Abstract
Coordination chemistry is central to the development of redox-active electrolytes for various applications, including electroplating, molecular screening, biomedicine, artificial synthesis and energy storage. This Review focuses on the role of coordination chemistry in the design of redox-active electrolytes for aqueous redox flow batteries. We analyse the key thermodynamic and kinetic properties of electrolytes through the framework of crystal-field theory, emphasizing how ligand properties, ligand-field effects and entropy influence redox potential, solubility and structural stability. We also discuss how coordination chemistry fine-tunes microscopic dynamic properties, thereby influencing electrochemical performance. In addition, we discuss characterization techniques that enable deep insight into the structureâfunction relationships of coordination-based electrolytes. Finally, we outline future directions for rational electrolyte design guided by coordination chemistry principles, with the aim to produce next-generation aqueous redox flow batteries with enhanced performance and tunability.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Walsh, F. C., Wang, S. & Zhou, N. The electrodeposition of composite coatings: diversity, applications and challenges. Curr. Opin. Electrochem. 20, 8â19 (2020).
Wang, W., Yang, T., Harris, W. H. & Gomez-Bombarelli, R. Active learning and neural network potentials accelerate molecular screening of ether-based solvate ionic liquids. Chem. Commun. 56, 8920â8923 (2020).
More, S. et al. Rheological properties of synovial fluid due to viscosupplements: a review for osteoarthritis remedy. Comput. Meth. Prog. Biomed. 196, 105644 (2020).
Lan, R., Irvine, J. T. & Tao, S. Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci. Rep. 3, 1145 (2013).
Choi, C. et al. A review of vanadium electrolytes for vanadium redox flow batteries. Renew. Sust. Energy Rev. 69, 263â274 (2017).
Chen, J. et al. Electrolyte solvation chemistry to construct an anion-tuned interphase for stable high-temperature lithium metal batteries. eScience 3, 100135 (2023).
Barrett, J. Inorganic Chemistry in Aqueous Solution Vol. 21 (The Royal Society of Chemistry, 2003).
Skyllas-Kazacos, M. Review â highlights of UNSW all-vanadium redox battery development: 1983 to present. J. Electrochem. Soc. 169, 070513 (2022).
Raub, C. in Metal Plating and Patination (eds Niece, S. L. & Craddock, P.) 284â290 (Butterworth-Heinemann, 1993).
Pedersen, C. J. The discovery of crown ethers (Noble Lecture). Angew. Chem. Int. Ed. 27, 1021â1027 (1988).
Eschenmoser, A. Vitamin B12: experiments concerning the origin of its molecular structure. Angew. Chem. Int. Ed. 27, 5â39 (1988).
Park, M., Ryu, J., Wang, W. & Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2, 1â18 (2016).
Soloveichik, G. L. Flow batteries: current status and trends. Chem. Rev. 115, 11533â11558 (2015).
Zhang, C., Yuan, Z. & Li, X. Designing better flow batteries: an overview on fifty yearsâ research. ACS Energy Lett. 9, 3456â3473 (2024).
Handy, L. L. & Gregory, N. W. Structural properties of chromium(III) iodide and some chromium(III) mixed halides. J. Am. Chem. Soc. 74, 891â893 (1952).
Ogard, A. E. & Taube, H. Halides as bridging groups for electron transfer in the systems Cr++ + (NH3)5CrX++. J. Am. Chem. Soc. 80, 1084â1089 (1958).
Hunt, J. B. & Earley, J. The effect of some non-bridging ligands on the Cr(II)âCr(III) oxidation. J. Am. Chem. Soc. 82, 5312â5314 (1960).
Weaver, M. J. & Anson, F. C. Distinguishing between inner- and outer-sphere electrode reactions. reactivity patterns for some chromium(III)âchromium(II) electron-transfer reactions at mercury electrodes. Inorg. Chem. 15, 1871â1881 (1976).
Thaller, L. H. Recent Advances in Redox Flow Cell Storage Systems (National Aeronautics and Space Administration, 1976).
Tolmachev, Y. V. Review â flow batteries from 1879 to 2022 and beyond. J. Electrochem. Soc. 170, 030505 (2023).
Noack, J., Roznyatovskaya, N., Herr, T. & Fischer, P. The chemistry of redox-flow batteries. Angew. Chem. Int. Ed. 54, 9776â9809 (2015).
Li, Z. & Lu, Y. C. Material design of aqueous redox flow batteries: fundamental challenges and mitigation strategies. Adv. Mater. 32, e2002132 (2020).
Sun, C. & Zhang, H. Review of the development of first-generation redox flow batteries: ironâchromium system. ChemSusChem 15, e202101798 (2022).
Belongia, S., Wang, X. & Zhang, X. Progresses and perspectives of allâiron aqueous redox flow batteries. Adv. Funct. Mater. 34, 2302077 (2023).
Lei, J., Jiang, L. & Lu, Y.-C. Emerging aqueous manganese-based batteries: fundamental understanding, challenges, and opportunities. Chem. Phys. Rev. 4, 021307 (2023).
Park, J. et al. Recent progress in high-voltage aqueous zinc-based hybrid redox flow batteries. Chem-Asian J. 18, e202201052 (2023).
Zhao, Y. et al. Thermodynamic and kinetic insights for manipulating aqueous Zn battery chemistry: towards future grid-scale renewable energy storage systems. eScience 5, 100331 (2024).
Piro, N. A., Robinson, J. R., Walsh, P. J. & Schelter, E. J. The electrochemical behavior of cerium (III/IV) complexes: thermodynamics, kinetics and applications in synthesis. Coord. Chem. Rev. 260, 21â36 (2014).
Horn, M. R. et al. Polyoxometalates (POMs): from electroactive clusters to energy materials. Energy Environ. Sci. 14, 1652â1700 (2021).
Wei, X. et al. Materials and systems for organic redox flow batteries: status and challenges. ACS Energy Lett. 2, 2187â2204 (2017).
Kwabi, D. G., Ji, Y. & Aziz, M. J. Electrolyte lifetime in aqueous organic redox flow batteries: a critical review. Chem. Rev. 120, 6467â6489 (2020).
Li, X., Xu, W. & Zhi, C. Halogen-powered static conversion chemistry. Nat. Rev. Chem. 8, 359â375 (2024).
Robb, B. H., Waters, S. E. & Marshak, M. P. Evaluating aqueous flow battery electrolytes: a coordinated approach. Dalton Trans. 49, 16047â16053 (2020).
Yao, Y., Lei, J., Shi, Y., Ai, F. & Lu, Y.-C. Assessment methods and performance metrics for redox flow batteries. Nat. Energy 6, 582â588 (2021).
Liu, B., Li, Y., Jia, G. & Zhao, T. Recent advances in redox flow batteries employing metal coordination complexes as redox-active species. Electrochem. Energy Rev. 7, 7 (2024).
Shriver, D., Weller, M., Overton, T., Rourke, J. & Amstrong, F. Inorganic Chemistry 6th edn (W. H. Freeman, 2014).
Ji, X. A perspective of ZnCl2 electrolytes: the physical and electrochemical properties. eScience 1, 99â107 (2021).
Rajarathnam, G. P. et al. Chemical speciation of zincâhalide complexes in zinc/bromine flow battery electrolytes. J. Electrochem. Soc. 168, 070522 (2021).
McGrath, M. J. et al. 110th anniversary: the dehydration and loss of ionic conductivity in anion exchange membranes due to FeCl4â ion exchange and the role of membrane microstructure. Ind. Eng. Chem. Res. 58, 22250â22259 (2019).
Lin, S.-C., Wang, Y.-Y., Wan, C.-C. & Chang, J.-C. Reinvestigation of the electrochemical reduction of KMnO4. Bull. Chem. Soc. Jpn 66, 3372â3376 (1993).
Wheeler, W. D. & Legg, J. I. Solution structure of the chromium (III) complex with EDTA by deuteron NMR spectroscopy. Inorg. Chem. 23, 3798â3802 (1984).
Hunt, J. P. & Plane, R. A. The kinetics of the exchange of water between Cr(H2O)6+3 and solvent. J. Am. Chem. Soc. 76, 5960â5962 (1954).
Fell, E. M. et al. Long-term stability of ferri-/ferrocyanide as an electroactive component for redox flow battery applications: on the origin of apparent capacity fade. J. Electrochem. Soc. 170, 070525 (2023).
Garrett, R. G. in Essentials of Medical Geology: Revised Edition (ed. Selinus, O.) 35â57 (Springer, 2013).
Yaroshevsky, A. A. Abundances of chemical elements in the Earthâs crust. Geochem. Int. 44, 48â55 (2006).
Bae, C.-H., Roberts, E. P. L. & Dryfe, R. A. W. Chromium redox couples for application to redox flow batteries. Electrochim. Acta 48, 278â287 (2002).
Yu, Z. et al. Electrolyte engineering for efficient and stable vanadium redox flow batteries. Energy Storage Mater. 69, 103404 (2024).
Vijayakumar, M. et al. Towards understanding the poor thermal stability of V5+ electrolyte solution in vanadium redox flow batteries. J. Power Sources 196, 3669â3672 (2011).
Zhang, Z., Wei, L., Wu, M., Bai, B. & Zhao, T. Chloride ions as an electrolyte additive for high performance vanadium redox flow batteries. Appl. Energy 289, 116690 (2021).
Sum, E. & Skyllas-Kazacos, M. A study of the V(II)/V(III) redox couple for redox flow cell applications. J. Power Sources 15, 179â190 (1985).
Sum, E., Rychcik, M. & Skyllas-Kazacos, M. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J. Power Sources 16, 85â95 (1985).
Huang, Z. et al. Comprehensive analysis of critical issues in all-vanadium redox flow battery. ACS Sustain. Chem. Eng. 10, 7786â7810 (2022).
Geoffrey, W., Gillard, R. D. & McCleverty, J. A. Comprehensive Coordination Chemistry 1601 (Elsevier, 2021).
Meier, R. Voltammetric study of the interaction of phosphate with the Cr (III/II)âEDTA couple. J. Electroanal. Chem. 263, 175â180 (1989).
Persson, I. Hydrated metal ions in aqueous solution: how regular are their structures? Pure Appl. Chem. 82, 1901â1917 (2010).
Yin, Q., Brandon, N. P. & Kelsall, G. H. Electrochemical synthesis of Cr(II) at carbon electrodes in acidic aqueous solutions. J. Appl. Electrochem. 30, 1109â1117 (2000).
Cheng, D. S., Reiner, A. & Hollax, E. Activation of hydrochloric acid-CrCl3·6H2 solutions with N-alkylamines. J. Appl. Electrochem. 15, 63â70 (1985).
Alfaruqi, M. H. et al. Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J. Power Sources 288, 320â327 (2015).
Nason, C. A. F. & Xu, Y. Pre-intercalation: a valuable approach for the improvement of post-lithium battery materials. eScience 4, 100183 (2024).
Nan, M. et al. A self-healing electrocatalyst for manganese-based flow battery. Chem. Eng. J. 490, 150890 (2024).
Cao, J. et al. Vanadium-mediated high areal capacity zincâmanganese redox flow battery. ACS Sustain. Chem. Eng. 12, 6320â6329 (2024).
Chen, W. et al. A manganeseâhydrogen battery with potential for grid-scale energy storage. Nat. Energy 3, 428â435 (2018).
Xie, C. et al. A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ. Sci. 13, 135â143 (2020).
Shen, X. et al. An all-soluble Fe/Mn-based alkaline redox flow battery system. ACS Appl. Mater. Interfaces 16, 18686â18692 (2024).
Reynard, D. et al. Vanadium-manganese redox flow battery: study of Mn(III) disproportionation in the presence of other metallic ions. Chem. Eur. J. 26, 7250â7257 (2020).
Colli, A. N., Peljo, P. & Girault, H. H. High energy density MnO4â/MnO42â redox couple for alkaline redox flow batteries. Chem. Commun. 52, 14039â14042 (2016).
Lei, J., Yao, Y., Wang, Z. & Lu, Y.-C. Towards high-areal-capacity aqueous zincâmanganese batteries: promoting MnO2 dissolution by redox mediators. Energy Environ. Sci. 14, 4418 (2021).
Wang, S. et al. A double-ligand chelating strategy to iron complex anolytes with ultrahigh cyclability for aqueous iron flow batteries. Angew. Chem. Int. Ed. 63, e202316593 (2024).
Hruska, L. W. & Savinell, R. F. Investigation of factors affecting performance of the ironâredox battery. J. Electrochem. Soc. 128, 18 (1981).
Gong, K. et al. All-soluble all-iron aqueous redox-flow battery. ACS Energy Lett. 1, 89â93 (2016).
Holubowitch, N. E. & Nguyen, G. Dimerization of [FeIII(bpy)3]3+ in aqueous solutions: elucidating a mechanism based on historical proposals, electrochemical data, and computational free energy analysis. Inorg. Chem. 61, 9541â9556 (2022).
Martins, G. F. Why the Daniell cell works! J. Chem. Educ. 67, 482 (1990).
Cai, Z., Wang, J. & Sun, Y. Anode corrosion in aqueous Zn metal batteries. eScience 3, 100093 (2023).
Park, M. et al. A high voltage aqueous zincâorganic hybrid flow battery. Adv. Energy Mater. 9, 1900694 (2019).
Xu, D. et al. Chelating additive regulating Zn-ion solvation chemistry for highly efficient aqueous zinc-metal battery. Angew. Chem. Int. Ed. 63, e202402833 (2024).
Mahmood, A., Zheng, Z. & Chen, Y. Zincâbromine batteries: challenges, prospective solutions, and future. Adv. Sci. 11, e2305561 (2024).
Yuan, L. et al. Hybrid working mechanism enables highly reversible Zn electrodes. eScience 3, 100096 (2023).
Richens, D. T. Ligand substitution reactions at inorganic centers. Chem. Rev. 105, 1961â2002 (2005).
Kritayakornupong, C. The JahnâTeller effect of the Cr2+ ion in aqueous solution: ab initio QM/MM molecular dynamics simulations. J. Comput. Chem. 29, 115â121 (2008).
Xue, F.-Q., Wang, Y.-L., Wang, W.-H. & Wang, X.-D. Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery. Electrochim. Acta 53, 6636â6642 (2008).
H, B., Robb, Farrell, J. M. & Marshak, M. P. Chelated chromium electrolyte enabling high-voltage aqueous flow batteries. Joule 3, 2503â2512 (2019).
Waters, S. E., Robb, B. H. & Marshak, M. P. Effect of chelation on ironâchromium redox flow batteries. ACS Energy Lett. 5, 1758â1762 (2020).
Murthy, A. S. N. & Srivastava, T. Fe(III)/Fe(II) â ligand systems for use as negative half-cells in redox-flow cells. J. Power Sources 27, 119â126 (1989).
Ruan, W. et al. Designing Cr complexes for a neutral FeâCr redox flow battery. Chem. Commun. 56, 3171â3174 (2020).
Nambafu, G. S. et al. Phosphonate-based iron complex for a cost-effective and long cycling aqueous iron redox flow battery. Nat. Commun. 15, 2566 (2024).
Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn, 826 (Wiley, 2001).
Wen, Y. H. et al. A study of the Fe(III)/Fe(II)âtriethanolamine complex redox couple for redox flow battery application. Electrochim. Acta 51, 3769â3775 (2006).
Wilkinson, G., Gillard, R. D. & McCleverty, J. A. Book review comprehensive coordination chemistry. J. Coord. Chem. 21, 193â197 (1990).
Chen, Y.-W. D., Santhanam, K. S. V. & Bard, A. J. Solution redox couples for electrochemical energy storage: I. Iron (III)âiron (II) complexes with Oâphenanthroline and related ligands. J. Electrochem. Soc. 7, 1460 (1981).
Ai, F. et al. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures. Nat. Energy 7, 417â426 (2022).
Gao, J. et al. A high potential, low capacity fade rate iron complex posolyte for aqueous organic flow batteries. Adv. Energy Mater. 12, 2202444 (2022).
Ruan, W., Mao, J., Yang, S. & Chen, Q. Communication â tris(bipyridyl)iron complexes for high-voltage aqueous redox flow batteries. J. Electrochem. Soc. 167, 100543 (2020).
Li, X. et al. Symmetry-breaking design of an organic iron complex catholyte for a long cyclability aqueous organic redox flow battery. Nat. Energy 6, 873â881 (2021).
Luo, J. et al. Unprecedented capacity and stability of ammonium ferrocyanide catholyte in pH neutral aqueous redox flow batteries. Joule 3, 149â163 (2019).
Li, X. et al. Lithium ferrocyanide catholyte for high-energy and low-cost aqueous redox flow batteries. Angew. Chem. Int. Ed. 62, e202304667 (2023).
Esswein, A. J., Goeltz, J. & Amadeo, D. High solubility iron hexacyanides. US patent US9929425B2 (2018).
Gupta, S., Lim, T. M. & Mushrif, S. H. Insights into the solvation of vanadium ions in the vanadium redox flow battery electrolyte using molecular dynamics and metadynamics. Electrochim. Acta 270, 471â479 (2018).
Wang, G. et al. Study on stabilities and electrochemical behavior of V(V) electrolyte with acid additives for vanadium redox flow battery. J. Energy Chem. 23, 73â81 (2014).
Du, J., Liu, J., Liu, S., Wang, L. & Chou, K.-C. Research progress of vanadium battery with mixed acid system: a review. J. Energy Storage 70, 107961 (2023).
Bon, M., Laino, T., Curioni, A. & Parrinello, M. Characterization of vanadium species in mixed chlorideâsulfate solutions: an ab initio metadynamics study. J. Phys. Chem. C 120, 10791â10798 (2016).
Roe, S., Menictas, C. & Skyllas-Kazacos, M. A high energy density vanadium redox flow battery with 3 M vanadium electrolyte. J. Electrochem. Soc. 163, A5023âA5028 (2015).
Xiao, S. et al. Broad temperature adaptability of vanadium redox flow battery â part 1: electrolyte research. Electrochim. Acta 187, 525â534 (2016).
Kim, S., Choi, C., Kim, R., Kim, H. G. & Kim, H.-T. Temperature-dependent 51V nuclear magnetic resonance spectroscopy for the positive electrolyte of vanadium redox flow batteries. RSC Adv. 6, 96847â96852 (2016).
Vijayakumar, M., Wang, W., Nie, Z., Sprenkle, V. & Hu, J. Elucidating the higher stability of vanadium(V) cations in mixed acid based redox flow battery electrolytes. J. Power Sources 241, 173â177 (2013).
Li, L. et al. A stable vanadium redoxâflow battery with high energy density for large-scale energy storage. Adv. Energy Mater. 1, 394â400 (2011).
Roznyatovskaya, N. V. et al. The role of phosphate additive in stabilization of sulphuric-acid-based vanadium(V) electrolyte for all-vanadium redox-flow batteries. J. Power Sources 363, 234â243 (2017).
Ding, C. et al. Effects of phosphate additives on the stability of positive electrolytes for vanadium flow batteries. Electrochim. Acta 164, 307â314 (2015).
Liang, X. et al. Effect of l-glutamic acid on the positive electrolyte for all-vanadium redox flow battery. Electrochim. Acta 95, 80â86 (2013).
Wu, X., Liu, S., Wang, N., Peng, S. & He, Z. Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery. Electrochim. Acta 78, 475â482 (2012).
Waters, S. E., Robb, B. H., Scappaticci, S. J., Saraidaridis, J. D. & Marshak, M. P. Isolation and characterization of a highly reducing aqueous chromium(II) complex. Inorg. Chem. 61, 8752â8759 (2022).
Clarke, C. J., Browning, G. J. & Donne, S. W. An RDE and RRDE study into the electrodeposition of manganese dioxide. Electrochim. Acta 51, 5773â5784 (2006).
Zhang, Z. et al. Manganese species in methane sulfonic acid as the solvent for zincâmanganese redox battery. Mater. Chem. Phys. 228, 75â79 (2019).
Yu, X., Song, Y. & Tang, A. Tailoring manganese coordination environment for a highly reversible zinc-manganese flow battery. J. Power Sources 507, 230295 (2021).
Bechtold, T., Burtscher, E., Gmeiner, D. & Bobleter, O. The redox-catalysed reduction of dispersed organic compounds: investigations on the electrochemical reduction of insoluble organic compounds in aqueous systems. J. Electroanal. Chem. 306, 169â183 (1991).
Arroyo-Currás, N., Hall, J. W., Dick, J. E., Jones, R. A. & Bard, A. J. An alkaline flow battery based on the coordination chemistry of iron and cobalt. J. Electrochem. Soc. 162, A378âA383 (2014).
Shin, M., Noh, C., Chung, Y. & Kwon, Y. All iron aqueous redox flow batteries using organometallic complexes consisting of iron and 3-[bis(2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid ligand and ferrocyanide as redox couple. Chem. Eng. J. 398, 125631 (2020).
Shin, M. et al. Aqueous redox flow battery using iron 2,2âbis(hydroxymethyl)â2,2â²,2â²ânitrilotriethanol complex and ferrocyanide as newly developed redox couple. Int. J. Energy Res. 46, 8175â8185 (2022).
Mateos, M., Makivic, N., Kim, Y. S., Limoges, B. & Balland, V. Accessing the twoâelectron charge storage capacity of MnO2 in mild aqueous electrolytes. Adv. Energy Mater. 10, 2000332 (2020).
Qian, A. et al. Geochemical stability of dissolved Mn(III) in the presence of pyrophosphate as a model ligand: complexation and disproportionation. Environ. Sci. Technol. 53, 5768â5777 (2019).
Jang, J. E. et al. Fullâhexacyanometallate aqueous redox flow batteries exceeding 1.5 V in an aqueous solution. Adv. Energy Mater. 13, 2300707 (2023).
Jang, J.-E., Jayasubramaniyan, S., Lee, S. W. & Lee, H.-W. A hexacyanomanganate negolyte for aqueous redox flow batteries. ACS Energy Lett. 8, 3702â3709 (2023).
Luo, J. et al. Unraveling pH dependent cycling stability of ferricyanide/ferrocyanide in redox flow batteries. Nano Energy 42, 215â221 (2017).
Adams, G. B. Electrically rechargeable battery. US patent 4,180,623 (1979).
Hu, M., Wang, A. P., Luo, J., Wei, Q. & Liu, T. L. Cycling performance and mechanistic insights of ferricyanide electrolytes in alkaline redox flow batteries. Adv. Energy Mater. 13, 2203762 (2023).
Páez, T., MartÃnez-Cuezva, A., Palma, J. & Ventosa, E. Revisiting the cycling stability of ferrocyanide in alkaline media for redox flow batteries. J. Power Sources 471, 228453 (2020).
Yang, W. et al. Revisiting the attenuation mechanism of alkaline all-iron ion redox flow batteries. Chem. Eng. J. 487, 150491 (2024).
Burghoff, A. & Holubowitch, N. E. Critical roles of pH and activated carbon on the speciation and performance of an archetypal organometallic complex for aqueous redox flow batteries. J. Am. Chem. Soc. 146, 9728â9740 (2024).
Bui, H. & Holubowitch, N. E. Isopropyl alcohol and copper hexacyanoferrate boost performance of the iron tris-bipyridine catholyte for near-neutral pH aqueous redox flow batteries. Int. J. Energy Res. 46, 5864â5875 (2021).
Dickinson, E. J. F. & Wain, A. J. The ButlerâVolmer equation in electrochemical theory: origins, value, and practical application. J. Electroanal. Chem. 872, 114145 (2020).
Gattrell, M. et al. Study of the mechanism of the vanadium 4+/5+ redox reaction in acidic solutions. J. Electrochem. Soc. 151, A123âA130 (2004).
Huang, F. et al. Influence of Cr3+ concentration on the electrochemical behavior of the anolyte for vanadium redox flow batteries. Chin. Sci. Bull. 57, 4237â4243 (2012).
He, Z. et al. Effect of In3+ ions on the electrochemical performance of the positive electrolyte for vanadium redox flow batteries. Ionics 19, 1915â1920 (2013).
Park, J. H., Park, J. J., Lee, H. J., Min, B. S. & Yang, J. H. Influence of metal impurities or additives in the electrolyte of a vanadium redox flow battery. J. Electrochem. Soc. 165, A1263âA1268 (2018).
Marcus, R. A. On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43, 679â701 (1965).
Endicott, J. F. & Taube, H. Kinetics of some outer-sphere electron-transfer reactions. J. Am. Chem. Soc. 89, 1686â1691 (1964).
Agarwal, H., Florian, J., Goldsmith, B. R. & Singh, N. V2+/V3+ redox kinetics on glassy carbon in acidic electrolytes for vanadium redox flow batteries. ACS Energy Lett. 4, 2368â2377 (2019).
Agarwal, H., Florian, J., Goldsmith, B. R. & Singh, N. The effect of anion bridging on heterogeneous charge transfer for V2+/V3+. Cell Rep. Phys. Sci. 2, 100307 (2021).
Tanimoto, S. & Ichimura, A. Discrimination of inner- and outer-sphere electrode reactions by cyclic voltammetry experiments. J. Chem. Educ. 90, 778â781 (2013).
Kravtsov, V. I. Kinetics and mechanism of electrode reactions of metal complexes in aqueous electrolyte solutions. Russ. Chem. Rev. 45, 284 (1976).
Haim, A. Role of the bridging ligand in inner-sphere electron-transfer reactions. Acc. Chem. Res. 8, 264â272 (1975).
Jiang, Z., Klyukin, K. & Alexandrov, V. Ab initio metadynamics study of the VO2+/VO2+ redox reaction mechanism at the graphite edge/water interface. ACS Appl. Mater. Interfaces 10, 20621â20626 (2018).
Oldenburg, F. J. et al. Revealing the role of phosphoric acid in all-vanadium redox flow batteries with DFT calculations and in situ analysis. Phys. Chem. Chem. Phys. 20, 23664â23673 (2018).
Yang, Y., Zhang, Y., Liu, T. & Huang, J. Improved properties of positive electrolyte for a vanadium redox flow battery by adding taurine. Res. Chem. Intermed. 44, 769â786 (2017).
Wang, N., Zhou, W. & Zhang, F. l-cystine additive in the negative electrolyte of vanadium redox flow battery for improving electrochemical performance. Ionics 25, 221â229 (2018).
Li, S. et al. Effect of organic additives on positive electrolyte for vanadium redox battery. Electrochim. Acta 56, 5483â5487 (2011).
Hecht, M., Schultz, F. A. & Speiser, B. Ligand structural effects on the electrochemistry of chromium(III) amino carboxylate complexes. Inorg. Chem. 35, 5555â5563 (1996).
Mans, N., Krieg, H. M. & van der Westhuizen, D. J. The effect of electrolyte composition on the performance of a singleâcell ironâchromium flow battery. Adv. Energy Sustain. Res. 5, 2300238 (2023).
Gerdom, L. E., Baenziger, N. A. & Goff, H. M. Crystal and molecular structure of a substitution-labile chromium (III) complex: aquo (ethylenediaminetriacetatoacetic acid) chromium (III). Inorg. Chem. 20, 1606â1609 (1981).
Kelsall, G. H., House, C. I. & Gudyanga, F. P. Chemical and electrochemical equilibria and kinetics in aqueous Cr(III)/Cr(II) chloride solutions. J. Electroanal. Chem. Interf. Electrochem. 244, 179â202 (1988).
Johnson, D. A. & Reid, M. A. Chemical and electrochemical behavior of the Cr(III)/Cr(II) halfâcell in the ironâchromium redox energy storage system. J. Electrochem. Soc. 132, 1058 (1985).
Wu, M. et al. A highly active electrolyte for high-capacity ironâchromium flow batteries. Appl. Energy 358, 122534 (2024).
Wan, C. T.-C., Rodby, K. E., Perry, M. L., Chiang, Y.-M. & Brushett, F. R. Hydrogen evolution mitigation in ironâchromium redox flow batteries via electrochemical purification of the electrolyte. J. Power Sources 554, 232248 (2023).
Wang, S. et al. Act in contravention: a non-planar coupled electrode design utilizing âtip effectâ for ultra-high areal capacity, long cycle life zinc-based batteries. Sci. Bull. 66, 889â896 (2021).
Lai, J., Zhang, H., Xu, K. & Shi, F. Linking interfacial structure and electrochemical behaviors of batteries by high-resolution electrocapillarity. J. Am. Chem. Soc. 146, 22257â22265 (2024).
Kim, J. et al. Stable zinc electrode reaction enabled by combined cationic and anionic electrolyte additives for non-flow aqueous Zn horizontal line Br2 batteries. Small 20, 2401916 (2024).
Ling, R. et al. Dual-function electrolyte additive design for long life alkaline zinc flow batteries. Adv. Mater. 36, e2404834 (2024).
Na, M., Singh, V., Choi, R. H., Kim, B. G. & Byon, H. R. Zn glutarate protective layers in situ form on Zn anodes for Zn redox flow batteries. Energy Storage Mater. 57, 195â204 (2023).
Zhi, L., Li, T., Liu, X., Yuan, Z. & Li, X. Functional complexed zincate ions enable dendrite-free long cycle alkaline zinc-based flow batteries. Nano Energy 102, 107697 (2022).
Wang, C. et al. High-voltage and dendrite-free zincâiodine flow battery. Nat. Commun. 15, 6234 (2024).
Huang, B. et al. Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics. JACS Au 1, 1674â1687 (2021).
Huang, B. et al. Cation-dependent interfacial structures and kinetics for outer-sphere electron-transfer reactions. J. Phys. Chem. C 125, 4397â4411 (2021).
Rostami, A. A. & Gatabi, Z. R. Determination of the heterogeneous rate constant of Fe(CN) 63-/4-in aqueous solutions with different supporting electrolyte and viscosity at glassy carbon electrode. Asian J. Chem. 22, 989 (2010).
Libby, W. F. Theory of electron exchange reactions in aqueous solution. J. Phys. Chem. 56, 863â868 (1953).
Murthy, A. & Srivastava, T. Fe(III)/Fe(II) â ligand systems for use as negative half-cells in redox-flow cells. J. Power Sources 27, 119â126 (1989).
Jing, M. et al. Improved electrochemical performance for vanadium flow battery by optimizing the concentration of the electrolyte. J. Power Sources 324, 215â223 (2016).
Jenkins, H. D. B. & Marcus, Y. Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695â2724 (1995).
Atkins, P. W., De Paula, J. & Keeler, J. Atkinsâ Physical Chemistry (Oxford Univ. Press, 2023).
Yang, Y. et al. Investigations on physicochemical properties and electrochemical performance of sulfate-chloride mixed acid electrolyte for vanadium redox flow battery. J. Power Sources 434, 226719 (2019).
Jing, M. et al. Systematic investigation of the physical and electrochemical characteristics of the vanadium (III) acidic electrolyte with different concentrations and related diffusion kinetics. Front. Chem. 8, 502 (2020).
Luin, U., Arcon, I. & Valant, M. Structure and population of complex ionic species in FeCl2 aqueous solution by X-ray absorption spectroscopy. Molecules 27, 642 (2022).
Holubowitch, N. E. & Jabbar, A. Spectroelectrochemistry of next-generation redox flow battery electrolytes: a survey of active species from four representative classes. Microchem. J. 182, 107920 (2022).
Persson, I. Ferric chloride complexes in aqueous solution: an EXAFS study. J. Solut. Chem. 47, 797â805 (2018).
Evans, D. F. 400. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J. Chem. Soc. 1959, 2003â2005 (1959).
Yang, C. et al. Designing redoxâstable cobaltâpolypyridyl complexes for redox flow batteries: spinâcrossover delocalizes excess charge. Adv. Energy Mater. 8, 1702897 (2018).
Pavia, D. L., Lampman, G. M., Kriz, G. S. & Vyvyan, J. R. Introduction to Spectroscopy 5th edn (Cengage Learning, 2015).
Ding, S.-Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 1â6 (2016).
Petrus du Toit, J., Krieg, H. M., Mans, N. & Jacobus van der Westhuizen, D. UVâVis spectrophotometric analytical technique for monitoring Fe2+ in the positive electrolyte of an ICRFB. J. Power Sources 553, 232178 (2023).
Bressler, C. et al. Femtosecond XANES study of the light-induced spin crossover dynamics in an iron (II) complex. Science 323, 489â492 (2009).
Sawant, T. V., Yim, C. S., Henry, T. J., Miller, D. M. & McKone, J. R. Harnessing interfacial electron transfer in redox flow batteries. Joule 5, 360â378 (2021).
Schneider, J., Tichter, T. & Roth, C. in Flow Batteries From Fundamentals to Applications Vol. 2 (eds Roth, C. et al.) 229â262 (Wiley-VCH GmbH, 2023).
Brooker, R. P., Bell, C. J., Bonville, L. J., Kunz, H. R. & Fenton, J. M. Determining vanadium concentrations using the UVâVis response method. J. Electrochem. Soc. 162, A608âA613 (2015).
Maurice, A. A., Quintero, A. E. & Vera, M. A comprehensive guide for measuring total vanadium concentration and state of charge of vanadium electrolytes using UVâvisible spectroscopy. Electrochim. Acta 482, 144003 (2024).
Kunstner, S. et al. Monitoring the state of charge of vanadium redox flow batteries with an EPR-on-a-Chip dipstick sensor. Phys. Chem. Chem Phys 26, 17785â17795 (2024).
Liu, J. et al. Sulfur-based aqueous batteries: electrochemistry and strategies. J. Am. Chem. Soc. 143, 15475â15489 (2021).
Yoneyama, K., Suzuki, R., Kuramochi, Y. & Satake, A. A candidate for multitopic probes for ligand discovery in dynamic combinatorial chemistry. Molecules 24, 2166 (2019).
KozieÅ, S., Wojtala, D., Szmitka, M., Sawka, J. & Komarnicka, U. K. Can Mn coordination compounds be good candidates for medical applications? Front. Chem. Biol. 3, 1337372 (2024).
Pascanu, V., González Miera, G., Inge, A. K. & MartÃn-Matute, B. Metalâorganic frameworks as catalysts for organic synthesis: a critical perspective. J. Am. Chem. Soc. 141, 7223â7234 (2019).
Mondal, S., Naik, P. K., Adha, J. K. & Kar, S. Synthesis, characterization, and reactivities of high valent metalâcorrole (M = Cr, Mn, and Fe) complexes. Coord. Chem. Rev. 400, 213043 (2019).
Jiménez, J.-R., Doistau, B., Poncet, M. & Piguet, C. Heteroleptic trivalent chromium in coordination chemistry: novel building blocks for addressing old challenges in multimetallic luminescent complexes. Coord. Chem. Rev. 434, 213750 (2021).
Wegeberg, C. & Wenger, O. S. Luminescent first-row transition metal complexes. JACS Au 1, 1860â1876 (2021).
Zhao, E. W. et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Nature 579, 224â228 (2020).
Chen, X., Xi, J., Ma, K. & Liu, L. Study of the cross-transportation of V(II)/V(III) in vanadium flow batteries based on online monitoring of nonlinear absorption spectra. J. Power Sources 556, 232442 (2023).
Wong, A. A., Rubinstein, S. M. & Aziz, M. J. Direct visualization of electrochemical reactions and heterogeneous transport within porous electrodes in operando by fluorescence microscopy. Cell Rep. Phys. Sci. 2, 100388 (2021).
Kauffman, G. B. Early experimental studies of cobalt-ammines. Isis 68, 392â403 (1977).
Werner, H. Alfred Werner: a forerunner to modern inorganic chemistry. Angew. Chem. Int. Ed. 52, 6146â6153 (2013).
Brown, I. D. in Bond Valences (eds Brown, I. D. & Poeppelmeier, K. R.) 11â58 (Springer, 2014).
Bethe, H. Termaufspaltung in Kristallen. Ann. Phys. 395, 133â208 (1929).
Van Vleck, J. H. Theory of the variations in paramagnetic anisotropy among different salts of the iron group. Phys. Rev. 41, 208â215 (1932).
Taube, H. in Advances in Inorganic Chemistry and Radiochemistry Vol. 1 (eds Emeléus, H. J. & Sharpe, A. G.) 1â53 (Academic Press, 1959).
Thorneley, R. N. F. & Syke, A. G. The extent of chelation in some chromium(III)âEDTA complexes. Chem. Commun. 6, 340 (1968).
Bain, G. A. & Berry, J. F. Diamagnetic corrections and Pascalâs constants. J. Chem. Educ. 85, 532 (2008).
Acknowledgements
The work described in this paper was supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region, China (project nos RFS2223-4S03, CUHK 14308622 and CUHK 14302823). Y.-C.L. acknowledges the support from Xplorer Prize by New Cornerstone Science Foundation.
Author information
Authors and Affiliations
Contributions
All authors contributed to the preparation and reviewing of this manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Wei Wang, Feifei Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ai, F., Lu, YC. Coordination chemistry in advanced redox-active electrolyte designs. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00833-y
Accepted:
Published:
DOI: https://doi.org/10.1038/s41578-025-00833-y


