  31. Kwabi, D. G., Ji, Y. & Aziz, M. J. Electrolyte lifetime in aqueous organic redox flow batteries: a critical review. Chem. Rev. 120, 6467–6489 (2020).

    Article  PubMed  CAS  Google Scholar 

  32. Li, X., Xu, W. & Zhi, C. Halogen-powered static conversion chemistry. Nat. Rev. Chem. 8, 359–375 (2024).

    Article  PubMed  CAS  Google Scholar 

  33. Robb, B. H., Waters, S. E. & Marshak, M. P. Evaluating aqueous flow battery electrolytes: a coordinated approach. Dalton Trans. 49, 16047–16053 (2020).

    Article  PubMed  CAS  Google Scholar 

  34. Yao, Y., Lei, J., Shi, Y., Ai, F. & Lu, Y.-C. Assessment methods and performance metrics for redox flow batteries. Nat. Energy 6, 582–588 (2021).

    Article  Google Scholar 

  35. Liu, B., Li, Y., Jia, G. & Zhao, T. Recent advances in redox flow batteries employing metal coordination complexes as redox-active species. Electrochem. Energy Rev. 7, 7 (2024).

    Article  CAS  Google Scholar 

  36. Shriver, D., Weller, M., Overton, T., Rourke, J. & Amstrong, F. Inorganic Chemistry 6th edn (W. H. Freeman, 2014).

  37. Ji, X. A perspective of ZnCl2 electrolytes: the physical and electrochemical properties. eScience 1, 99–107 (2021).

    Article  Google Scholar 

  38. Rajarathnam, G. P. et al. Chemical speciation of zinc–halide complexes in zinc/bromine flow battery electrolytes. J. Electrochem. Soc. 168, 070522 (2021).

    Article  CAS  Google Scholar 

  39. McGrath, M. J. et al. 110th anniversary: the dehydration and loss of ionic conductivity in anion exchange membranes due to FeCl4– ion exchange and the role of membrane microstructure. Ind. Eng. Chem. Res. 58, 22250–22259 (2019).

    Article  CAS  Google Scholar 

  40. Lin, S.-C., Wang, Y.-Y., Wan, C.-C. & Chang, J.-C. Reinvestigation of the electrochemical reduction of KMnO4. Bull. Chem. Soc. Jpn 66, 3372–3376 (1993).

    Article  CAS  Google Scholar 

  41. Wheeler, W. D. & Legg, J. I. Solution structure of the chromium (III) complex with EDTA by deuteron NMR spectroscopy. Inorg. Chem. 23, 3798–3802 (1984).

    Article  CAS  Google Scholar 

  42. Hunt, J. P. & Plane, R. A. The kinetics of the exchange of water between Cr(H2O)6+3 and solvent. J. Am. Chem. Soc. 76, 5960–5962 (1954).

    Article  CAS  Google Scholar 

  43. Fell, E. M. et al. Long-term stability of ferri-/ferrocyanide as an electroactive component for redox flow battery applications: on the origin of apparent capacity fade. J. Electrochem. Soc. 170, 070525 (2023).

    Article  CAS  Google Scholar 

  44. Garrett, R. G. in Essentials of Medical Geology: Revised Edition (ed. Selinus, O.) 35–57 (Springer, 2013).

  45. Yaroshevsky, A. A. Abundances of chemical elements in the Earth’s crust. Geochem. Int. 44, 48–55 (2006).

    Article  Google Scholar 

  46. Bae, C.-H., Roberts, E. P. L. & Dryfe, R. A. W. Chromium redox couples for application to redox flow batteries. Electrochim. Acta 48, 278–287 (2002).

    Article  Google Scholar 

  47. Yu, Z. et al. Electrolyte engineering for efficient and stable vanadium redox flow batteries. Energy Storage Mater. 69, 103404 (2024).

    Article  Google Scholar 

  48. Vijayakumar, M. et al. Towards understanding the poor thermal stability of V5+ electrolyte solution in vanadium redox flow batteries. J. Power Sources 196, 3669–3672 (2011).

    Article  CAS  Google Scholar 

  49. Zhang, Z., Wei, L., Wu, M., Bai, B. & Zhao, T. Chloride ions as an electrolyte additive for high performance vanadium redox flow batteries. Appl. Energy 289, 116690 (2021).

    Article  CAS  Google Scholar 

  50. Sum, E. & Skyllas-Kazacos, M. A study of the V(II)/V(III) redox couple for redox flow cell applications. J. Power Sources 15, 179–190 (1985).

    Article  CAS  Google Scholar 

  51. Sum, E., Rychcik, M. & Skyllas-Kazacos, M. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J. Power Sources 16, 85–95 (1985).

    Article  CAS  Google Scholar 

  52. Huang, Z. et al. Comprehensive analysis of critical issues in all-vanadium redox flow battery. ACS Sustain. Chem. Eng. 10, 7786–7810 (2022).

    Article  CAS  Google Scholar 

  53. Geoffrey, W., Gillard, R. D. & McCleverty, J. A. Comprehensive Coordination Chemistry 1601 (Elsevier, 2021).

  54. Meier, R. Voltammetric study of the interaction of phosphate with the Cr (III/II)–EDTA couple. J. Electroanal. Chem. 263, 175–180 (1989).

    Article  CAS  Google Scholar 

  55. Persson, I. Hydrated metal ions in aqueous solution: how regular are their structures? Pure Appl. Chem. 82, 1901–1917 (2010).

    Article  CAS  Google Scholar 

  56. Yin, Q., Brandon, N. P. & Kelsall, G. H. Electrochemical synthesis of Cr(II) at carbon electrodes in acidic aqueous solutions. J. Appl. Electrochem. 30, 1109–1117 (2000).

    Article  CAS  Google Scholar 

  57. Cheng, D. S., Reiner, A. & Hollax, E. Activation of hydrochloric acid-CrCl3·6H2 solutions with N-alkylamines. J. Appl. Electrochem. 15, 63–70 (1985).

    Article  CAS  Google Scholar 

  58. Alfaruqi, M. H. et al. Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J. Power Sources 288, 320–327 (2015).

    Article  CAS  Google Scholar 

  59. Nason, C. A. F. & Xu, Y. Pre-intercalation: a valuable approach for the improvement of post-lithium battery materials. eScience 4, 100183 (2024).

    Article  Google Scholar 

  60. Nan, M. et al. A self-healing electrocatalyst for manganese-based flow battery. Chem. Eng. J. 490, 150890 (2024).

    Article  CAS  Google Scholar 

  61. Cao, J. et al. Vanadium-mediated high areal capacity zinc–manganese redox flow battery. ACS Sustain. Chem. Eng. 12, 6320–6329 (2024).

    Article  CAS  Google Scholar 

  62. Chen, W. et al. A manganese–hydrogen battery with potential for grid-scale energy storage. Nat. Energy 3, 428–435 (2018).

    Article  CAS  Google Scholar 

  63. Xie, C. et al. A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ. Sci. 13, 135–143 (2020).

    Article  CAS  Google Scholar 

  64. Shen, X. et al. An all-soluble Fe/Mn-based alkaline redox flow battery system. ACS Appl. Mater. Interfaces 16, 18686–18692 (2024).

    Article  PubMed  CAS  Google Scholar 

  65. Reynard, D. et al. Vanadium-manganese redox flow battery: study of Mn(III) disproportionation in the presence of other metallic ions. Chem. Eur. J. 26, 7250–7257 (2020).

    Article  PubMed  CAS  Google Scholar 

  66. Colli, A. N., Peljo, P. & Girault, H. H. High energy density MnO4−/MnO42− redox couple for alkaline redox flow batteries. Chem. Commun. 52, 14039–14042 (2016).

    Article  CAS  Google Scholar 

  67. Lei, J., Yao, Y., Wang, Z. & Lu, Y.-C. Towards high-areal-capacity aqueous zinc–manganese batteries: promoting MnO2 dissolution by redox mediators. Energy Environ. Sci. 14, 4418 (2021).

    Article  CAS  Google Scholar 

  68. Wang, S. et al. A double-ligand chelating strategy to iron complex anolytes with ultrahigh cyclability for aqueous iron flow batteries. Angew. Chem. Int. Ed. 63, e202316593 (2024).

    Article  CAS  Google Scholar 

  69. Hruska, L. W. & Savinell, R. F. Investigation of factors affecting performance of the iron‐redox battery. J. Electrochem. Soc. 128, 18 (1981).

    Article  CAS  Google Scholar 

  70. Gong, K. et al. All-soluble all-iron aqueous redox-flow battery. ACS Energy Lett. 1, 89–93 (2016).

    Article  CAS  Google Scholar 

  71. Holubowitch, N. E. & Nguyen, G. Dimerization of [FeIII(bpy)3]3+ in aqueous solutions: elucidating a mechanism based on historical proposals, electrochemical data, and computational free energy analysis. Inorg. Chem. 61, 9541–9556 (2022).

    Article  PubMed  CAS  Google Scholar 

  72. Martins, G. F. Why the Daniell cell works! J. Chem. Educ. 67, 482 (1990).

    Article  Google Scholar 

  73. Cai, Z., Wang, J. & Sun, Y. Anode corrosion in aqueous Zn metal batteries. eScience 3, 100093 (2023).

    Article  Google Scholar 

  74. Park, M. et al. A high voltage aqueous zinc–organic hybrid flow battery. Adv. Energy Mater. 9, 1900694 (2019).

    Article  Google Scholar 

  75. Xu, D. et al. Chelating additive regulating Zn-ion solvation chemistry for highly efficient aqueous zinc-metal battery. Angew. Chem. Int. Ed. 63, e202402833 (2024).

    Article  CAS  Google Scholar 

  76. Mahmood, A., Zheng, Z. & Chen, Y. Zinc–bromine batteries: challenges, prospective solutions, and future. Adv. Sci. 11, e2305561 (2024).

    Article  Google Scholar 

  77. Yuan, L. et al. Hybrid working mechanism enables highly reversible Zn electrodes. eScience 3, 100096 (2023).

    Article  Google Scholar 

  78. Richens, D. T. Ligand substitution reactions at inorganic centers. Chem. Rev. 105, 1961–2002 (2005).

    Article  PubMed  CAS  Google Scholar 

  79. Kritayakornupong, C. The Jahn–Teller effect of the Cr2+ ion in aqueous solution: ab initio QM/MM molecular dynamics simulations. J. Comput. Chem. 29, 115–121 (2008).

    Article  PubMed  CAS  Google Scholar 

  80. Xue, F.-Q., Wang, Y.-L., Wang, W.-H. & Wang, X.-D. Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery. Electrochim. Acta 53, 6636–6642 (2008).

    Article  CAS  Google Scholar 

  81. H, B., Robb, Farrell, J. M. & Marshak, M. P. Chelated chromium electrolyte enabling high-voltage aqueous flow batteries. Joule 3, 2503–2512 (2019).

    Article  Google Scholar 

  82. Waters, S. E., Robb, B. H. & Marshak, M. P. Effect of chelation on iron–chromium redox flow batteries. ACS Energy Lett. 5, 1758–1762 (2020).

    Article  CAS  Google Scholar 

  83. Murthy, A. S. N. & Srivastava, T. Fe(III)/Fe(II) — ligand systems for use as negative half-cells in redox-flow cells. J. Power Sources 27, 119–126 (1989).

    Article  CAS  Google Scholar 

  84. Ruan, W. et al. Designing Cr complexes for a neutral Fe–Cr redox flow battery. Chem. Commun. 56, 3171–3174 (2020).

    Article  CAS  Google Scholar 

  85. Nambafu, G. S. et al. Phosphonate-based iron complex for a cost-effective and long cycling aqueous iron redox flow battery. Nat. Commun. 15, 2566 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn, 826 (Wiley, 2001).

  87. Wen, Y. H. et al. A study of the Fe(III)/Fe(II)–triethanolamine complex redox couple for redox flow battery application. Electrochim. Acta 51, 3769–3775 (2006).

    Article  CAS  Google Scholar 

  88. Wilkinson, G., Gillard, R. D. & McCleverty, J. A. Book review comprehensive coordination chemistry. J. Coord. Chem. 21, 193–197 (1990).

    Article  Google Scholar 

  89. Chen, Y.-W. D., Santhanam, K. S. V. & Bard, A. J. Solution redox couples for electrochemical energy storage: I. Iron (III)–iron (II) complexes with O‐phenanthroline and related ligands. J. Electrochem. Soc. 7, 1460 (1981).

    Article  Google Scholar 

  90. Ai, F. et al. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures. Nat. Energy 7, 417–426 (2022).

    Article  CAS  Google Scholar 

  91. Gao, J. et al. A high potential, low capacity fade rate iron complex posolyte for aqueous organic flow batteries. Adv. Energy Mater. 12, 2202444 (2022).

    Article  CAS  Google Scholar 

  92. Ruan, W., Mao, J., Yang, S. & Chen, Q. Communication — tris(bipyridyl)iron complexes for high-voltage aqueous redox flow batteries. J. Electrochem. Soc. 167, 100543 (2020).

    Article  CAS  Google Scholar 

  93. Li, X. et al. Symmetry-breaking design of an organic iron complex catholyte for a long cyclability aqueous organic redox flow battery. Nat. Energy 6, 873–881 (2021).

    Article  CAS  Google Scholar 

  94. Luo, J. et al. Unprecedented capacity and stability of ammonium ferrocyanide catholyte in pH neutral aqueous redox flow batteries. Joule 3, 149–163 (2019).

    Article  CAS  Google Scholar 

  95. Li, X. et al. Lithium ferrocyanide catholyte for high-energy and low-cost aqueous redox flow batteries. Angew. Chem. Int. Ed. 62, e202304667 (2023).

    Article  CAS  Google Scholar 

  96. Esswein, A. J., Goeltz, J. & Amadeo, D. High solubility iron hexacyanides. US patent US9929425B2 (2018).

  97. Gupta, S., Lim, T. M. & Mushrif, S. H. Insights into the solvation of vanadium ions in the vanadium redox flow battery electrolyte using molecular dynamics and metadynamics. Electrochim. Acta 270, 471–479 (2018).

    Article  CAS  Google Scholar 

  98. Wang, G. et al. Study on stabilities and electrochemical behavior of V(V) electrolyte with acid additives for vanadium redox flow battery. J. Energy Chem. 23, 73–81 (2014).

    Article  Google Scholar 

  99. Du, J., Liu, J., Liu, S., Wang, L. & Chou, K.-C. Research progress of vanadium battery with mixed acid system: a review. J. Energy Storage 70, 107961 (2023).

    Article  Google Scholar 

  100. Bon, M., Laino, T., Curioni, A. & Parrinello, M. Characterization of vanadium species in mixed chloride–sulfate solutions: an ab initio metadynamics study. J. Phys. Chem. C 120, 10791–10798 (2016).

    Article  CAS  Google Scholar 

  101. Roe, S., Menictas, C. & Skyllas-Kazacos, M. A high energy density vanadium redox flow battery with 3 M vanadium electrolyte. J. Electrochem. Soc. 163, A5023–A5028 (2015).

    Article  Google Scholar 

  102. Xiao, S. et al. Broad temperature adaptability of vanadium redox flow battery — part 1: electrolyte research. Electrochim. Acta 187, 525–534 (2016).

    Article  CAS  Google Scholar 

  103. Kim, S., Choi, C., Kim, R., Kim, H. G. & Kim, H.-T. Temperature-dependent 51V nuclear magnetic resonance spectroscopy for the positive electrolyte of vanadium redox flow batteries. RSC Adv. 6, 96847–96852 (2016).

    Article  CAS  Google Scholar 

  104. Vijayakumar, M., Wang, W., Nie, Z., Sprenkle, V. & Hu, J. Elucidating the higher stability of vanadium(V) cations in mixed acid based redox flow battery electrolytes. J. Power Sources 241, 173–177 (2013).

    Article  CAS  Google Scholar 

  105. Li, L. et al. A stable vanadium redox‐flow battery with high energy density for large-scale energy storage. Adv. Energy Mater. 1, 394–400 (2011).

    Article  CAS  Google Scholar 

  106. Roznyatovskaya, N. V. et al. The role of phosphate additive in stabilization of sulphuric-acid-based vanadium(V) electrolyte for all-vanadium redox-flow batteries. J. Power Sources 363, 234–243 (2017).

    Article  CAS  Google Scholar 

  107. Ding, C. et al. Effects of phosphate additives on the stability of positive electrolytes for vanadium flow batteries. Electrochim. Acta 164, 307–314 (2015).

    Article  CAS  Google Scholar 

  108. Liang, X. et al. Effect of l-glutamic acid on the positive electrolyte for all-vanadium redox flow battery. Electrochim. Acta 95, 80–86 (2013).

    Article  CAS  Google Scholar 

  109. Wu, X., Liu, S., Wang, N., Peng, S. & He, Z. Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery. Electrochim. Acta 78, 475–482 (2012).

    Article  CAS  Google Scholar 

  110. Waters, S. E., Robb, B. H., Scappaticci, S. J., Saraidaridis, J. D. & Marshak, M. P. Isolation and characterization of a highly reducing aqueous chromium(II) complex. Inorg. Chem. 61, 8752–8759 (2022).

    Article  PubMed  CAS  Google Scholar 

  111. Clarke, C. J., Browning, G. J. & Donne, S. W. An RDE and RRDE study into the electrodeposition of manganese dioxide. Electrochim. Acta 51, 5773–5784 (2006).

    Article  CAS  Google Scholar 

  112. Zhang, Z. et al. Manganese species in methane sulfonic acid as the solvent for zinc–manganese redox battery. Mater. Chem. Phys. 228, 75–79 (2019).

    Article  CAS  Google Scholar 

  113. Yu, X., Song, Y. & Tang, A. Tailoring manganese coordination environment for a highly reversible zinc-manganese flow battery. J. Power Sources 507, 230295 (2021).

    Article  CAS  Google Scholar 

  114. Bechtold, T., Burtscher, E., Gmeiner, D. & Bobleter, O. The redox-catalysed reduction of dispersed organic compounds: investigations on the electrochemical reduction of insoluble organic compounds in aqueous systems. J. Electroanal. Chem. 306, 169–183 (1991).

    Article  CAS  Google Scholar 

  115. Arroyo-Currás, N., Hall, J. W., Dick, J. E., Jones, R. A. & Bard, A. J. An alkaline flow battery based on the coordination chemistry of iron and cobalt. J. Electrochem. Soc. 162, A378–A383 (2014).

    Article  Google Scholar 

  116. Shin, M., Noh, C., Chung, Y. & Kwon, Y. All iron aqueous redox flow batteries using organometallic complexes consisting of iron and 3-[bis(2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid ligand and ferrocyanide as redox couple. Chem. Eng. J. 398, 125631 (2020).

    Article  CAS  Google Scholar 

  117. Shin, M. et al. Aqueous redox flow battery using iron 2,2‐bis(hydroxymethyl)‐2,2′,2′‐nitrilotriethanol complex and ferrocyanide as newly developed redox couple. Int. J. Energy Res. 46, 8175–8185 (2022).

    Article  CAS  Google Scholar 

  118. Mateos, M., Makivic, N., Kim, Y. S., Limoges, B. & Balland, V. Accessing the two‐electron charge storage capacity of MnO2 in mild aqueous electrolytes. Adv. Energy Mater. 10, 2000332 (2020).

    Article  CAS  Google Scholar 

  119. Qian, A. et al. Geochemical stability of dissolved Mn(III) in the presence of pyrophosphate as a model ligand: complexation and disproportionation. Environ. Sci. Technol. 53, 5768–5777 (2019).

    Article  PubMed  CAS  Google Scholar 

  120. Jang, J. E. et al. Full‐hexacyanometallate aqueous redox flow batteries exceeding 1.5 V in an aqueous solution. Adv. Energy Mater. 13, 2300707 (2023).

    Article  CAS  Google Scholar 

  121. Jang, J.-E., Jayasubramaniyan, S., Lee, S. W. & Lee, H.-W. A hexacyanomanganate negolyte for aqueous redox flow batteries. ACS Energy Lett. 8, 3702–3709 (2023).

    Article  CAS  Google Scholar 

  122. Luo, J. et al. Unraveling pH dependent cycling stability of ferricyanide/ferrocyanide in redox flow batteries. Nano Energy 42, 215–221 (2017).

    Article  CAS  Google Scholar 

  123. Adams, G. B. Electrically rechargeable battery. US patent 4,180,623 (1979).

  124. Hu, M., Wang, A. P., Luo, J., Wei, Q. & Liu, T. L. Cycling performance and mechanistic insights of ferricyanide electrolytes in alkaline redox flow batteries. Adv. Energy Mater. 13, 2203762 (2023).

    Article  CAS  Google Scholar 

  125. Páez, T., Martínez-Cuezva, A., Palma, J. & Ventosa, E. Revisiting the cycling stability of ferrocyanide in alkaline media for redox flow batteries. J. Power Sources 471, 228453 (2020).

    Article  Google Scholar 

  126. Yang, W. et al. Revisiting the attenuation mechanism of alkaline all-iron ion redox flow batteries. Chem. Eng. J. 487, 150491 (2024).

    Article  CAS  Google Scholar 

  127. Burghoff, A. & Holubowitch, N. E. Critical roles of pH and activated carbon on the speciation and performance of an archetypal organometallic complex for aqueous redox flow batteries. J. Am. Chem. Soc. 146, 9728–9740 (2024).

    Article  PubMed  CAS  Google Scholar 

  128. Bui, H. & Holubowitch, N. E. Isopropyl alcohol and copper hexacyanoferrate boost performance of the iron tris-bipyridine catholyte for near-neutral pH aqueous redox flow batteries. Int. J. Energy Res. 46, 5864–5875 (2021).

    Article  Google Scholar 

  129. Dickinson, E. J. F. & Wain, A. J. The Butler–Volmer equation in electrochemical theory: origins, value, and practical application. J. Electroanal. Chem. 872, 114145 (2020).

    Article  CAS  Google Scholar 

  130. Gattrell, M. et al. Study of the mechanism of the vanadium 4+/5+ redox reaction in acidic solutions. J. Electrochem. Soc. 151, A123–A130 (2004).

    Article  CAS  Google Scholar 

  131. Huang, F. et al. Influence of Cr3+ concentration on the electrochemical behavior of the anolyte for vanadium redox flow batteries. Chin. Sci. Bull. 57, 4237–4243 (2012).

    Article  CAS  Google Scholar 

  132. He, Z. et al. Effect of In3+ ions on the electrochemical performance of the positive electrolyte for vanadium redox flow batteries. Ionics 19, 1915–1920 (2013).

    Article  CAS  Google Scholar 

  133. Park, J. H., Park, J. J., Lee, H. J., Min, B. S. & Yang, J. H. Influence of metal impurities or additives in the electrolyte of a vanadium redox flow battery. J. Electrochem. Soc. 165, A1263–A1268 (2018).

    Article  CAS  Google Scholar 

  134. Marcus, R. A. On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43, 679–701 (1965).

    Article  CAS  Google Scholar 

  135. Endicott, J. F. & Taube, H. Kinetics of some outer-sphere electron-transfer reactions. J. Am. Chem. Soc. 89, 1686–1691 (1964).

    Article  Google Scholar 

  136. Agarwal, H., Florian, J., Goldsmith, B. R. & Singh, N. V2+/V3+ redox kinetics on glassy carbon in acidic electrolytes for vanadium redox flow batteries. ACS Energy Lett. 4, 2368–2377 (2019).

    Article  CAS  Google Scholar 

  137. Agarwal, H., Florian, J., Goldsmith, B. R. & Singh, N. The effect of anion bridging on heterogeneous charge transfer for V2+/V3+. Cell Rep. Phys. Sci. 2, 100307 (2021).

    Article  CAS  Google Scholar 

  138. Tanimoto, S. & Ichimura, A. Discrimination of inner- and outer-sphere electrode reactions by cyclic voltammetry experiments. J. Chem. Educ. 90, 778–781 (2013).

    Article  CAS  Google Scholar 

  139. Kravtsov, V. I. Kinetics and mechanism of electrode reactions of metal complexes in aqueous electrolyte solutions. Russ. Chem. Rev. 45, 284 (1976).

    Article  Google Scholar 

  140. Haim, A. Role of the bridging ligand in inner-sphere electron-transfer reactions. Acc. Chem. Res. 8, 264–272 (1975).

    Article  CAS  Google Scholar 

  141. Jiang, Z., Klyukin, K. & Alexandrov, V. Ab initio metadynamics study of the VO2+/VO2+ redox reaction mechanism at the graphite edge/water interface. ACS Appl. Mater. Interfaces 10, 20621–20626 (2018).

    Article  PubMed  CAS  Google Scholar 

  142. Oldenburg, F. J. et al. Revealing the role of phosphoric acid in all-vanadium redox flow batteries with DFT calculations and in situ analysis. Phys. Chem. Chem. Phys. 20, 23664–23673 (2018).

    Article  PubMed  CAS  Google Scholar 

  143. Yang, Y., Zhang, Y., Liu, T. & Huang, J. Improved properties of positive electrolyte for a vanadium redox flow battery by adding taurine. Res. Chem. Intermed. 44, 769–786 (2017).

    Article  Google Scholar 

  144. Wang, N., Zhou, W. & Zhang, F. l-cystine additive in the negative electrolyte of vanadium redox flow battery for improving electrochemical performance. Ionics 25, 221–229 (2018).

    Article  Google Scholar 

  145. Li, S. et al. Effect of organic additives on positive electrolyte for vanadium redox battery. Electrochim. Acta 56, 5483–5487 (2011).

    Article  CAS  Google Scholar 

  146. Hecht, M., Schultz, F. A. & Speiser, B. Ligand structural effects on the electrochemistry of chromium(III) amino carboxylate complexes. Inorg. Chem. 35, 5555–5563 (1996).

    Article  PubMed  CAS  Google Scholar 

  147. Mans, N., Krieg, H. M. & van der Westhuizen, D. J. The effect of electrolyte composition on the performance of a single‐cell iron–chromium flow battery. Adv. Energy Sustain. Res. 5, 2300238 (2023).

    Article  Google Scholar 

  148. Gerdom, L. E., Baenziger, N. A. & Goff, H. M. Crystal and molecular structure of a substitution-labile chromium (III) complex: aquo (ethylenediaminetriacetatoacetic acid) chromium (III). Inorg. Chem. 20, 1606–1609 (1981).

    Article  CAS  Google Scholar 

  149. Kelsall, G. H., House, C. I. & Gudyanga, F. P. Chemical and electrochemical equilibria and kinetics in aqueous Cr(III)/Cr(II) chloride solutions. J. Electroanal. Chem. Interf. Electrochem. 244, 179–202 (1988).

    Article  CAS  Google Scholar 

  150. Johnson, D. A. & Reid, M. A. Chemical and electrochemical behavior of the Cr(III)/Cr(II) half‐cell in the iron–chromium redox energy storage system. J. Electrochem. Soc. 132, 1058 (1985).

    Article  CAS  Google Scholar 

  151. Wu, M. et al. A highly active electrolyte for high-capacity iron–chromium flow batteries. Appl. Energy 358, 122534 (2024).

    Article  CAS  Google Scholar 

  152. Wan, C. T.-C., Rodby, K. E., Perry, M. L., Chiang, Y.-M. & Brushett, F. R. Hydrogen evolution mitigation in iron–chromium redox flow batteries via electrochemical purification of the electrolyte. J. Power Sources 554, 232248 (2023).

    Article  CAS  Google Scholar 

  153. Wang, S. et al. Act in contravention: a non-planar coupled electrode design utilizing ‘tip effect’ for ultra-high areal capacity, long cycle life zinc-based batteries. Sci. Bull. 66, 889–896 (2021).

    Article  CAS  Google Scholar 

  154. Lai, J., Zhang, H., Xu, K. & Shi, F. Linking interfacial structure and electrochemical behaviors of batteries by high-resolution electrocapillarity. J. Am. Chem. Soc. 146, 22257–22265 (2024).

    Article  PubMed  CAS  Google Scholar 

  155. Kim, J. et al. Stable zinc electrode reaction enabled by combined cationic and anionic electrolyte additives for non-flow aqueous Zn horizontal line Br2 batteries. Small 20, 2401916 (2024).

    Article  CAS  Google Scholar 

  156. Ling, R. et al. Dual-function electrolyte additive design for long life alkaline zinc flow batteries. Adv. Mater. 36, e2404834 (2024).

    Article  PubMed  Google Scholar 

  157. Na, M., Singh, V., Choi, R. H., Kim, B. G. & Byon, H. R. Zn glutarate protective layers in situ form on Zn anodes for Zn redox flow batteries. Energy Storage Mater. 57, 195–204 (2023).

    Article  Google Scholar 

  158. Zhi, L., Li, T., Liu, X., Yuan, Z. & Li, X. Functional complexed zincate ions enable dendrite-free long cycle alkaline zinc-based flow batteries. Nano Energy 102, 107697 (2022).

    Article  CAS  Google Scholar 

  159. Wang, C. et al. High-voltage and dendrite-free zinc–iodine flow battery. Nat. Commun. 15, 6234 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Huang, B. et al. Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics. JACS Au 1, 1674–1687 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Huang, B. et al. Cation-dependent interfacial structures and kinetics for outer-sphere electron-transfer reactions. J. Phys. Chem. C 125, 4397–4411 (2021).

    Article  CAS  Google Scholar 

  162. Rostami, A. A. & Gatabi, Z. R. Determination of the heterogeneous rate constant of Fe(CN) 63-/4-in aqueous solutions with different supporting electrolyte and viscosity at glassy carbon electrode. Asian J. Chem. 22, 989 (2010).

    CAS  Google Scholar 

  163. Libby, W. F. Theory of electron exchange reactions in aqueous solution. J. Phys. Chem. 56, 863–868 (1953).

    Article  Google Scholar 

  164. Murthy, A. & Srivastava, T. Fe(III)/Fe(II) — ligand systems for use as negative half-cells in redox-flow cells. J. Power Sources 27, 119–126 (1989).

    Article  CAS  Google Scholar 

  165. Jing, M. et al. Improved electrochemical performance for vanadium flow battery by optimizing the concentration of the electrolyte. J. Power Sources 324, 215–223 (2016).

    Article  CAS  Google Scholar 

  166. Jenkins, H. D. B. & Marcus, Y. Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695–2724 (1995).

    Article  CAS  Google Scholar 

  167. Atkins, P. W., De Paula, J. & Keeler, J. Atkins’ Physical Chemistry (Oxford Univ. Press, 2023).

  168. Yang, Y. et al. Investigations on physicochemical properties and electrochemical performance of sulfate-chloride mixed acid electrolyte for vanadium redox flow battery. J. Power Sources 434, 226719 (2019).

    Article  CAS  Google Scholar 

  169. Jing, M. et al. Systematic investigation of the physical and electrochemical characteristics of the vanadium (III) acidic electrolyte with different concentrations and related diffusion kinetics. Front. Chem. 8, 502 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Luin, U., Arcon, I. & Valant, M. Structure and population of complex ionic species in FeCl2 aqueous solution by X-ray absorption spectroscopy. Molecules 27, 642 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Holubowitch, N. E. & Jabbar, A. Spectroelectrochemistry of next-generation redox flow battery electrolytes: a survey of active species from four representative classes. Microchem. J. 182, 107920 (2022).

    Article  CAS  Google Scholar 

  172. Persson, I. Ferric chloride complexes in aqueous solution: an EXAFS study. J. Solut. Chem. 47, 797–805 (2018).

    Article  CAS  Google Scholar 

  173. Evans, D. F. 400. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J. Chem. Soc. 1959, 2003–2005 (1959).

    Article  Google Scholar 

  174. Yang, C. et al. Designing redox‐stable cobalt–polypyridyl complexes for redox flow batteries: spin‐crossover delocalizes excess charge. Adv. Energy Mater. 8, 1702897 (2018).

    Article  Google Scholar 

  175. Pavia, D. L., Lampman, G. M., Kriz, G. S. & Vyvyan, J. R. Introduction to Spectroscopy 5th edn (Cengage Learning, 2015).

  176. Ding, S.-Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 1–6 (2016).

    Article  Google Scholar 

  177. Petrus du Toit, J., Krieg, H. M., Mans, N. & Jacobus van der Westhuizen, D. UV–Vis spectrophotometric analytical technique for monitoring Fe2+ in the positive electrolyte of an ICRFB. J. Power Sources 553, 232178 (2023).

    Article  CAS  Google Scholar 

  178. Bressler, C. et al. Femtosecond XANES study of the light-induced spin crossover dynamics in an iron (II) complex. Science 323, 489–492 (2009).

    Article  PubMed  CAS  Google Scholar 

  179. Sawant, T. V., Yim, C. S., Henry, T. J., Miller, D. M. & McKone, J. R. Harnessing interfacial electron transfer in redox flow batteries. Joule 5, 360–378 (2021).

    Article  CAS  Google Scholar 

  180. Schneider, J., Tichter, T. & Roth, C. in Flow Batteries From Fundamentals to Applications Vol. 2 (eds Roth, C. et al.) 229–262 (Wiley-VCH GmbH, 2023).

  181. Brooker, R. P., Bell, C. J., Bonville, L. J., Kunz, H. R. & Fenton, J. M. Determining vanadium concentrations using the UV–Vis response method. J. Electrochem. Soc. 162, A608–A613 (2015).

    Article  CAS  Google Scholar 

  182. Maurice, A. A., Quintero, A. E. & Vera, M. A comprehensive guide for measuring total vanadium concentration and state of charge of vanadium electrolytes using UV–visible spectroscopy. Electrochim. Acta 482, 144003 (2024).

    Article  CAS  Google Scholar 

  183. Kunstner, S. et al. Monitoring the state of charge of vanadium redox flow batteries with an EPR-on-a-Chip dipstick sensor. Phys. Chem. Chem Phys 26, 17785–17795 (2024).

    Article  PubMed  Google Scholar 

  184. Liu, J. et al. Sulfur-based aqueous batteries: electrochemistry and strategies. J. Am. Chem. Soc. 143, 15475–15489 (2021).

    Article  PubMed  CAS  Google Scholar 

  185. Yoneyama, K., Suzuki, R., Kuramochi, Y. & Satake, A. A candidate for multitopic probes for ligand discovery in dynamic combinatorial chemistry. Molecules 24, 2166 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Kozieł, S., Wojtala, D., Szmitka, M., Sawka, J. & Komarnicka, U. K. Can Mn coordination compounds be good candidates for medical applications? Front. Chem. Biol. 3, 1337372 (2024).

    Article  Google Scholar 

  187. Pascanu, V., González Miera, G., Inge, A. K. & Martín-Matute, B. Metal–organic frameworks as catalysts for organic synthesis: a critical perspective. J. Am. Chem. Soc. 141, 7223–7234 (2019).

    Article  PubMed  CAS  Google Scholar 

  188. Mondal, S., Naik, P. K., Adha, J. K. & Kar, S. Synthesis, characterization, and reactivities of high valent metal–corrole (M = Cr, Mn, and Fe) complexes. Coord. Chem. Rev. 400, 213043 (2019).

    Article  CAS  Google Scholar 

  189. Jiménez, J.-R., Doistau, B., Poncet, M. & Piguet, C. Heteroleptic trivalent chromium in coordination chemistry: novel building blocks for addressing old challenges in multimetallic luminescent complexes. Coord. Chem. Rev. 434, 213750 (2021).

    Article  Google Scholar 

  190. Wegeberg, C. & Wenger, O. S. Luminescent first-row transition metal complexes. JACS Au 1, 1860–1876 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Zhao, E. W. et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Nature 579, 224–228 (2020).

    Article  PubMed  CAS  Google Scholar 

  192. Chen, X., Xi, J., Ma, K. & Liu, L. Study of the cross-transportation of V(II)/V(III) in vanadium flow batteries based on online monitoring of nonlinear absorption spectra. J. Power Sources 556, 232442 (2023).

    Article  CAS  Google Scholar 

  193. Wong, A. A., Rubinstein, S. M. & Aziz, M. J. Direct visualization of electrochemical reactions and heterogeneous transport within porous electrodes in operando by fluorescence microscopy. Cell Rep. Phys. Sci. 2, 100388 (2021).

    Article  CAS  Google Scholar 

  194. Kauffman, G. B. Early experimental studies of cobalt-ammines. Isis 68, 392–403 (1977).

    Article  CAS  Google Scholar 

  195. Werner, H. Alfred Werner: a forerunner to modern inorganic chemistry. Angew. Chem. Int. Ed. 52, 6146–6153 (2013).

    Article  CAS  Google Scholar 

  196. Brown, I. D. in Bond Valences (eds Brown, I. D. & Poeppelmeier, K. R.) 11–58 (Springer, 2014).

  197. Bethe, H. Termaufspaltung in Kristallen. Ann. Phys. 395, 133–208 (1929).

    Article  Google Scholar 

  198. Van Vleck, J. H. Theory of the variations in paramagnetic anisotropy among different salts of the iron group. Phys. Rev. 41, 208–215 (1932).

    Article  Google Scholar 

  199. Taube, H. in Advances in Inorganic Chemistry and Radiochemistry Vol. 1 (eds Emeléus, H. J. & Sharpe, A. G.) 1–53 (Academic Press, 1959).

  200. Thorneley, R. N. F. & Syke, A. G. The extent of chelation in some chromium(III)–EDTA complexes. Chem. Commun. 6, 340 (1968).

    Google Scholar 

  201. Bain, G. A. & Berry, J. F. Diamagnetic corrections and Pascal’s constants. J. Chem. Educ. 85, 532 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region, China (project nos RFS2223-4S03, CUHK 14308622 and CUHK 14302823). Y.-C.L. acknowledges the support from Xplorer Prize by New Cornerstone Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation and reviewing of this manuscript.

Corresponding author

Correspondence to Yi-Chun Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Wei Wang, Feifei Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, F., Lu, YC. Coordination chemistry in advanced redox-active electrolyte designs. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00833-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-025-00833-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing