Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards high and reliable specific detectivity in visible and infrared perovskite and organic photodiodes

Abstract

Perovskite and organic photodiodes have emerged as promising candidates for ultraviolet–visible and near-infrared photodetection owing to their tunable optoelectronic properties, solution processability and potential for low-cost fabrication. This Review provides a comprehensive overview of the recent advancements in these technologies. We focus on the characterization methodologies critical for assessing device performance, particularly specific detectivity (D*), the key metric for benchmarking photodetectors. We highlight state-of-the-art devices, identifying their architectures, materials and performance metrics, while analysing their fundamental charge recombination processes and device-level factors limiting further improvement. Finally, we discuss future research directions and technological innovations necessary to bridge the gap between laboratory-scale devices and their practical utilization in real-world applications. Our aim is to provide a roadmap for advancing the field towards next-generation high-performance and commercially viable photodiodes for ultraviolet–visible and infrared detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Specific detectivity evolution over the years.
Fig. 2: Ultraviolet–visible–near-infrared perovskite and organic photodiodes.
Fig. 3: Dark current limitations in photodiodes.
Fig. 4: Charge recombination mechanisms in photodiodes.

Similar content being viewed by others

References

  1. Tang, Z. et al. Polymer:fullerene bimolecular crystals for near‐infrared spectroscopic photodetectors. Adv. Mater. 29, 1702184 (2017).

    Google Scholar 

  2. Lim, S.-J. et al. Organic-on-silicon complementary metal–oxide–semiconductor colour image sensors. Sci. Rep. 5, 7708 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rogalski, A. History of infrared detectors. Opto-Electron. Rev. 20, 279–308 (2012).

    Google Scholar 

  4. García de Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).

    Google Scholar 

  5. Wang, C., Zhang, X. & Hu, W. Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications. Chem. Soc. Rev. 49, 653–670 (2020).

    CAS  PubMed  Google Scholar 

  6. Xu, Y. & Lin, Q. Photodetectors based on solution-processable semiconductors: recent advances and perspectives. Appl. Phys. Rev. 7, 011315 (2020).

    CAS  Google Scholar 

  7. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).

  8. Lin, Y.-H. et al. Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors. Nat. Commun. 10, 4475 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fang, Y., Armin, A., Meredith, P. & Huang, J. Accurate characterization of next-generation thin-film photodetectors. Nat. Photon. 13, 1–4 (2019).

    CAS  Google Scholar 

  10. Stefanov, K., Clarke, A., Ivory, J. & Holland, A. Design and performance of a pinned photodiode CMOS image sensor using reverse substrate bias. Sensors 18, 118 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Stefanov, K. D. CMOS Image Sensors (IOP Publishing, 2022).

  12. Liu, C. et al. Ultrasensitive solution-processed perovskite hybrid photodetectors. J. Mater. Chem. C Mater. 3, 6600–6606 (2015).

    CAS  Google Scholar 

  13. Gu, L. et al. 3D arrays of 1024‐pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 28, 9713–9721 (2016).

    CAS  PubMed  Google Scholar 

  14. Wang, Y. et al. CH3NH3PbI3/C60 heterojunction photodetectors with low dark current and high detectivity. Org. Electron. 42, 203–208 (2017).

    Google Scholar 

  15. Lee, W. et al. High‐resolution spin‐on‐patterning of perovskite thin films for a multiplexed image sensor array. Adv. Mater. 29, 1702902 (2017).

    Google Scholar 

  16. Wang, Y. et al. Spin‐on‐patterning of Sn–Pb perovskite photodiodes on IGZO transistor arrays for fast active‐matrix near‐infrared imaging. Adv. Mater. Technol. 5, 1900752 (2020).

    CAS  Google Scholar 

  17. Ma, S. et al. Multifunctional self-combustion additives strategy to fabricate highly responsive hybrid perovskite photodetectors. ACS Appl. Mater. Interfaces 12, 41674–41686 (2020).

    CAS  PubMed  Google Scholar 

  18. Deng, Y. et al. High-performance flexible and self-powered perovskite photodetector enabled by interfacial strain engineering. J. Mater. Chem. C Mater. 11, 600–608 (2023).

    CAS  Google Scholar 

  19. He, L. et al. Highly sensitive tin–lead perovskite photodetectors with over 450 days stability enabled by synergistic engineering for pulse oximetry system. Adv. Mater. 35, 2210016 (2023).

    CAS  Google Scholar 

  20. Hsiao, Y. et al. Vertical‐type 3D/quasi‐2D n–p heterojunction perovskite photodetector. Adv. Funct. Mater. 33, 2300169 (2023).

    CAS  Google Scholar 

  21. Sun, T. et al. High-performance p–i–n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode. Nanoscale 15, 7803–7811 (2023).

    CAS  PubMed  Google Scholar 

  22. Wu, J. et al. Constructing high‐performance solar cells and photodetectors with a doping‐free polythiophene hole transport material. Adv. Funct. Mater. 34, 2308584 (2024).

    CAS  Google Scholar 

  23. Xing, R. et al. Waterproof and flexible perovskite photodetector enabled by p‐type organic molecular rubrene with high moisture and mechanical stability. Adv. Mater. 36, 2310248 (2024).

    CAS  Google Scholar 

  24. Zhao, Y. et al. Achieving low cost and high performance flexible CsPbIBr2 perovskite photodetectors arrays with imaging system via dual interfacial optimization and structural design. Adv. Opt. Mater. 12, 2400019 (2024).

    CAS  Google Scholar 

  25. Lai, L., Liu, G., Zhou, Y., He, X. & Ma, Y. Modulating dimensionality of 2D perovskite layers for efficient and stable 2D/3D perovskite photodetectors. ACS Appl. Mater. Interfaces 16, 19849–19857 (2024).

    CAS  PubMed  Google Scholar 

  26. Yue, Y. et al. Ultrafast photoexcitation induced passivation for quasi‐2D perovskite photodetectors. Adv. Mater. 36, 2407347 (2024).

    CAS  Google Scholar 

  27. Liu, L. et al. Ascorbic acid-induced porous iodide layer for a high-purity two-step solution-processed tin–lead mixed perovskite photodetector. J. Mater. Sci. Technol. 210, 227–232 (2025).

    CAS  Google Scholar 

  28. Liu, Y. et al. A sensitive self-powered perovskite photodetector via noise suppression with poly(vinylidene fluoride–trifluoroethylene) doping for defect passivation. J. Mater. Chem. C Mater. 12, 9944–9949 (2024).

    CAS  Google Scholar 

  29. Dou, L. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).

    CAS  PubMed  Google Scholar 

  30. Xu, X. et al. High‐performance near‐IR photodetector using low‐bandgap MA0.5FA0.5Pb0.5Sn0.5I3 perovskite. Adv. Funct. Mater. 27, 1701053 (2017).

    Google Scholar 

  31. Yun, Y. et al. A wide bandgap halide perovskite based self‐powered blue photodetector with 84.9% of external quantum efficiency. Adv. Mater. 34, 2206932 (2022).

    CAS  Google Scholar 

  32. Furlan, F. et al. Tuning halide composition allows low dark current perovskite photodetectors with high specific detectivity. Adv. Opt. Mater. 10, 2201816 (2022).

    CAS  Google Scholar 

  33. Shen, L. et al. A self‐powered, sub‐nanosecond‐response solution‐processed hybrid perovskite photodetector for time‐resolved photoluminescence‐lifetime detection. Adv. Mater. 28, 10794–10800 (2016).

    CAS  PubMed  Google Scholar 

  34. Ollearo, R. et al. Multidimensional perovskites for high detectivity photodiodes. Adv. Mater. 34, 2205261 (2022).

    CAS  Google Scholar 

  35. Xia, Y. et al. Biomimetic flexible high‐sensitivity near‐infrared II organic photodetector for photon detection and imaging. Adv. Opt. Mater. 12, 2301518 (2024).

    CAS  Google Scholar 

  36. Schrickx, H. M. et al. Flexible self‐powered organic photodetector with high detectivity for continuous on‐plant sensing. Adv. Opt. Mater. 12, 2400005 (2024).

    CAS  Google Scholar 

  37. Gong, X. et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665–1667 (2009).

    CAS  PubMed  Google Scholar 

  38. Binda, M. et al. High detectivity squaraine-based near infrared photodetector with nA/cm2 dark current. Appl. Phys. Lett. 98, 073303 (2011).

    Google Scholar 

  39. Hu, X., Dong, Y., Huang, F., Gong, X. & Cao, Y. Solution-processed high-detectivity near-infrared polymer photodetectors fabricated by a novel low-bandgap semiconducting polymer. J. Phys. Chem. C 117, 6537–6543 (2013).

    CAS  Google Scholar 

  40. Jansen-van Vuuren, R. D., Pivrikas, A., Pandey, A. K. & Burn, P. L. Colour selective organic photodetectors utilizing ketocyanine-cored dendrimers. J. Mater. Chem. C Mater. 1, 3532 (2013).

    CAS  Google Scholar 

  41. Yang, D., Zhou, X. & Ma, D. Fast response organic photodetectors with high detectivity based on rubrene and C60. Org. Electron. 14, 3019–3023 (2013).

    CAS  Google Scholar 

  42. Saracco, E. et al. Work function tuning for high‐performance solution‐processed organic photodetectors with inverted structure. Adv. Mater. 25, 6534–6538 (2013).

    CAS  PubMed  Google Scholar 

  43. Hu, X. et al. High-detectivity inverted near-infrared polymer photodetectors using cross-linkable conjugated polyfluorene as an electron extraction layer. J. Mater. Chem. C 2, 9592–9598 (2014).

    CAS  Google Scholar 

  44. Qi, J. et al. Optimization of solubility, film morphology and photodetector performance by molecular side‐chain engineering of low‐bandgap thienothiadiazole‐based polymers. Adv. Funct. Mater. 24, 7605–7612 (2014).

    CAS  Google Scholar 

  45. Zhang, H. et al. Transparent organic photodetector using a near-infrared absorbing cyanine dye. Sci. Rep. 5, 9439 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Eckstein, R. et al. Aerosol‐jet printed flexible organic photodiodes: semi‐transparent, color neutral, and highly efficient. Adv. Electron. Mater. 1, 1500101 (2015).

    Google Scholar 

  47. Zhou, X., Yang, D. & Ma, D. Extremely low dark current, high responsivity, all‐polymer photodetectors with spectral response from 300 nm to 1000 nm. Adv. Opt. Mater. 3, 1570–1576 (2015).

    CAS  Google Scholar 

  48. Pierre, A., Deckman, I., Lechêne, P. B. & Arias, A. C. High detectivity all‐printed organic photodiodes. Adv. Mater. 27, 6411–6417 (2015).

    CAS  PubMed  Google Scholar 

  49. Young, M. et al. Organic heptamethine salts for photovoltaics and detectors with near‐infrared photoresponse up to 1600 nm. Adv. Opt. Mater. 4, 1028–1033 (2016).

    CAS  Google Scholar 

  50. Han, M. G. et al. Narrow-band organic photodiodes for high-resolution imaging. ACS Appl. Mater. Interfaces 8, 26143–26151 (2016).

    CAS  PubMed  Google Scholar 

  51. Han, J. et al. Low-bandgap donor–acceptor polymers for photodetectors with photoresponsivity from 300 nm to 1600 nm. J. Mater. Chem. C Mater. 5, 159–165 (2017).

    CAS  Google Scholar 

  52. Kielar, M., Dhez, O., Pecastaings, G., Curutchet, A. & Hirsch, L. Long-term stable organic photodetectors with ultra low dark currents for high detectivity applications. Sci. Rep. 6, 39201 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, Z., Yao, W., London, A. E., Azoulay, J. D. & Ng, T. N. Temperature-dependent detectivity of near-infrared organic bulk heterojunction photodiodes. ACS Appl. Mater. Interfaces 9, 1654–1660 (2017).

    CAS  PubMed  Google Scholar 

  54. Xiao, L. et al. High-detectivity panchromatic photodetectors for the near infrared region based on a dimeric porphyrin small molecule. J. Mater. Chem. C Mater. 6, 3341–3345 (2018).

    CAS  Google Scholar 

  55. Han, J., Yang, D., Ma, D., Qiao, W. & Wang, Z. Y. Low‐bandgap polymers for high‐performance photodiodes with maximal EQE near 1200 nm and broad spectral response from 300 to 1700 nm. Adv. Opt. Mater. 6, 1800038 (2018).

    Google Scholar 

  56. Gasparini, N. et al. Visible and near‐infrared imaging with nonfullerene‐based photodetectors. Adv. Mater. Technol. 3, 1800104 (2018).

    Google Scholar 

  57. Verstraeten, F. et al. Near-infrared organic photodetectors based on bay-annulated indigo showing broadband absorption and high detectivities up to 1.1 μm. J. Mater. Chem. C Mater. 6, 11645–11650 (2018).

    CAS  Google Scholar 

  58. Park, J. B. et al. Visible-light-responsive high-detectivity organic photodetectors with a 1 μm thick active layer. ACS Appl. Mater. Interfaces 10, 38294–38301 (2018).

    CAS  PubMed  Google Scholar 

  59. Xia, K., Li, Y., Wang, Y., Portilla, L. & Pecunia, V. Narrowband‐absorption‐type organic photodetectors for the far‐red range based on fullerene‐free bulk heterojunctions. Adv. Opt. Mater. 8, 1902056 (2020).

    CAS  Google Scholar 

  60. Kang, J. et al. High‐detectivity green‐selective all‐polymer p–n junction photodetectors. Adv. Opt. Mater. 8, 2001038 (2020).

    CAS  Google Scholar 

  61. Ward, M. D. et al. Highly selective high‐speed circularly polarized photodiodes based on π‐conjugated polymers. Adv. Opt. Mater. 10, 2101044 (2022).

    CAS  Google Scholar 

  62. Jacoutot, P. et al. Infrared organic photodetectors employing ultralow bandgap polymer and non‐fullerene acceptors for biometric monitoring. Small 18, 2200580 (2022).

    CAS  Google Scholar 

  63. Kafourou, P. et al. Low dark current organic photodetectors utilizing highly cyanated non-fullerene acceptors. ACS Appl. Mater. Interfaces 14, 39141–39148 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yu, Y. et al. Ambient‐stable near‐infrared organic photodetectors with ultrahigh detectivity and ultrafast response for biometric monitoring. Adv. Electron. Mater. 8, 2200585 (2022).

    CAS  Google Scholar 

  65. Sandberg, O. J. et al. Mid-gap trap state-mediated dark current in organic photodiodes. Nat. Photon. 17, 368–374 (2023).

    CAS  Google Scholar 

  66. Xu, Y. et al. Tuning of molecular aggregation and photoresponse of narrow-band organic photodetectors. ACS Appl. Electron. Mater. 5, 2375–2385 (2023).

    CAS  Google Scholar 

  67. Yin, B. et al. Sensitive organic photodetectors with spectral response up to 1.3 µm using a quinoidal molecular semiconductor. Adv. Mater. 36, 2310811 (2024).

    CAS  Google Scholar 

  68. Wan, L. et al. Sensitive near-infrared circularly polarized light detection via non-fullerene acceptor blends. Nat. Photon. 17, 649–655 (2023).

    CAS  Google Scholar 

  69. Bristow, H. et al. Nonfullerene-based organic photodetectors for ultrahigh sensitivity visible light detection. ACS Appl. Mater. Interfaces 12, 48836–48844 (2020).

    CAS  PubMed  Google Scholar 

  70. Huang, Z. et al. Copper thiocyanate as an anode interfacial layer for efficient near-infrared organic photodetector. ACS Appl. Mater. Interfaces 13, 1027–1034 (2021).

    CAS  PubMed  Google Scholar 

  71. Park, I. et al. High performance shortwave infrared organic photodetectors adopting thiadiazole quinoxaline‐based copolymers. Adv. Opt. Mater. 10, 2200747 (2022).

    CAS  Google Scholar 

  72. Hong, E. et al. Strain‐induced α-phase stabilization for low dark current FAPI‐based photodetectors. Adv. Opt. Mater. 12, 2302712 (2024).

    CAS  Google Scholar 

  73. Zhu, H. L. et al. Low‐bandgap methylammonium‐rubidium cation Sn‐rich perovskites for efficient ultraviolet–visible–near infrared photodetectors. Adv. Funct. Mater. 28, 1706068 (2018).

    Google Scholar 

  74. Yao, F. et al. High-rubidium–formamidinium-ratio perovskites for high-performance photodetection with enhanced stability. ACS Appl. Mater. Interfaces 11, 39875–39881 (2019).

    CAS  PubMed  Google Scholar 

  75. Ji, T. et al. Highly sensitive self‐powered 2D perovskite photodiodes with dual interface passivations. Adv. Funct. Mater. 33, 2210548 (2023).

    CAS  Google Scholar 

  76. Ollearo, R. et al. Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation. Nat. Commun. 12, 7277 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, W. et al. The UV–Vis–NIR broadband ultrafast flexible Sn–Pb perovskite photodetector for multispectral imaging to distinguish substance and foreign‐body in biological tissues. Adv. Opt. Mater. 12, 2301373 (2024).

    CAS  Google Scholar 

  78. Liu, F. et al. Highly efficient and stable self‐powered mixed tin–lead perovskite photodetector used in remote wearable health monitoring technology. Adv. Sci. 10, 2205879 (2023).

    CAS  Google Scholar 

  79. Liu, Z. et al. Achieving high responsivity and detectivity in a quantum-dot-in-perovskite photodetector. Nano Lett. 23, 1181–1188 (2023).

    CAS  PubMed  Google Scholar 

  80. Zhu, H. L. et al. Achieving high-quality Sn–Pb perovskite films on complementary metal–oxide–semiconductor-compatible metal/silicon substrates for efficient imaging array. ACS Nano 13, 11800–11808 (2019).

    CAS  PubMed  Google Scholar 

  81. Chang, Z. et al. Narrow-bandgap Sn–Pb mixed perovskite single crystals for high-performance near-infrared photodetectors. Nanoscale 15, 5053–5062 (2023).

    CAS  PubMed  Google Scholar 

  82. Wang, W. et al. Highly sensitive low‐bandgap perovskite photodetectors with response from ultraviolet to the near‐infrared region. Adv. Funct. Mater. 27, 1703953 (2017).

    Google Scholar 

  83. Bao, C. et al. High performance and stable all‐inorganic metal halide perovskite‐based photodetectors for optical communication applications. Adv. Mater. 30, 1803422 (2018).

    Google Scholar 

  84. Li, J. et al. Defect passivation via additive engineering to improve photodetection performance in CsPbI2 Br perovskite photodetectors. ACS Appl. Mater. Interfaces 13, 56358–56365 (2021).

    CAS  PubMed  Google Scholar 

  85. Li, R. et al. Pseudohalide additives enhanced perovskite photodetectors. Adv. Opt. Mater. 9, 2001587 (2021).

    CAS  Google Scholar 

  86. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    CAS  Google Scholar 

  87. Vandewal, K. et al. Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nat. Mater. 13, 63–68 (2014).

    CAS  PubMed  Google Scholar 

  88. Yu, G., Wang, J., McElvain, J. & Heeger, A. J. Large-area, full-color image sensors made with semiconducting polymers. Adv. Mater. 10, 1431–1434 (1998).

    CAS  Google Scholar 

  89. Schilinsky, P., Waldauf, C. & Brabec, C. J. Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl. Phys. Lett. 81, 3885–3887 (2002).

    CAS  Google Scholar 

  90. Tedde, S. F. et al. Fully spray coated organic photodiodes. Nano Lett. 9, 980–983 (2009).

    CAS  PubMed  Google Scholar 

  91. Ng, T. N., Wong, W. S., Chabinyc, M. L., Sambandan, S. & Street, R. A. Flexible image sensor array with bulk heterojunction organic photodiode. Appl. Phys. Lett. 92, 213303 (2008).

    Google Scholar 

  92. Duan, C., Huang, F. & Cao, Y. Recent development of push–pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. J. Mater. Chem. 22, 10416 (2012).

    CAS  Google Scholar 

  93. Wu, Z., Yao, W., London, A. E., Azoulay, J. D. & Ng, T. N. Elucidating the detectivity limits in shortwave infrared organic photodiodes. Adv. Funct. Mater. 28, 1800391 (2018).

    Google Scholar 

  94. Holliday, S. et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhong, Z. et al. Effects of charge injection barrier on the dark current of organic photodiodes. Org. Electron. 109, 106621 (2022).

    CAS  Google Scholar 

  96. Qiao, Z. et al. A novel selenophene based non-fullerene acceptor for near-infrared organic photodetectors with ultra-low dark current. J. Mater. Chem. C Mater. 12, 5766–5775 (2024).

    CAS  Google Scholar 

  97. Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    CAS  Google Scholar 

  98. Wang, Y. et al. An A–D–A′–D–A-type narrow bandgap electron acceptor based on selenophene-flanked diketopyrrolopyrrole for sensitive near-infrared photodetection. ACS Appl. Mater. Interfaces 16, 66846–66856 (2024).

    CAS  PubMed  Google Scholar 

  99. Wang, Q. et al. High‐performance organic narrow dual‐band circular polarized light detection for encrypted communications and color imaging. Adv. Mater. 36, 2312396 (2024).

    CAS  Google Scholar 

  100. Zhang, H. et al. Near-infrared organic photodetectors with spectral response over 1200 nm adopting a thieno[3,4-c]thiadiazole-based acceptor. ACS Appl. Mater. Interfaces 16, 9088–9097 (2024).

    CAS  PubMed  Google Scholar 

  101. Luong, H. M. et al. Highly sensitive resonance-enhanced organic photodetectors for shortwave infrared sensing. ACS Energy Lett. 9, 1446–1454 (2024).

    CAS  Google Scholar 

  102. Jacoutot, P. et al. Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructure. Sci. Adv. 9, eadh2694 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Vandewal, K., Mertens, S., Benduhn, J. & Liu, Q. The cost of converting excitons into free charge carriers in organic solar cells. J. Phys. Chem. Lett. 11, 129–135 (2020).

    CAS  PubMed  Google Scholar 

  104. Green, M. A. General temperature dependence of solar cell performance and implications for device modelling. Prog. Photovolt. Res. Appl. 11, 333–340 (2003).

    CAS  Google Scholar 

  105. Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 17053 (2017).

    CAS  Google Scholar 

  106. Ma, X., Janssen, R. A. J. & Gelinck, G. H. Trap‐assisted charge generation and recombination in state‐of‐the‐art organic photodetectors. Adv. Mater. Technol. 8, 2300234 (2023).

    CAS  Google Scholar 

  107. Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    CAS  Google Scholar 

  108. Hall, R. N. Electron–hole recombination in germanium. Phys. Rev. 87, 387 (1952).

    CAS  Google Scholar 

  109. Sah, C., Noyce, R. & Shockley, W. Carrier generation and recombination in p–n junctions and p–n junction characteristics. Proc. IRE 45, 1228–1243 (1957).

    Google Scholar 

  110. Kirchartz, T., Pieters, B. E., Kirkpatrick, J., Rau, U. & Nelson, J. Recombination via tail states in polythiophene:fullerene solar cells. Phys. Rev. B 83, 115209 (2011).

    Google Scholar 

  111. Kublitski, J. et al. Reverse dark current in organic photodetectors and the major role of traps as source of noise. Nat. Commun. 12, 551 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ma, X. et al. Identification of the origin of ultralow dark currents in organic photodiodes. Adv. Mater. 35, 2209598 (2023).

    CAS  Google Scholar 

  113. Ma, X. et al. Origin and energy of intra‐gap states in sensitive near‐infrared organic photodiodes. Adv. Funct. Mater. 33, 2304863 (2023).

    CAS  Google Scholar 

  114. Zarrabi, N. et al. Charge-generating mid-gap trap states define the thermodynamic limit of organic photovoltaic devices. Nat. Commun. 11, 5567 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. de Bruyn, P., van Rest, A. H. P., Wetzelaer, G. A. H., de Leeuw, D. M. & Blom, P. W. M. Diffusion-limited current in organic metal–insulator–metal diodes. Phys. Rev. Lett. 111, 186801 (2013).

    PubMed  Google Scholar 

  116. Sandberg, O. J. & Armin, A. On the effect of surface recombination in thin film solar cells, light emitting diodes and photodetectors. Synth. Met. 254, 114–121 (2019).

    CAS  Google Scholar 

  117. Emtage, P. R. & O’Dwyer, J. J. Richardson–Schottky effect in insulators. Phys. Rev. Lett. 16, 356–358 (1966).

    CAS  Google Scholar 

  118. Caprioglio, P. et al. On the origin of the ideality factor in perovskite solar cells. Adv. Energy Mater. 10, 2000502 (2020).

    CAS  Google Scholar 

  119. Zhu, H. L. et al. Room-temperature solution-processed NiOx:PbI2 nanocomposite structures for realizing high-performance perovskite photodetectors. ACS Nano 10, 6808–6815 (2016).

    CAS  PubMed  Google Scholar 

  120. Yang, Y. et al. Inverted perovskite solar cells with over 2,000 h operational stability at 85 °C using fixed charge passivation. Nat. Energy 9, 37–46 (2023).

    Google Scholar 

  121. Huang, J. et al. Understanding and countering illumination-sensitive dark current: toward organic photodetectors with reliable high detectivity. ACS Nano 15, 1753–1763 (2021).

    CAS  PubMed  Google Scholar 

  122. van Breemen, A. J. J. M. et al. A thin and flexible scanner for fingerprints and documents based on metal halide perovskites. Nat. Electron. 4, 818–826 (2021).

    Google Scholar 

  123. Lin, Q., Armin, A., Lyons, D. M., Burn, P. L. & Meredith, P. Low noise, IR‐blind organohalide perovskite photodiodes for visible light detection and imaging. Adv. Mater. 27, 2060–2064 (2015).

    CAS  PubMed  Google Scholar 

  124. Schembri, T. et al. Semitransparent layers of social self‐sorting merocyanine dyes for ultranarrow bandwidth organic photodiodes. Adv. Opt. Mater. 9, 2100213 (2021).

    CAS  Google Scholar 

  125. Fang, Y. & Huang, J. Resolving weak light of sub‐picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 27, 2804–2810 (2015).

    CAS  PubMed  Google Scholar 

  126. Martínez‐Goyeneche, L. et al. Vacuum‐deposited perovskite photodiodes for visible and X‐ray photon detection. Adv. Opt. Mater. 12, 2400464 (2024).

    Google Scholar 

  127. Angela, E. et al. Blending self-assembled monolayers for enhanced band alignment and improved morphology in p–i–n perovskite photodetectors. ACS Appl. Mater. Interfaces 16, 33838–33845 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Nodari, D. et al. Dark current in broadband perovskite–organic heterojunction photodetectors controlled by interfacial energy band offset. Adv. Mater. 36, 2401206 (2024).

    CAS  Google Scholar 

  129. Wagner, J. et al. The evolution of Materials Acceleration Platforms: toward the laboratory of the future with AMANDA. J. Mater. Sci. 56, 16422–16446 (2021).

    CAS  Google Scholar 

  130. Wang, T. et al. Sustainable materials acceleration platform reveals stable and efficient wide-bandgap metal halide perovskite alloys. Matter 6, 2963–2986 (2023).

    CAS  Google Scholar 

  131. Li, C. et al. Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light Sci. Appl. 9, 31 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, J. et al. Fast response organic tandem photodetector for visible and near‐infrared digital optical communications. Small 17, e2101316 (2021).

    PubMed  Google Scholar 

  133. Lin, Q., Armin, A., Burn, P. L. & Meredith, P. Filterless narrowband visible photodetectors. Nat. Photon. 9, 687–694 (2015).

    Google Scholar 

  134. Tait, J. G. et al. Interfacial depletion regions: beyond the space charge limit in thick bulk heterojunctions. ACS Appl. Mater. Interfaces 8, 2211–2219 (2016).

    CAS  PubMed  Google Scholar 

  135. Yazmaciyan, A., Meredith, P. & Armin, A. Cavity enhanced organic photodiodes with charge collection narrowing. Adv. Opt. Mater. 7, 1801543 (2019).

    Google Scholar 

  136. Armin, A., Jansen-van Vuuren, R. D., Kopidakis, N., Burn, P. L. & Meredith, P. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun. 6, 6343 (2015).

    CAS  PubMed  Google Scholar 

  137. Xie, B. et al. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat. Commun. 11, 2871 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Tsai, K.-W. et al. Bulk-heterojunction adjustment enables a self-filtering organic photodetector with a narrowband response. ACS Appl. Mater. Interfaces 14, 38004–38012 (2022).

    CAS  PubMed  Google Scholar 

  139. Hou, Y. et al. Self‐powered red/UV narrowband photodetector by unbalanced charge carrier transport strategy. Adv. Funct. Mater. 31, 2007016 (2021).

    CAS  Google Scholar 

  140. Wang, J. et al. Self‐driven perovskite narrowband photodetectors with tunable spectral responses. Adv. Mater. 33, 2005557 (2021).

    CAS  Google Scholar 

  141. Saidaminov, M. I. et al. Perovskite photodetectors operating in both narrowband and broadband regimes. Adv. Mater. 28, 8144–8149 (2016).

    CAS  PubMed  Google Scholar 

  142. Li, L. et al. Achieving EQE of 16,700% in P3HT:PC71BM based photodetectors by trap-assisted photomultiplication. Sci. Rep. 5, 9181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Miao, J. & Zhang, F. Recent progress on photomultiplication type organic photodetectors. Laser Photon. Rev. 13, 1800204 (2019).

    Google Scholar 

  144. Ollearo, R. et al. Vitality surveillance at distance using thin-film tandem-like narrowband near-infrared photodiodes with light-enhanced responsivity. Sci. Adv. 9, eadf9861 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Siegmund, B. et al. Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nat. Commun. 8, 15421 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Al Amin, N. R. et al. Achieving a highly stable perovskite photodetector with a long lifetime fabricated via an all-vacuum deposition process. ACS Appl. Mater. Interfaces 15, 21284–21295 (2023).

    CAS  PubMed  Google Scholar 

  147. Loganathan, K. et al. Rapid and up-scalable manufacturing of gigahertz nanogap diodes. Nat. Commun. 13, 3260 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Gielen, S. et al. Intrinsic detectivity limits of organic near‐infrared photodetectors. Adv. Mater. 32, 200381 (2020).

    Google Scholar 

  149. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    CAS  Google Scholar 

  150. Shan, T., Hou, X., Yin, X. & Guo, X. Organic photodiodes: device engineering and applications. Front. Optoelectron. 15, 54 (2022).

    PubMed Central  Google Scholar 

  151. Ren, H., Chen, J., Li, Y. & Tang, J. Recent progress in organic photodetectors and their applications. Adv. Sci. 8, 2002418 (2021).

    CAS  Google Scholar 

  152. Faridi, A. W. et al. Synthesis and characterization of high-efficiency halide perovskite nanomaterials for light-absorbing applications. Ind. Eng. Chem. Res. 62, 4494–4502 (2023).

    CAS  PubMed  Google Scholar 

  153. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    CAS  PubMed  Google Scholar 

  154. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

    CAS  PubMed  Google Scholar 

  155. Hussain, I. et al. Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Mater. 1, 133–154 (2018).

    CAS  Google Scholar 

  156. Ma, T., Wang, S., Zhang, Y., Zhang, K. & Yi, L. The development of all-inorganic CsPbX3 perovskite solar cells. J. Mater. Sci. 55, 464–479 (2020).

    CAS  Google Scholar 

  157. D’Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).

    PubMed  Google Scholar 

  158. Collavini, S., Völker, S. F. & Delgado, J. L. Understanding the outstanding power conversion efficiency of perovskite‐based solar cells. Angew. Chem. Int. Ed. 54, 9757–9759 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

N.G. thanks the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award ORFS-2023-OFP-5544. K.V. acknowledges the European Research Council (ERC, grant agreement 864625). O.J.S. acknowledges funding from the Research Council of Finland through Project No. 357196.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Nicola Gasparini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Zhiyong Fan, Xiaosheng Fang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

BCP

2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline.

BT

Benzothiadiazole.

C60

C60(OH)n.

COTIC-4F

2,2′-((2Z,2′Z)-(((4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2,6-diyl)bis(4-(2-ethylhexyloxy)thiophene-5,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

CPDT

Cyclopentadithiophene.

DPP

Diketopyrrolopyrrole.

IDIC

2,2′-((2Z,2′Z)-((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

IDTBR

(5Z,5′Z)-5,5′-((7,7′-(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methanylylidene))bis(3-ethyl-2-thioxothiazolidin-4-one).

IEICO-4F

2,2′-((2Z,2′Z)-(((4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-sindaceno[1,2-b:5,6-b′]dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1- diylidene)dimalononitrile.

IID

Isoindigo.

ITIC

3,9-Bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene.

L8-BO

2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-(2-butyloctyl)-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

MEH-PPV

Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene].

MeO-2PACz

(2-(3,6-Dimethoxy-9H-carbazol-9-yl)ethyl)phosphonic acid.

NDI

Naphthalenedicarboximide.

O-FBR

5,5′-[(9,9-Dioctyl-9H-fluorene-2,7-diyl)bis(2,1,3-benzothiadiazole-7,4-diylmethylidyne)]bis[3-ethyl-2-thioxo-4-thiazolidinone].

P1

Poly[4-([2,2′-bithiophen]-5-yl)-6,7-bis(4-((2-decyltetradecyl)oxy)phenyl)-9-(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline].

P3HT

Poly(3-hexylthiophene-2,5-diyl).

P3OT

Poly(3-octylthiophene-2,5-diyl).

PBDT-TT

Poly[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-(2-octylthieno[3,4-b]thiophene)-2,5-diyl].

PC61BM

[6,6]-Phenyl-C61-butyric acid methyl ester.

PC71BM

[6,6]-Phenyl-C71-butyric acid methyl ester.

PDDTT

Poly[thieno[3,4-c][1,2,5]thiadiazole-2-S IV-4,6-diyl(3,3″-didecyl[2,2′:5′,2″-terthiophene]-5,5″-diyl)].

PEIE

Polyethyleneimine ethoxylated.

PM6

Poly[[4,8-bis[5-(2-ethylhexyl)-4-fluoro-2-thienyl]benzo-[1,2-b:4,5-b′]dithiophene-2,6-diyl]-2,5-thiophenediyl-[5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo[1,2-c:4,5-c′]-dithiophene-1,3-diyl]-2,5-thiophenediyl].

PMMA

Poly(methyl methacrylate).

PNTOD

Poly(naphtho[2,1-b:3,4-b′]dithiophene-alt-thiadiazoloquinoxaline).

Poly-TPD

Poly[N,N′-bis(4-butylphenyl)-N,N′-bisphenylbenzidine].

PTAA

Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine].

PTB7-Th

Poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b′]-dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]-thieno[3,4-b]thiophene-4,6-diyl}.

PTQ10

Poly[(thiophene)-alt-(6,7-difluoro-2-(2-hexyldecyloxy)quinoxaline)].

PVP

Polyvinylpyrrolidone.

TaTm

N4,N4,N4″,N4″-tetra([1,1′-biphenyl]-4-yl)-[1,1′:4′,1″-terphenyl]-4,4″-diamine.

TQ-3T

Poly[4-([2,2′:5′,2″-terthiophen]-5-yl)-6,7-bis(4-((2-decyltetradecyl)oxy)phenyl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline].

Y6

2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

Y7

2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-dichloro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nodari, D., Qiao, Z., Furlan, F. et al. Towards high and reliable specific detectivity in visible and infrared perovskite and organic photodiodes. Nat Rev Mater 10, 842–856 (2025). https://doi.org/10.1038/s41578-025-00830-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00830-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing