Abstract
Perovskite and organic photodiodes have emerged as promising candidates for ultravioletâvisible and near-infrared photodetection owing to their tunable optoelectronic properties, solution processability and potential for low-cost fabrication. This Review provides a comprehensive overview of the recent advancements in these technologies. We focus on the characterization methodologies critical for assessing device performance, particularly specific detectivity (D*), the key metric for benchmarking photodetectors. We highlight state-of-the-art devices, identifying their architectures, materials and performance metrics, while analysing their fundamental charge recombination processes and device-level factors limiting further improvement. Finally, we discuss future research directions and technological innovations necessary to bridge the gap between laboratory-scale devices and their practical utilization in real-world applications. Our aim is to provide a roadmap for advancing the field towards next-generation high-performance and commercially viable photodiodes for ultravioletâvisible and infrared detection.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Tang, Z. et al. Polymer:fullerene bimolecular crystals for nearâinfrared spectroscopic photodetectors. Adv. Mater. 29, 1702184 (2017).
Lim, S.-J. et al. Organic-on-silicon complementary metalâoxideâsemiconductor colour image sensors. Sci. Rep. 5, 7708 (2015).
Rogalski, A. History of infrared detectors. Opto-Electron. Rev. 20, 279â308 (2012).
GarcÃa de Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).
Wang, C., Zhang, X. & Hu, W. Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications. Chem. Soc. Rev. 49, 653â670 (2020).
Xu, Y. & Lin, Q. Photodetectors based on solution-processable semiconductors: recent advances and perspectives. Appl. Phys. Rev. 7, 011315 (2020).
Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).
Lin, Y.-H. et al. Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors. Nat. Commun. 10, 4475 (2019).
Fang, Y., Armin, A., Meredith, P. & Huang, J. Accurate characterization of next-generation thin-film photodetectors. Nat. Photon. 13, 1â4 (2019).
Stefanov, K., Clarke, A., Ivory, J. & Holland, A. Design and performance of a pinned photodiode CMOS image sensor using reverse substrate bias. Sensors 18, 118 (2018).
Stefanov, K. D. CMOS Image Sensors (IOP Publishing, 2022).
Liu, C. et al. Ultrasensitive solution-processed perovskite hybrid photodetectors. J. Mater. Chem. C Mater. 3, 6600â6606 (2015).
Gu, L. et al. 3D arrays of 1024âpixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 28, 9713â9721 (2016).
Wang, Y. et al. CH3NH3PbI3/C60 heterojunction photodetectors with low dark current and high detectivity. Org. Electron. 42, 203â208 (2017).
Lee, W. et al. Highâresolution spinâonâpatterning of perovskite thin films for a multiplexed image sensor array. Adv. Mater. 29, 1702902 (2017).
Wang, Y. et al. Spinâonâpatterning of SnâPb perovskite photodiodes on IGZO transistor arrays for fast activeâmatrix nearâinfrared imaging. Adv. Mater. Technol. 5, 1900752 (2020).
Ma, S. et al. Multifunctional self-combustion additives strategy to fabricate highly responsive hybrid perovskite photodetectors. ACS Appl. Mater. Interfaces 12, 41674â41686 (2020).
Deng, Y. et al. High-performance flexible and self-powered perovskite photodetector enabled by interfacial strain engineering. J. Mater. Chem. C Mater. 11, 600â608 (2023).
He, L. et al. Highly sensitive tinâlead perovskite photodetectors with over 450 days stability enabled by synergistic engineering for pulse oximetry system. Adv. Mater. 35, 2210016 (2023).
Hsiao, Y. et al. Verticalâtype 3D/quasiâ2D nâp heterojunction perovskite photodetector. Adv. Funct. Mater. 33, 2300169 (2023).
Sun, T. et al. High-performance pâiân perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode. Nanoscale 15, 7803â7811 (2023).
Wu, J. et al. Constructing highâperformance solar cells and photodetectors with a dopingâfree polythiophene hole transport material. Adv. Funct. Mater. 34, 2308584 (2024).
Xing, R. et al. Waterproof and flexible perovskite photodetector enabled by pâtype organic molecular rubrene with high moisture and mechanical stability. Adv. Mater. 36, 2310248 (2024).
Zhao, Y. et al. Achieving low cost and high performance flexible CsPbIBr2 perovskite photodetectors arrays with imaging system via dual interfacial optimization and structural design. Adv. Opt. Mater. 12, 2400019 (2024).
Lai, L., Liu, G., Zhou, Y., He, X. & Ma, Y. Modulating dimensionality of 2D perovskite layers for efficient and stable 2D/3D perovskite photodetectors. ACS Appl. Mater. Interfaces 16, 19849â19857 (2024).
Yue, Y. et al. Ultrafast photoexcitation induced passivation for quasiâ2D perovskite photodetectors. Adv. Mater. 36, 2407347 (2024).
Liu, L. et al. Ascorbic acid-induced porous iodide layer for a high-purity two-step solution-processed tinâlead mixed perovskite photodetector. J. Mater. Sci. Technol. 210, 227â232 (2025).
Liu, Y. et al. A sensitive self-powered perovskite photodetector via noise suppression with poly(vinylidene fluorideâtrifluoroethylene) doping for defect passivation. J. Mater. Chem. C Mater. 12, 9944â9949 (2024).
Dou, L. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).
Xu, X. et al. Highâperformance nearâIR photodetector using lowâbandgap MA0.5FA0.5Pb0.5Sn0.5I3 perovskite. Adv. Funct. Mater. 27, 1701053 (2017).
Yun, Y. et al. A wide bandgap halide perovskite based selfâpowered blue photodetector with 84.9% of external quantum efficiency. Adv. Mater. 34, 2206932 (2022).
Furlan, F. et al. Tuning halide composition allows low dark current perovskite photodetectors with high specific detectivity. Adv. Opt. Mater. 10, 2201816 (2022).
Shen, L. et al. A selfâpowered, subânanosecondâresponse solutionâprocessed hybrid perovskite photodetector for timeâresolved photoluminescenceâlifetime detection. Adv. Mater. 28, 10794â10800 (2016).
Ollearo, R. et al. Multidimensional perovskites for high detectivity photodiodes. Adv. Mater. 34, 2205261 (2022).
Xia, Y. et al. Biomimetic flexible highâsensitivity nearâinfrared II organic photodetector for photon detection and imaging. Adv. Opt. Mater. 12, 2301518 (2024).
Schrickx, H. M. et al. Flexible selfâpowered organic photodetector with high detectivity for continuous onâplant sensing. Adv. Opt. Mater. 12, 2400005 (2024).
Gong, X. et al. High-detectivity polymer photodetectors with spectral response from 300ânm to 1450ânm. Science 325, 1665â1667 (2009).
Binda, M. et al. High detectivity squaraine-based near infrared photodetector with nA/cm2 dark current. Appl. Phys. Lett. 98, 073303 (2011).
Hu, X., Dong, Y., Huang, F., Gong, X. & Cao, Y. Solution-processed high-detectivity near-infrared polymer photodetectors fabricated by a novel low-bandgap semiconducting polymer. J. Phys. Chem. C 117, 6537â6543 (2013).
Jansen-van Vuuren, R. D., Pivrikas, A., Pandey, A. K. & Burn, P. L. Colour selective organic photodetectors utilizing ketocyanine-cored dendrimers. J. Mater. Chem. C Mater. 1, 3532 (2013).
Yang, D., Zhou, X. & Ma, D. Fast response organic photodetectors with high detectivity based on rubrene and C60. Org. Electron. 14, 3019â3023 (2013).
Saracco, E. et al. Work function tuning for highâperformance solutionâprocessed organic photodetectors with inverted structure. Adv. Mater. 25, 6534â6538 (2013).
Hu, X. et al. High-detectivity inverted near-infrared polymer photodetectors using cross-linkable conjugated polyfluorene as an electron extraction layer. J. Mater. Chem. C 2, 9592â9598 (2014).
Qi, J. et al. Optimization of solubility, film morphology and photodetector performance by molecular sideâchain engineering of lowâbandgap thienothiadiazoleâbased polymers. Adv. Funct. Mater. 24, 7605â7612 (2014).
Zhang, H. et al. Transparent organic photodetector using a near-infrared absorbing cyanine dye. Sci. Rep. 5, 9439 (2015).
Eckstein, R. et al. Aerosolâjet printed flexible organic photodiodes: semiâtransparent, color neutral, and highly efficient. Adv. Electron. Mater. 1, 1500101 (2015).
Zhou, X., Yang, D. & Ma, D. Extremely low dark current, high responsivity, allâpolymer photodetectors with spectral response from 300ânm to 1000ânm. Adv. Opt. Mater. 3, 1570â1576 (2015).
Pierre, A., Deckman, I., Lechêne, P. B. & Arias, A. C. High detectivity allâprinted organic photodiodes. Adv. Mater. 27, 6411â6417 (2015).
Young, M. et al. Organic heptamethine salts for photovoltaics and detectors with nearâinfrared photoresponse up to 1600ânm. Adv. Opt. Mater. 4, 1028â1033 (2016).
Han, M. G. et al. Narrow-band organic photodiodes for high-resolution imaging. ACS Appl. Mater. Interfaces 8, 26143â26151 (2016).
Han, J. et al. Low-bandgap donorâacceptor polymers for photodetectors with photoresponsivity from 300ânm to 1600ânm. J. Mater. Chem. C Mater. 5, 159â165 (2017).
Kielar, M., Dhez, O., Pecastaings, G., Curutchet, A. & Hirsch, L. Long-term stable organic photodetectors with ultra low dark currents for high detectivity applications. Sci. Rep. 6, 39201 (2016).
Wu, Z., Yao, W., London, A. E., Azoulay, J. D. & Ng, T. N. Temperature-dependent detectivity of near-infrared organic bulk heterojunction photodiodes. ACS Appl. Mater. Interfaces 9, 1654â1660 (2017).
Xiao, L. et al. High-detectivity panchromatic photodetectors for the near infrared region based on a dimeric porphyrin small molecule. J. Mater. Chem. C Mater. 6, 3341â3345 (2018).
Han, J., Yang, D., Ma, D., Qiao, W. & Wang, Z. Y. Lowâbandgap polymers for highâperformance photodiodes with maximal EQE near 1200ânm and broad spectral response from 300 to 1700ânm. Adv. Opt. Mater. 6, 1800038 (2018).
Gasparini, N. et al. Visible and nearâinfrared imaging with nonfullereneâbased photodetectors. Adv. Mater. Technol. 3, 1800104 (2018).
Verstraeten, F. et al. Near-infrared organic photodetectors based on bay-annulated indigo showing broadband absorption and high detectivities up to 1.1 μm. J. Mater. Chem. C Mater. 6, 11645â11650 (2018).
Park, J. B. et al. Visible-light-responsive high-detectivity organic photodetectors with a 1 μm thick active layer. ACS Appl. Mater. Interfaces 10, 38294â38301 (2018).
Xia, K., Li, Y., Wang, Y., Portilla, L. & Pecunia, V. Narrowbandâabsorptionâtype organic photodetectors for the farâred range based on fullereneâfree bulk heterojunctions. Adv. Opt. Mater. 8, 1902056 (2020).
Kang, J. et al. Highâdetectivity greenâselective allâpolymer pân junction photodetectors. Adv. Opt. Mater. 8, 2001038 (2020).
Ward, M. D. et al. Highly selective highâspeed circularly polarized photodiodes based on Ïâconjugated polymers. Adv. Opt. Mater. 10, 2101044 (2022).
Jacoutot, P. et al. Infrared organic photodetectors employing ultralow bandgap polymer and nonâfullerene acceptors for biometric monitoring. Small 18, 2200580 (2022).
Kafourou, P. et al. Low dark current organic photodetectors utilizing highly cyanated non-fullerene acceptors. ACS Appl. Mater. Interfaces 14, 39141â39148 (2022).
Yu, Y. et al. Ambientâstable nearâinfrared organic photodetectors with ultrahigh detectivity and ultrafast response for biometric monitoring. Adv. Electron. Mater. 8, 2200585 (2022).
Sandberg, O. J. et al. Mid-gap trap state-mediated dark current in organic photodiodes. Nat. Photon. 17, 368â374 (2023).
Xu, Y. et al. Tuning of molecular aggregation and photoresponse of narrow-band organic photodetectors. ACS Appl. Electron. Mater. 5, 2375â2385 (2023).
Yin, B. et al. Sensitive organic photodetectors with spectral response up to 1.3âµm using a quinoidal molecular semiconductor. Adv. Mater. 36, 2310811 (2024).
Wan, L. et al. Sensitive near-infrared circularly polarized light detection via non-fullerene acceptor blends. Nat. Photon. 17, 649â655 (2023).
Bristow, H. et al. Nonfullerene-based organic photodetectors for ultrahigh sensitivity visible light detection. ACS Appl. Mater. Interfaces 12, 48836â48844 (2020).
Huang, Z. et al. Copper thiocyanate as an anode interfacial layer for efficient near-infrared organic photodetector. ACS Appl. Mater. Interfaces 13, 1027â1034 (2021).
Park, I. et al. High performance shortwave infrared organic photodetectors adopting thiadiazole quinoxalineâbased copolymers. Adv. Opt. Mater. 10, 2200747 (2022).
Hong, E. et al. Strainâinduced α-phase stabilization for low dark current FAPIâbased photodetectors. Adv. Opt. Mater. 12, 2302712 (2024).
Zhu, H. L. et al. Lowâbandgap methylammoniumârubidium cation Snârich perovskites for efficient ultravioletâvisibleânear infrared photodetectors. Adv. Funct. Mater. 28, 1706068 (2018).
Yao, F. et al. High-rubidiumâformamidinium-ratio perovskites for high-performance photodetection with enhanced stability. ACS Appl. Mater. Interfaces 11, 39875â39881 (2019).
Ji, T. et al. Highly sensitive selfâpowered 2D perovskite photodiodes with dual interface passivations. Adv. Funct. Mater. 33, 2210548 (2023).
Ollearo, R. et al. Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation. Nat. Commun. 12, 7277 (2021).
Li, W. et al. The UVâVisâNIR broadband ultrafast flexible SnâPb perovskite photodetector for multispectral imaging to distinguish substance and foreignâbody in biological tissues. Adv. Opt. Mater. 12, 2301373 (2024).
Liu, F. et al. Highly efficient and stable selfâpowered mixed tinâlead perovskite photodetector used in remote wearable health monitoring technology. Adv. Sci. 10, 2205879 (2023).
Liu, Z. et al. Achieving high responsivity and detectivity in a quantum-dot-in-perovskite photodetector. Nano Lett. 23, 1181â1188 (2023).
Zhu, H. L. et al. Achieving high-quality SnâPb perovskite films on complementary metalâoxideâsemiconductor-compatible metal/silicon substrates for efficient imaging array. ACS Nano 13, 11800â11808 (2019).
Chang, Z. et al. Narrow-bandgap SnâPb mixed perovskite single crystals for high-performance near-infrared photodetectors. Nanoscale 15, 5053â5062 (2023).
Wang, W. et al. Highly sensitive lowâbandgap perovskite photodetectors with response from ultraviolet to the nearâinfrared region. Adv. Funct. Mater. 27, 1703953 (2017).
Bao, C. et al. High performance and stable allâinorganic metal halide perovskiteâbased photodetectors for optical communication applications. Adv. Mater. 30, 1803422 (2018).
Li, J. et al. Defect passivation via additive engineering to improve photodetection performance in CsPbI2 Br perovskite photodetectors. ACS Appl. Mater. Interfaces 13, 56358â56365 (2021).
Li, R. et al. Pseudohalide additives enhanced perovskite photodetectors. Adv. Opt. Mater. 9, 2001587 (2021).
Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donorâacceptor heterojunctions. Science 270, 1789â1791 (1995).
Vandewal, K. et al. Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nat. Mater. 13, 63â68 (2014).
Yu, G., Wang, J., McElvain, J. & Heeger, A. J. Large-area, full-color image sensors made with semiconducting polymers. Adv. Mater. 10, 1431â1434 (1998).
Schilinsky, P., Waldauf, C. & Brabec, C. J. Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl. Phys. Lett. 81, 3885â3887 (2002).
Tedde, S. F. et al. Fully spray coated organic photodiodes. Nano Lett. 9, 980â983 (2009).
Ng, T. N., Wong, W. S., Chabinyc, M. L., Sambandan, S. & Street, R. A. Flexible image sensor array with bulk heterojunction organic photodiode. Appl. Phys. Lett. 92, 213303 (2008).
Duan, C., Huang, F. & Cao, Y. Recent development of pushâpull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. J. Mater. Chem. 22, 10416 (2012).
Wu, Z., Yao, W., London, A. E., Azoulay, J. D. & Ng, T. N. Elucidating the detectivity limits in shortwave infrared organic photodiodes. Adv. Funct. Mater. 28, 1800391 (2018).
Holliday, S. et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016).
Zhong, Z. et al. Effects of charge injection barrier on the dark current of organic photodiodes. Org. Electron. 109, 106621 (2022).
Qiao, Z. et al. A novel selenophene based non-fullerene acceptor for near-infrared organic photodetectors with ultra-low dark current. J. Mater. Chem. C Mater. 12, 5766â5775 (2024).
Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140â1151 (2019).
Wang, Y. et al. An AâDâAâ²âDâA-type narrow bandgap electron acceptor based on selenophene-flanked diketopyrrolopyrrole for sensitive near-infrared photodetection. ACS Appl. Mater. Interfaces 16, 66846â66856 (2024).
Wang, Q. et al. Highâperformance organic narrow dualâband circular polarized light detection for encrypted communications and color imaging. Adv. Mater. 36, 2312396 (2024).
Zhang, H. et al. Near-infrared organic photodetectors with spectral response over 1200 nm adopting a thieno[3,4-c]thiadiazole-based acceptor. ACS Appl. Mater. Interfaces 16, 9088â9097 (2024).
Luong, H. M. et al. Highly sensitive resonance-enhanced organic photodetectors for shortwave infrared sensing. ACS Energy Lett. 9, 1446â1454 (2024).
Jacoutot, P. et al. Enhanced sub-1âeV detection in organic photodetectors through tuning polymer energetics and microstructure. Sci. Adv. 9, eadh2694 (2023).
Vandewal, K., Mertens, S., Benduhn, J. & Liu, Q. The cost of converting excitons into free charge carriers in organic solar cells. J. Phys. Chem. Lett. 11, 129â135 (2020).
Green, M. A. General temperature dependence of solar cell performance and implications for device modelling. Prog. Photovolt. Res. Appl. 11, 333â340 (2003).
Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 17053 (2017).
Ma, X., Janssen, R. A. J. & Gelinck, G. H. Trapâassisted charge generation and recombination in stateâofâtheâart organic photodetectors. Adv. Mater. Technol. 8, 2300234 (2023).
Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835â842 (1952).
Hall, R. N. Electronâhole recombination in germanium. Phys. Rev. 87, 387 (1952).
Sah, C., Noyce, R. & Shockley, W. Carrier generation and recombination in pân junctions and pân junction characteristics. Proc. IRE 45, 1228â1243 (1957).
Kirchartz, T., Pieters, B. E., Kirkpatrick, J., Rau, U. & Nelson, J. Recombination via tail states in polythiophene:fullerene solar cells. Phys. Rev. B 83, 115209 (2011).
Kublitski, J. et al. Reverse dark current in organic photodetectors and the major role of traps as source of noise. Nat. Commun. 12, 551 (2021).
Ma, X. et al. Identification of the origin of ultralow dark currents in organic photodiodes. Adv. Mater. 35, 2209598 (2023).
Ma, X. et al. Origin and energy of intraâgap states in sensitive nearâinfrared organic photodiodes. Adv. Funct. Mater. 33, 2304863 (2023).
Zarrabi, N. et al. Charge-generating mid-gap trap states define the thermodynamic limit of organic photovoltaic devices. Nat. Commun. 11, 5567 (2020).
de Bruyn, P., van Rest, A. H. P., Wetzelaer, G. A. H., de Leeuw, D. M. & Blom, P. W. M. Diffusion-limited current in organic metalâinsulatorâmetal diodes. Phys. Rev. Lett. 111, 186801 (2013).
Sandberg, O. J. & Armin, A. On the effect of surface recombination in thin film solar cells, light emitting diodes and photodetectors. Synth. Met. 254, 114â121 (2019).
Emtage, P. R. & OâDwyer, J. J. RichardsonâSchottky effect in insulators. Phys. Rev. Lett. 16, 356â358 (1966).
Caprioglio, P. et al. On the origin of the ideality factor in perovskite solar cells. Adv. Energy Mater. 10, 2000502 (2020).
Zhu, H. L. et al. Room-temperature solution-processed NiOx:PbI2 nanocomposite structures for realizing high-performance perovskite photodetectors. ACS Nano 10, 6808â6815 (2016).
Yang, Y. et al. Inverted perovskite solar cells with over 2,000âh operational stability at 85 °C using fixed charge passivation. Nat. Energy 9, 37â46 (2023).
Huang, J. et al. Understanding and countering illumination-sensitive dark current: toward organic photodetectors with reliable high detectivity. ACS Nano 15, 1753â1763 (2021).
van Breemen, A. J. J. M. et al. A thin and flexible scanner for fingerprints and documents based on metal halide perovskites. Nat. Electron. 4, 818â826 (2021).
Lin, Q., Armin, A., Lyons, D. M., Burn, P. L. & Meredith, P. Low noise, IRâblind organohalide perovskite photodiodes for visible light detection and imaging. Adv. Mater. 27, 2060â2064 (2015).
Schembri, T. et al. Semitransparent layers of social selfâsorting merocyanine dyes for ultranarrow bandwidth organic photodiodes. Adv. Opt. Mater. 9, 2100213 (2021).
Fang, Y. & Huang, J. Resolving weak light of subâpicowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 27, 2804â2810 (2015).
MartÃnezâGoyeneche, L. et al. Vacuumâdeposited perovskite photodiodes for visible and Xâray photon detection. Adv. Opt. Mater. 12, 2400464 (2024).
Angela, E. et al. Blending self-assembled monolayers for enhanced band alignment and improved morphology in pâiân perovskite photodetectors. ACS Appl. Mater. Interfaces 16, 33838â33845 (2024).
Nodari, D. et al. Dark current in broadband perovskiteâorganic heterojunction photodetectors controlled by interfacial energy band offset. Adv. Mater. 36, 2401206 (2024).
Wagner, J. et al. The evolution of Materials Acceleration Platforms: toward the laboratory of the future with AMANDA. J. Mater. Sci. 56, 16422â16446 (2021).
Wang, T. et al. Sustainable materials acceleration platform reveals stable and efficient wide-bandgap metal halide perovskite alloys. Matter 6, 2963â2986 (2023).
Li, C. et al. Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light Sci. Appl. 9, 31 (2020).
Liu, J. et al. Fast response organic tandem photodetector for visible and nearâinfrared digital optical communications. Small 17, e2101316 (2021).
Lin, Q., Armin, A., Burn, P. L. & Meredith, P. Filterless narrowband visible photodetectors. Nat. Photon. 9, 687â694 (2015).
Tait, J. G. et al. Interfacial depletion regions: beyond the space charge limit in thick bulk heterojunctions. ACS Appl. Mater. Interfaces 8, 2211â2219 (2016).
Yazmaciyan, A., Meredith, P. & Armin, A. Cavity enhanced organic photodiodes with charge collection narrowing. Adv. Opt. Mater. 7, 1801543 (2019).
Armin, A., Jansen-van Vuuren, R. D., Kopidakis, N., Burn, P. L. & Meredith, P. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun. 6, 6343 (2015).
Xie, B. et al. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat. Commun. 11, 2871 (2020).
Tsai, K.-W. et al. Bulk-heterojunction adjustment enables a self-filtering organic photodetector with a narrowband response. ACS Appl. Mater. Interfaces 14, 38004â38012 (2022).
Hou, Y. et al. Selfâpowered red/UV narrowband photodetector by unbalanced charge carrier transport strategy. Adv. Funct. Mater. 31, 2007016 (2021).
Wang, J. et al. Selfâdriven perovskite narrowband photodetectors with tunable spectral responses. Adv. Mater. 33, 2005557 (2021).
Saidaminov, M. I. et al. Perovskite photodetectors operating in both narrowband and broadband regimes. Adv. Mater. 28, 8144â8149 (2016).
Li, L. et al. Achieving EQE of 16,700% in P3HT:PC71BM based photodetectors by trap-assisted photomultiplication. Sci. Rep. 5, 9181 (2015).
Miao, J. & Zhang, F. Recent progress on photomultiplication type organic photodetectors. Laser Photon. Rev. 13, 1800204 (2019).
Ollearo, R. et al. Vitality surveillance at distance using thin-film tandem-like narrowband near-infrared photodiodes with light-enhanced responsivity. Sci. Adv. 9, eadf9861 (2023).
Siegmund, B. et al. Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nat. Commun. 8, 15421 (2017).
Al Amin, N. R. et al. Achieving a highly stable perovskite photodetector with a long lifetime fabricated via an all-vacuum deposition process. ACS Appl. Mater. Interfaces 15, 21284â21295 (2023).
Loganathan, K. et al. Rapid and up-scalable manufacturing of gigahertz nanogap diodes. Nat. Commun. 13, 3260 (2022).
Gielen, S. et al. Intrinsic detectivity limits of organic nearâinfrared photodetectors. Adv. Mater. 32, 200381 (2020).
Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498â500 (1995).
Shan, T., Hou, X., Yin, X. & Guo, X. Organic photodiodes: device engineering and applications. Front. Optoelectron. 15, 54 (2022).
Ren, H., Chen, J., Li, Y. & Tang, J. Recent progress in organic photodetectors and their applications. Adv. Sci. 8, 2002418 (2021).
Faridi, A. W. et al. Synthesis and characterization of high-efficiency halide perovskite nanomaterials for light-absorbing applications. Ind. Eng. Chem. Res. 62, 4494â4502 (2023).
Stranks, S. D. et al. Electronâhole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341â344 (2013).
Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organicâinorganic CH3NH3PbI3. Science 342, 344â347 (2013).
Hussain, I. et al. Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Mater. 1, 133â154 (2018).
Ma, T., Wang, S., Zhang, Y., Zhang, K. & Yi, L. The development of all-inorganic CsPbX3 perovskite solar cells. J. Mater. Sci. 55, 464â479 (2020).
DâInnocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).
Collavini, S., Völker, S. F. & Delgado, J. L. Understanding the outstanding power conversion efficiency of perovskiteâbased solar cells. Angew. Chem. Int. Ed. 54, 9757â9759 (2015).
Acknowledgements
N.G. thanks the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award ORFS-2023-OFP-5544. K.V. acknowledges the European Research Council (ERC, grant agreement 864625). O.J.S. acknowledges funding from the Research Council of Finland through Project No. 357196.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Zhiyong Fan, Xiaosheng Fang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- BCP
-
2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline.
- BT
-
Benzothiadiazole.
- C60
-
C60(OH)n.
- COTIC-4F
-
2,2â²-((2Z,2â²Z)-(((4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-bâ²]dithiophene-2,6-diyl)bis(4-(2-ethylhexyloxy)thiophene-5,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.
- CPDT
-
Cyclopentadithiophene.
- DPP
-
Diketopyrrolopyrrole.
- IDIC
-
2,2â²-((2Z,2â²Z)-((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-bâ²]dithiophene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.
- IDTBR
-
(5Z,5â²Z)-5,5â²-((7,7â²-(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6-bâ²]dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methanylylidene))bis(3-ethyl-2-thioxothiazolidin-4-one).
- IEICO-4F
-
2,2â²-((2Z,2â²Z)-(((4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-sindaceno[1,2-b:5,6-bâ²]dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1- diylidene)dimalononitrile.
- IID
-
Isoindigo.
- ITIC
-
3,9-Bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2â²,3â²-dâ²]-s-indaceno[1,2-b:5,6-bâ²]dithiophene.
- L8-BO
-
2,2â²-((2Z,2â²Z)-((12,13-bis(2-ethylhexyl)-3,9-(2-butyloctyl)-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2â³,3â³:4â²,5â²]thieno[2â²,3â²:4,5]pyrrolo[3,2-g]thieno[2â²,3â²:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.
- MEH-PPV
-
Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene].
- MeO-2PACz
-
(2-(3,6-Dimethoxy-9H-carbazol-9-yl)ethyl)phosphonic acid.
- NDI
-
Naphthalenedicarboximide.
- O-FBR
-
5,5â²-[(9,9-Dioctyl-9H-fluorene-2,7-diyl)bis(2,1,3-benzothiadiazole-7,4-diylmethylidyne)]bis[3-ethyl-2-thioxo-4-thiazolidinone].
- P1
-
Poly[4-([2,2â²-bithiophen]-5-yl)-6,7-bis(4-((2-decyltetradecyl)oxy)phenyl)-9-(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline].
- P3HT
-
Poly(3-hexylthiophene-2,5-diyl).
- P3OT
-
Poly(3-octylthiophene-2,5-diyl).
- PBDT-TT
-
Poly[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-bâ²]dithiophene-2,6-diyl-alt-(2-octylthieno[3,4-b]thiophene)-2,5-diyl].
- PC61BM
-
[6,6]-Phenyl-C61-butyric acid methyl ester.
- PC71BM
-
[6,6]-Phenyl-C71-butyric acid methyl ester.
- PDDTT
-
Poly[thieno[3,4-c][1,2,5]thiadiazole-2-S IV-4,6-diyl(3,3â³-didecyl[2,2â²:5â²,2â³-terthiophene]-5,5â³-diyl)].
- PEIE
-
Polyethyleneimine ethoxylated.
- PM6
-
Poly[[4,8-bis[5-(2-ethylhexyl)-4-fluoro-2-thienyl]benzo-[1,2-b:4,5-bâ²]dithiophene-2,6-diyl]-2,5-thiophenediyl-[5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo[1,2-c:4,5-câ²]-dithiophene-1,3-diyl]-2,5-thiophenediyl].
- PMMA
-
Poly(methyl methacrylate).
- PNTOD
-
Poly(naphtho[2,1-b:3,4-bâ²]dithiophene-alt-thiadiazoloquinoxaline).
- Poly-TPD
-
Poly[N,Nâ²-bis(4-butylphenyl)-N,Nâ²-bisphenylbenzidine].
- PTAA
-
Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine].
- PTB7-Th
-
Poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-bâ²]-dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]-thieno[3,4-b]thiophene-4,6-diyl}.
- PTQ10
-
Poly[(thiophene)-alt-(6,7-difluoro-2-(2-hexyldecyloxy)quinoxaline)].
- PVP
-
Polyvinylpyrrolidone.
- TaTm
-
N4,N4,N4â³,N4â³-tetra([1,1â²-biphenyl]-4-yl)-[1,1â²:4â²,1â³-terphenyl]-4,4â³-diamine.
- TQ-3T
-
Poly[4-([2,2â²:5â²,2â³-terthiophen]-5-yl)-6,7-bis(4-((2-decyltetradecyl)oxy)phenyl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline].
- Y6
-
2,2â²-((2Z,2â²Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2â³,3â³:4â²,5â²]thieno[2â²,3â²:4,5]pyrrolo[3,2-g]thieno[2â²,3â²:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.
- Y7
-
2,2â²-((2Z,2â²Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2â³,3â³:4â²,5â²]thieno[2â²,3â²:4,5]pyrrolo[3,2-g]thieno[2â²,3â²:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-dichloro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nodari, D., Qiao, Z., Furlan, F. et al. Towards high and reliable specific detectivity in visible and infrared perovskite and organic photodiodes. Nat Rev Mater 10, 842â856 (2025). https://doi.org/10.1038/s41578-025-00830-1
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41578-025-00830-1


