Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellulose nanocomposites by supramolecular chemistry engineering

Abstract

Increasing environmental concerns demand the replacement of petroleum with renewable, sustainable resources to produce biodegradable and carbon-neutral products. As a natural, abundant and versatile biopolymer, cellulose has long been used in traditional applications such as paper and textiles and is now emerging in advanced fields including energy storage, healthcare, food, cosmetics, and paints and emulsions. Supramolecular chemistry offers a powerful strategy for engineering cellulose nanocomposites through specific, directional, tunable and reversible non-covalent interactions between nanocellulose and matrix components to achieve certain mechanical, chemical and biological properties. In this Review, we present the multiscale supramolecular engineering of cellulose nanocomposites and their fabrication and processing into materials. We provide a material and structural perspective of how the mechanical, ionic, optical and thermal properties and the environmental degradability of these nanocomposites can be regulated through supramolecular chemistry. Finally, we discuss how these approaches might address circularity and environmental sustainability goals, and we highlight major challenges and future prospects in the field, calling for further attention on supramolecular chemistry engineering to maximize the potential of these materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hierarchical structure and pretreatments of cellulose.
Fig. 2: Supramolecular chemistry engineering strategies towards cellulose nanocomposites.
Fig. 3: Fabrication and processing strategies towards cellulose nanocomposites.
Fig. 4: Representative supramolecular approaches to control material properties of cellulose nanocomposites.

Similar content being viewed by others

References

  1. Kaplan, D. L. in Biopolymers from Renewable Resources (ed. Kaplan, D. L.) 1–29 (Springer, 1998).

  2. Klemm, D., Heublein, B., Fink, H. P. & Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005).

    Article  CAS  Google Scholar 

  3. Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Payen, A. Mémoire sur la composition du tissu propre des plantes et du ligneux. C. R. Acad. Sci. 7, 1052–1056 (1838).

    Google Scholar 

  5. Turbak, A. F., Snyder, F. W. & Sandberg, K. R. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J. Appl. Polym. Sci. 37, 815–827 (1983).

    CAS  Google Scholar 

  6. Rånby, B. G. Fibrous macromolecular systems. cellulose and muscle. the colloidal properties of cellulose micelles. Discuss. Faraday Soc. 11, 158–164 (1951).

    Article  Google Scholar 

  7. Nishiyama, Y., Langan, P. & Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074–9082 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Nishiyama, Y., Sugiyama, J., Chanzy, H. & Langan, P. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Beck-Candanedo, S., Roman, M. & Gray, D. G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6, 1048–1054 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Revol, J. F., Bradford, H., Giasson, J., Marchessault, R. H. & Gray, D. G. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14, 170–172 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Isogai, A. Emerging nanocellulose technologies: recent developments. Adv. Mater. 33, 2000630 (2021).

    Article  CAS  Google Scholar 

  12. Isogai, A., Saito, T. & Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Saito, T. & Isogai, A. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5, 1983–1989 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Noguchi, Y., Homma, I. & Matsubara, Y. Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose 24, 1295–1305 (2017).

    Article  CAS  Google Scholar 

  15. Chen, L., Zhu, J. Y., Baez, C., Kitin, P. & Elder, T. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem. 18, 3835–3843 (2016).

    Article  CAS  Google Scholar 

  16. Hou, G., Zhao, S., Peng, L., Fang, Z. & Isogai, A. A systematic study for the structures and properties of phosphorylated pulp fibers prepared under various conditions. Cellulose 29, 7365–7376 (2022).

    Article  CAS  Google Scholar 

  17. Shimotoyodome, A., Suzuki, J., Kumamoto, Y., Hase, T. & Isogai, A. Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nanofibers. Biomacromolecules 12, 3812–3818 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Pääkkö, M. et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8, 1934–1941 (2007).

    Article  PubMed  Google Scholar 

  19. Diddens, I., Murphy, B., Krisch, M. & Muller, M. Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41, 9755–9759 (2008).

    Article  CAS  Google Scholar 

  20. Klemm, D. et al. Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50, 5438–5466 (2011).

    Article  CAS  Google Scholar 

  21. Siró, I. & Plackett, D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17, 459–494 (2010).

    Article  Google Scholar 

  22. Eichhorn, S. J. et al. Current international research into cellulose as a functional nanomaterial for advanced applications. J. Mater. Sci. 57, 5697–5767 (2022).

    Article  CAS  Google Scholar 

  23. Appel, E. A., del Barrio, J., Loh, X. J. & Scherman, O. A. Supramolecular polymeric hydrogels. Chem. Soc. Rev. 41, 6195–6214 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Z., Xu, C., Qi, L. & Chen, C. Chemical modification of polysaccharides for sustainable bioplastics. Trends Chem. 6, 314–331 (2024).

    Article  CAS  Google Scholar 

  25. Yang, X. et al. Surface and interface engineering for nanocellulosic advanced materials. Adv. Mater. 33, 2002264 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Ghasemlou, M., Daver, F., Ivanova, E. P., Habibi, Y. & Adhikari, B. Surface modifications of nanocellulose: from synthesis to high-performance nanocomposites. Prog. Polym. Sci. 119, 101418 (2021).

    Article  CAS  Google Scholar 

  27. Folmer, B. J. B., Sijbesma, R. P., Versteegen, R. M., van der Rijt, J. A. J. & Meijer, E. W. Supramolecular polymer materials: chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv. Mater. 12, 874–878 (2000).

    Article  CAS  Google Scholar 

  28. Biyani, M. V., Foster, E. J. & Weder, C. Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals. ACS Macro Lett. 2, 236–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. McKee, J. R. et al. Molecular engineering of fracture energy dissipating sacrificial bonds into cellulose nanocrystal nanocomposites. Angew. Chem. Int. Ed. 53, 5049–5053 (2014).

    Article  CAS  Google Scholar 

  30. Cao, J. et al. Multiple hydrogen bonding enables the self-healing of sensors for human–machine interactions. Angew. Chem. Int. Ed. 129, 8921–8926 (2017).

    Article  Google Scholar 

  31. Sun, H. et al. Highly tough, degradable, and water-resistant bio-based supramolecular plastics comprised of cellulose and tannic acid. J. Mater. Chem. A 11, 7193–7200 (2023).

    Article  CAS  Google Scholar 

  32. Tu, H., Zhu, M., Duan, B. & Zhang, L. Recent progress in high‐strength and robust regenerated cellulose materials. Adv. Mater. 33, 2000682 (2021).

    Article  CAS  Google Scholar 

  33. Wang, S. et al. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv. Mater. 29, 1702498 (2017).

    Article  Google Scholar 

  34. Ye, D. et al. Robust anisotropic cellulose hydrogels fabricated via strong self-aggregation forces for cardiomyocytes unidirectional growth. Chem. Mater. 30, 5175–5183 (2018).

    Article  CAS  Google Scholar 

  35. Zhao, D. et al. A dynamic gel with reversible and tunable topological networks and performances. Matter 2, 390–403 (2020).

    Article  CAS  Google Scholar 

  36. Zhao, D. et al. A stiffness-switchable, biomimetic smart material enabled by supramolecular reconfiguration. Adv. Mater. 34, e2107857 (2021).

    Article  Google Scholar 

  37. Zeng, Z. et al. Tuning water–cellulose interactions via copper-coordinated mercerization for hydro-actuated, shape-memory cellulosic hydroplastics. Matter 7, 3036–3052 (2024).

    Article  CAS  Google Scholar 

  38. Jing, S. et al. The critical roles of water in the processing, structure, and properties of nanocellulose. ACS Nano 17, 22196–22226 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Cui, Y. et al. Hydration programmable, shape memorable artificial muscles for antagonistic movements. Adv. Funct. Mater. 34, 2401005 (2024).

    Article  CAS  Google Scholar 

  40. Zhou, J. et al. Supramolecular scale hydrophilicity regulation enabling efficient dewatering and assembly of nanocellulose into dense and strong bulk materials as sustainable plastic substitutes. Adv. Mater. 37, 2415313 (2025).

    Article  CAS  Google Scholar 

  41. Gong, K., Hou, L. & Wu, P. Hydrogen-bonding affords sustainable plastics with ultrahigh robustness and water-assisted arbitrarily shape engineering. Adv. Mater. 34, 2201065 (2022).

    Article  CAS  Google Scholar 

  42. Wang, J., Emmerich, L., Wu, J., Vana, P. & Zhang, K. Hydroplastic polymers as eco-friendly hydrosetting plastics. Nat. Sustain. 4, 877–883 (2021).

    Article  Google Scholar 

  43. Qi, Z., Saito, T., Fan, Y. & Isogai, A. Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils. Biomacromolecules 13, 553–558 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, J., Zhang, X., Ma, M. & Xu, F. Modulation of assembly and dynamics in colloidal hydrogels via ionic bridge from cellulose nanofibrils and poly(ethylene glycol). ACS Macro Lett. 4, 829–833 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, J., Ma, M., Zhang, X. & Xu, F. Elucidating dynamics of precoordinated ionic bridges as sacrificial bonds in interpenetrating network hydrogels. Macromolecules 49, 4340–4348 (2016).

    Article  CAS  Google Scholar 

  46. Kalashnikova, I., Bizot, H., Cathala, B. & Capron, I. New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 27, 7471–7479 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Kalashnikova, I., Bizot, H., Cathala, B. & Capron, I. Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules 13, 267–275 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Yang, Y. et al. pH- and redox-responsive Pickering emulsions based on cellulose nanocrystal surfactants. Angew. Chem. Int. Ed. 62, e202218440 (2023).

    Article  CAS  Google Scholar 

  49. Hu, Z., Ballinger, S., Pelton, R. & Cranston, E. D. Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J. Colloid Interface Sci. 439, 139–148 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Bai, L., Xiang, W., Huan, S. & Rojas, O. J. Formulation and stabilization of concentrated edible oil-in-water emulsions based on electrostatic complexes of a food-grade cationic surfactant (ethyl lauroyl arginate) and cellulose nanocrystals. Biomacromolecules 19, 1674–1685 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, F., Zheng, J., Huang, C. H., Tang, C. H. & Ou, S. Y. Pickering high internal phase emulsions stabilized by protein-covered cellulose nanocrystals. Food Hydrocoll. 82, 96–105 (2018).

    Article  CAS  Google Scholar 

  52. Feng, Y. et al. Pickering emulsions stabilized by a naturally derived one-dimensional all-in-one hybrid nanostructure. Langmuir 41, 4748–4755 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, Y. et al. Adaptive structured Pickering emulsions and porous materials based on cellulose nanocrystal surfactants. Angew. Chem. Int. Ed. 57, 13560–13564 (2018).

    Article  CAS  Google Scholar 

  54. Majoinen, J. et al. Chiral plasmonics using twisting along cellulose nanocrystals as a template for gold nanoparticles. Adv. Mater. 28, 5262–5267 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, M. et al. Colloidal ionic assembly between anionic native cellulose nanofibrils and cationic block copolymer micelles into biomimetic nanocomposites. Biomacromolecules 12, 2074–2081 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Dong, H., Snyder, J. F., Williams, K. S. & Andzelm, J. W. Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromolecules 14, 3338–3345 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Masruchin, N., Park, B. D., Causin, V. & Um, I. C. Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties. Cellulose 22, 1993–2010 (2015).

    Article  CAS  Google Scholar 

  58. Yang, C. et al. Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598, 590–596 (2021).

    Article  PubMed  Google Scholar 

  59. Yan, J., Abdelgawad, A. M., El-Naggar, M. E. & Rojas, O. J. Antibacterial activity of silver nanoparticles synthesized in-situ by solution spraying onto cellulose. Carbohydr. Polym. 147, 500–508 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Qian, J. et al. Highly stable, antiviral, antibacterial cotton textiles via molecular engineering. Nat. Nanotechnol. 18, 168–176 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, L. et al. Cellulose nanofiber-mediated manifold dynamic synergy enabling adhesive and photo-detachable hydrogel for self-powered e-skin. Nat. Commun. 15, 3859 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Basu, A., Lindh, J., Ålander, E., Strømme, M. & Ferraz, N. On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: physicochemical properties and application-oriented biocompatibility studies. Carbohydr. Polym. 174, 299–308 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, W. et al. A universal strategy for constructing robust and antifouling cellulose nanocrystal coating. Adv. Funct. Mater. 32, 2109989 (2022).

    Article  CAS  Google Scholar 

  64. Shao, C. et al. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 30, 3110–3121 (2018).

    Article  CAS  Google Scholar 

  65. Song, Y., Seo, J. Y., Kim, H. & Beak, K.-Y. Structural control of cellulose nanofibrous composite membrane with metal organic framework (ZIF-8) for highly selective removal of cationic dye. Carbohydr. Polym. 222, 115018 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Zhou, S., Strømme, M. & Xu, C. Highly transparent, flexible, and mechanically strong nanopapers of cellulose nanofibers@metal–organic frameworks. Chem. Eur. J. 25, 3515–3520 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Zhou, S. et al. Cellulose nanofiber@conductive metal–organic frameworks for high-performance flexible supercapacitors. ACS Nano 13, 9578–9586 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Matsumoto, M. & Kitaoka, T. Ultraselective gas separation by nanoporous metal−organic frameworks embedded in gas-barrier nanocellulose films. Adv. Mater. 28, 1765–1769 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Zhu, L. et al. Shapeable fibrous aerogels of metal–organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 12, 4462–4468 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Li, S.-C. et al. General synthesis and solution processing of metal–organic framework nanofibers. Adv. Mater. 34, 2202504 (2022).

    Article  CAS  Google Scholar 

  71. Cho, K., Andrew, L. J. & MacLachlan, M. J. Uniform growth of nanocrystalline ZIF-8 on cellulose nanocrystals: useful template for microporous organic polymers. Angew. Chem. Int. Ed. 62, e202300960 (2023).

    Article  CAS  Google Scholar 

  72. Kim, M. et al. Bio-templated chiral zeolitic imidazolate framework for enantioselective chemoresistive sensing. Angew. Chem. Int. Ed. 135, e202305646 (2023).

    Article  Google Scholar 

  73. Yang, J. et al. Extremely low-cost and green cellulose passivating perovskites for stable and high-performance solar cells. ACS Appl. Mater. Interfaces 11, 13491–13498 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Sun, S. et al. Enhanced flexibility and stability of emissive layer enable high-performance flexible light-emitting diodes by cross-linking of biomass material. Adv. Funct. Mater. 32, 2204286 (2022).

    Article  CAS  Google Scholar 

  75. Jin, B. et al. Fiber-bridging-induced toughening of perovskite for resistance to crack propagation. Matter 6, 1622–1638 (2023).

    Article  CAS  Google Scholar 

  76. Appel, E. A. et al. Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nat. Commun. 6, 6295 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Nigmatullin, R. et al. Mechanically robust gels formed from hydrophobized cellulose nanocrystals. ACS Appl. Mater. Interfaces 10, 19318–19322 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Xiong, R. et al. Template-guided assembly of silk fibroin on cellulose nanofibers for robust nanostructures with ultrafast water transport. ACS Nano 11, 12008–12019 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, S. et al. Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose–bentonite coordination interactions. Nat. Commun. 13, 3408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou, Y. et al. A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. Mater. Today 30, 17–25 (2019).

    Article  CAS  Google Scholar 

  81. Alqus, R., Eichhorn, S. J. & Bryce, R. A. Molecular dynamics of cellulose amphiphilicity at the graphene–water interface. Biomacromolecules 16, 1771–1783 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Kong, L. et al. Cellulose Iβ microfibril interaction with pristine graphene in water: effects of amphiphilicity by molecular simulation. J. Mol. Graph. Model. 118, 108336 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Xiong, R. et al. Wrapping nanocellulose nets around graphene oxide sheets. Angew. Chem. Int. Ed. 57, 8508–8513 (2018).

    Article  CAS  Google Scholar 

  84. Yu, L. et al. 3D-printed mechanically strong and extreme environment adaptable boron nitride/cellulose nanofluidic macrofibers. Nano Res. 16, 7609–7617 (2023).

    Article  CAS  Google Scholar 

  85. Li, Y. et al. Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy 13, 346–354 (2015).

    Article  CAS  Google Scholar 

  86. Tian, W. et al. Multifunctional nanocomposites with high strength and capacitance using 2D Mxene and 1D nanocellulose. Adv. Mater. 31, 1902977 (2019).

    Article  Google Scholar 

  87. Onyianta, A. J. et al. Amphiphilic cellulose nanocrystals for aqueous processing of thermoplastics. ACS Appl. Polym. Mater. 4, 8684–8693 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, W., Huang, C., Biehl, P. & Zhang, K. Water training initiates spatially regulated microstructures with competitive mechanics in hydroadaptive polymers. Nat. Commun. 15, 6093 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Appel, E. A. et al. Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness. J. Am. Chem. Soc. 134, 11767–11773 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Wu, Y. et al. Bioinspired supramolecular fibers drawn from a multiphase self-assembled hydrogel. Proc. Natl Acad. Sci. USA 114, 8163–8168 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, Y. et al. Biomimetic supramolecular fibers exhibit water-induced supercontraction. Adv. Mater. 30, 1707169 (2018).

    Article  Google Scholar 

  92. McKee, J. R. et al. Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv. Funct. Mater. 24, 2706–2713 (2014).

    Article  CAS  Google Scholar 

  93. Gherrou, A., Kerdjoudj, H., Molinari, R., Seta, P. & Drioli, E. Fixed sites plasticized cellulose triacetate membranes containing crown ethers for silver(I), copper(II) and gold(III) ions transport. J. Membr. Sci. 228, 149–157 (2004).

    Article  CAS  Google Scholar 

  94. Tan, X. et al. Pillar[6]arene-modified gold nanoparticles grafted on cellulose nanocrystals for the electrochemical detection of bisphenol A. New J. Chem. 45, 14126–14133 (2021).

    Article  CAS  Google Scholar 

  95. Liu, S. et al. Construction of a novel electrochemical sensor based on biomass material nanocellulose and its detection of acetaminophen. RSC Adv. 12, 27736–27745 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Risteen, B. E. et al. Enhanced alignment of water-soluble polythiophene using cellulose nanocrystals as a liquid crystal template. Biomacromolecules 18, 1556–1562 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Perutz, M. F., Fermi, G., Abraham, D. J., Poyart, C. & Bursaux, E. Hemoglobin as a receptor of drugs and peptides: X-ray studies of the stereochemistry of binding. J. Am. Chem. Soc. 108, 1064–1078 (1986).

    Article  CAS  Google Scholar 

  98. Dougherty, D. A. Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271, 163–168 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Gabrielli, V., Missale, E., Cattelan, M., Pantano, M. F. & Frasconi, M. Supramolecular modulation of the mechanical properties of amino acid-functionalized cellulose nanocrystal films. Mater. Today Chem. 24, 100886 (2022).

    Article  CAS  Google Scholar 

  100. Layek, R. K. et al. Reduced graphene oxide integrated poly (ionic liquid) functionalized nano-fibrillated cellulose composite paper with improved toughness, ductility and hydrophobicity. Mater. Adv. 2, 948–952 (2021).

    Article  CAS  Google Scholar 

  101. Ikada, Y., Jamshidi, K., Tsuji, H. & Hyon, S. H. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20, 904–906 (1987).

    Article  CAS  Google Scholar 

  102. Xie, Y. et al. Various-sized nanocelluloses induced stereocomplexes crystallization formation and its mechanism of stereoisomers poly(lactide acid) blend. ACS Sustain. Chem. Eng. 11, 13164–13178 (2023).

    Article  CAS  Google Scholar 

  103. Gupta, A. & Katiyar, V. Cellulose functionalized high molecular weight stereocomplex polylactic acid biocomposite films with improved gas barrier, thermomechanical properties. ACS Sustain. Chem. Eng. 5, 6835–6844 (2017).

    Article  CAS  Google Scholar 

  104. Yan, Y. et al. Bioinspired hydrogen bonds of nucleobases enable programmable morphological transformations of mixed nanostructures. Macromolecules 55, 7798–7805 (2022).

    Article  CAS  Google Scholar 

  105. Zhou, Y. et al. Super-strong hydrogel reinforced by an interconnected hollow microfiber network via regulating the water–cellulose-copolymer interplay. Sci. Bull. 70, 923–933 (2025).

    Article  Google Scholar 

  106. Wu, Y. et al. Revivable self-assembled supramolecular biomass fibrous framework for efficient microplastic removal. Sci. Adv. 10, eadn8662 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Himmelein, S., Lewe, V., Stuart, M. C. A. & Ravoo, B. J. A carbohydrate-based hydrogel containing vesicles as responsive non-covalent cross-linkers. Chem. Sci. 5, 1054–1058 (2014).

    Article  CAS  Google Scholar 

  108. Liu, Y., Zhang, S., Li, L. & Li, N. High-performance cellulose nanofibers/carbon nanotubes composite for constructing multifunctional sensors and wearable electronics. Adv. Fiber Mater. 6, 758–771 (2024).

    Article  CAS  Google Scholar 

  109. Dong, X. M., Revol, J. F. & Gray, D. G. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5, 19–32 (1998).

    Article  CAS  Google Scholar 

  110. Dong, X. M., Kimura, T., Revol, J. F. & Gray, D. G. Effects of ionic strength on the isotropic−chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12, 2076–2082 (1996).

    Article  CAS  Google Scholar 

  111. Revol, J. F. et al. Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq. Cryst. 16, 127–134 (1994).

    Article  CAS  Google Scholar 

  112. Revol, J. F., Godbout, L. & Gray, D. G. Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J. Pulp Pap. Sci. 24, 146–149 (1998).

    CAS  Google Scholar 

  113. Shopsowitz, K. E., Qi, H., Hamad, W. Y. & MacLachlan, M. J. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468, 422–425 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Kelly, J. A. et al. Responsive photonic hydrogels based on nanocrystalline cellulose. Angew. Chem. Int. Ed. 52, 8912–8916 (2013).

    Article  CAS  Google Scholar 

  115. Yao, K., Meng, Q., Bulone, V. & Zhou, Q. Flexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural color. Adv. Mater. 29, 1701323 (2017).

    Article  Google Scholar 

  116. Giese, M., Blusch, L. K., Khan, M. K. & MacLachlan, M. J. Functional materials from cellulose-derived liquid-crystal templates. Angew. Chem. Int. Ed. 54, 2888–2910 (2015).

    Article  CAS  Google Scholar 

  117. Frka-Petesic, B. et al. Structural color from cellulose nanocrystals or chitin nanocrystals: self-assembly, optics, and applications. Chem. Rev. 123, 12595–12756 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Richardson, J. J., Björnmalm, M. & Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 348, aaa2491 (2015).

    Article  PubMed  Google Scholar 

  119. Cerclier, C., Cousin, F., Bizot, H., Moreau, C. & Cathala, B. Elaboration of spin-coated cellulose–xyloglucan multilayered thin films. Langmuir 26, 17248–17255 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Tardy, B. L. et al. Exploiting supramolecular interactions from polymeric colloids for strong anisotropic adhesion between solid surfaces. Adv. Mater. 32, 1906886 (2020).

    Article  CAS  Google Scholar 

  121. HÃ¥kansson, K. M. O. et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5, 4018 (2014).

    Article  PubMed  Google Scholar 

  122. Huan, S., Liu, G., Cheng, W., Han, G. & Bai, L. Electrospun poly(lactic acid)-based fibrous nanocomposite reinforced by cellulose nanocrystals: impact of fiber uniaxial alignment on microstructure and mechanical properties. Biomacromolecules 19, 1037–1046 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Walther, A., Timonen, J. V. I., Díez, I., Laukkanen, A. & Ikkala, O. Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv. Mater. 23, 2924–2928 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Liang, Z. et al. General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment. ACS Nano 13, 12653–12661 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Xu, G. F. et al. Octylamine-modified cellulose nanocrystal-enhanced stabilization of Pickering emulsions for self-healing composite coatings. ACS Appl. Mater. Interfaces 14, 12722–12733 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang, Z. et al. Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in-situ polymerization. Chem. Eng. J. 428, 11 (2022).

    Article  Google Scholar 

  127. Lovell, P. A. & Schork, F. J. Fundamentals of emulsion polymerization. Biomacromolecules 21, 4396–4441 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Haaj, S. B., Thielemans, W., Magnin, A. & Boufi, S. Starch nanocrystal stabilized Pickering emulsion polymerization for nanocomposites with improved performance. ACS Appl. Mater. Interfaces 6, 8263–8273 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Yue, L. et al. Surface-modified cellulose nanocrystals for biobased epoxy nanocomposites. Polymer 134, 155–162 (2018).

    Article  CAS  Google Scholar 

  130. Rosilo, H., Kontturi, E., Seitsonen, J., Kolehmainen, E. & Ikkala, O. Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiol–ene click chemistry. Biomacromolecules 14, 1547–1554 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Yan, C. et al. Thermoplastic cellulose-graft-poly(l-lactide) copolymers homogeneously synthesized in an ionic liquid with 4-dimethylaminopyridine catalyst. Biomacromolecules 10, 2013–2018 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Geng, S., Yao, K., Zhou, Q. & Oksman, K. High-strength, high-toughness aligned polymer-based nanocomposite reinforced with ultralow weight fraction of functionalized nanocellulose. Biomacromolecules 19, 4075–4083 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Nagalakshmaiah, M., El Kissi, N. & Dufresne, A. Ionic compatibilization of cellulose nanocrystals with quaternary ammonium salt and their melt extrusion with polypropylene. ACS Appl. Mater. Interfaces 8, 8755–8764 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Venkatraman, P., Gohn, A. M., Rhoades, A. M. & Foster, E. J. Developing high performance PA 11/cellulose nanocomposites for industrial-scale melt processing. Composites B 174, 106988 (2019).

    Article  Google Scholar 

  135. Camarero Espinosa, S., Kuhnt, T., Foster, E. J. & Weder, C. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14, 1223–1230 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Martinez, V., Stolar, T., Karadeniz, B., Brekalo, I. & Užarević, K. Advancing mechanochemical synthesis by combining milling with different energy sources. Nat. Rev. Chem. 7, 51–65 (2022).

    Article  PubMed  Google Scholar 

  137. Iyer, K. A., Schueneman, G. T. & Torkelson, J. M. Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: superior dispersion leading to synergistic property enhancements. Polymer 56, 464–475 (2015).

    Article  CAS  Google Scholar 

  138. Hietala, M., Mathew, A. P. & Oksman, K. Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur. Polym. J. 49, 950–956 (2013).

    Article  CAS  Google Scholar 

  139. Madhavan Nampoothiri, K., Nair, N. R. & John, R. P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101, 8493–8501 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Bondeson, D. & Oksman, K. Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Composites A 38, 2486–2492 (2007).

    Article  Google Scholar 

  141. Pei, A., Zhou, Q. & Berglund, L. A. Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA) — crystallization and mechanical property effects. Compos. Sci. Technol. 70, 815–821 (2010).

    Article  CAS  Google Scholar 

  142. Wohlert, J., Chen, P., Berglund, L. A. & Lo Re, G. Acetylation of nanocellulose: miscibility and reinforcement mechanisms in polymer nanocomposites. ACS Nano 18, 1882–1891 (2024).

    Article  CAS  PubMed  Google Scholar 

  143. Bruel, C., Queffeulou, S., Carreau, P. J., Tavares, J. R. & Heuzey, M. C. Orienting cellulose nanocrystal functionalities tunes the wettability of water-cast films. Langmuir 36, 12179–12189 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Gårdebjer, S. et al. Using hansen solubility parameters to predict the dispersion of nano-particles in polymeric films. Polym. Chem. 7, 1756–1764 (2016).

    Article  Google Scholar 

  145. Gao, H., Ji, B., Jäger, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sturcová, A., Davies, G. R. & Eichhorn, S. J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6, 1055–1061 (2005).

    Article  PubMed  Google Scholar 

  147. Sakurada, I., Nukushina, Y. & Ito, T. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J. Polym. Sci. 57, 651–660 (2003).

    Article  Google Scholar 

  148. Iwamoto, S., Kai, W., Isogai, A. & Iwata, T. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10, 2571–2576 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Saito, T., Kuramae, R., Wohlert, J., Berglund, L. A. & Isogai, A. An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14, 248–253 (2012).

    Article  PubMed  Google Scholar 

  150. Khoshkava, V. & Kamal, M. R. Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. Biomacromolecules 14, 3155–3163 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Herrera, N., Mathew, A. P. & Oksman, K. Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos. Sci. Technol. 106, 149–155 (2015).

    Article  CAS  Google Scholar 

  152. Siqueira, G., Mathew, A. P. & Oksman, K. Processing of cellulose nanowhiskers/cellulose acetate butyrate nanocomposites using sol–gel process to facilitate dispersion. Compos. Sci. Technol. 71, 1886–1892 (2011).

    Article  CAS  Google Scholar 

  153. Lönnberg, H., Fogelström, L., Berglund, L., Malmström, E. & Hult, A. Surface grafting of microfibrillated cellulose with poly(ε-caprolactone) — synthesis and characterization. Eur. Polym. J. 44, 2991–2997 (2008).

    Article  Google Scholar 

  154. Pullawan, T., Wilkinson, A. N. & Eichhorn, S. J. Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites. Biomacromolecules 13, 2528–2536 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Sugiyama, J., Chanzy, H. D. & Maret, G. Orientation of cellulose microcrystals by strong magnetic fields. Macromolecules 25, 4232–4234 (1992).

    Article  CAS  Google Scholar 

  156. Gevorkian, A. et al. Actuation of three-dimensional-printed nanocolloidal hydrogel with structural anisotropy. Adv. Funct. Mater. 31, 2010743 (2021).

    Article  CAS  Google Scholar 

  157. Bordel, D., Putaux, J.-L. & Heux, L. Orientation of native cellulose in an electric field. Langmuir 22, 4899–4901 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Mendoza-Galván, A. et al. Linear birefringent films of cellulose nanocrystals produced by dip-coating. Nanomaterials 9, 45 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Torres-Rendon, J. G., Schacher, F. H., Ifuku, S. & Walther, A. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison. Biomacromolecules 15, 2709–2717 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Layek, R. K. et al. Reduced graphene oxide integrated poly(ionic liquid) functionalized nano-fibrillated cellulose composite paper with improved toughness, ductility and hydrophobicity. Mater. Adv. 2, 948–952 (2021).

    Article  CAS  Google Scholar 

  161. Yue, X. et al. Tough and moldable sustainable cellulose-based structural materials via multiscale interface engineering. Adv. Mater. 36, 2306451 (2024).

    Article  CAS  Google Scholar 

  162. Reimer, M. & Zollfrank, C. Cellulose for light manipulation: methods, applications, and prospects. Adv. Energy Mater. 11, 2003866 (2021).

    Article  CAS  Google Scholar 

  163. Yano, H. et al. Optically transparent composites reinforced with networks of bacterial nanofibers. Adv. Mater. 17, 153–155 (2005).

    Article  CAS  Google Scholar 

  164. Tran, A., Boott, C. E. & MacLachlan, M. J. Understanding the self‐assembly of cellulose nanocrystals — toward chiral photonic materials. Adv. Mater. 32, 1905876 (2020).

    Article  CAS  Google Scholar 

  165. Vries, H. D. Rotatory power and other optical properties of certain liquid crystals. Acta Cryst. 4, 31–38 (1951).

    Article  Google Scholar 

  166. Fernandes, S. N. et al. Mind the microgap in iridescent cellulose nanocrystal films. Adv. Mater. 29, 5262–5267 (2016).

    Google Scholar 

  167. Lv, J. et al. Self-assembled inorganic chiral superstructures. Nat. Rev. Chem. 6, 125–145 (2022).

    Article  PubMed  Google Scholar 

  168. Apostolopoulou-Kalkavoura, V., Munier, P. & Bergström, L. Thermally insulating nanocellulose-based materials. Adv. Mater. 33, 2001839 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Nie, S., Hao, N., Zhang, K., Xing, C. & Wang, S. Cellulose nanofibrils-based thermally conductive composites for flexible electronics: a mini review. Cellulose 27, 4173–4187 (2020).

    Article  CAS  Google Scholar 

  170. Ahankari, S., Paliwal, P., Subhedar, A. & Kargarzadeh, H. Recent developments in nanocellulose-based aerogels in thermal applications: a review. ACS Nano 15, 3849–3874 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Sen, S., Singh, A., Bera, C., Roy, S. & Kailasam, K. Recent developments in biomass derived cellulose aerogel materials for thermal insulation application: a review. Cellulose 29, 4805–4833 (2022).

    Article  CAS  Google Scholar 

  172. Chen, C. et al. Lightweight, thermally insulating, fire-proof graphite–cellulose foam. Adv. Funct. Mater. 33, 2204219 (2023).

    Article  CAS  Google Scholar 

  173. Kobayashi, Y., Saito, T. & Isogai, A. Aerogels with 3D ordered nanofiber skeletons of liquid‐crystalline nanocellulose derivatives as tough and transparent insulators. Angew. Chem. Int. Ed. 53, 10394–10397 (2014).

    Article  CAS  Google Scholar 

  174. Liu, P. et al. Aerogels meet phase change materials: fundamentals, advances, and beyond. ACS Nano 16, 15586–15626 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Zeng, X. et al. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 11, 5167−5178 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. WÃ¥gberg, L. & Erlandsson, J. The use of layer-by-layer self-assembly and nanocellulose to prepare advanced functional materials. Adv. Mater. 33, 2001474 (2021).

    Article  PubMed  Google Scholar 

  177. Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Zeng, S. et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Chen, Y. et al. Cellulose-based hybrid structural material for radiative cooling. Nano Lett. 21, 397–404 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Son, C. Y. & Wang, Z. G. Ion transport in small-molecule and polymer electrolytes. J. Chem. Phys. 153, 100903 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Jabbour, L., Bongiovanni, R., Chaussy, D., Gerbaldi, C. & Beneventi, D. Cellulose-based Li-ion batteries: a review. Cellulose 20, 1523–1545 (2013).

    Article  CAS  Google Scholar 

  182. Zhou, X. et al. Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications. Chem. Soc. Rev. 53, 5291–5337 (2024).

    Article  CAS  PubMed  Google Scholar 

  183. Ye, Y. et al. Cellulose-based ionic conductor: an emerging material toward sustainable devices. Chem. Rev. 123, 9204–9264 (2023).

    Article  CAS  PubMed  Google Scholar 

  184. Chen, C. & Hu, L. Nanoscale ion regulation in wood-based structures and their device applications. Adv. Mater. 33, 2002890 (2021).

    Article  CAS  Google Scholar 

  185. Wu, Y. et al. Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. Mater. Horiz. 7, 2702–2709 (2020).

    Article  CAS  Google Scholar 

  186. Zhang, Z., Wen, L. & Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6, 622–639 (2021).

    Article  CAS  Google Scholar 

  187. Zhou, Y. et al. Decoupling ionic and electronic pathways in low-dimensional hybrid conductors. J. Am. Chem. Soc. 141, 17830–17837 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Yang, H. B. et al. Simultaneously strengthening and toughening all-natural structural materials via 3D nanofiber network interfacial design. Angew. Chem. Int. Ed. 63, e202408458 (2024).

    Article  CAS  Google Scholar 

  189. Chen, T. et al. Machine intelligence-accelerated discovery of all-natural plastic substitutes. Nat. Nanotechnol. 19, 782–791 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhou, G. et al. A biodegradable, waterproof, and thermally processable cellulosic bioplastic enabled by dynamic covalent modification. Adv. Mater. 35, 2301398 (2023).

    Article  CAS  Google Scholar 

  191. Saito, T. et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8, 2485–2491 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Hoeben, F. J., Jonkheijm, P., Meijer, E. & Schenning, A. P. About supramolecular assemblies of π-conjugated systems. Chem. Rev. 105, 1491–1546 (2005).

    Article  CAS  PubMed  Google Scholar 

  193. Zhao, X. et al. Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 121, 4309–4372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Dang, C. et al. Structure integration and architecture of solar-driven interfacial desalination from miniaturization designs to industrial applications. Nat. Water 2, 115–126 (2024).

    Article  CAS  Google Scholar 

  195. Gokhale, D., Hamelberg, A. F. & Doyle, P. S. Multifunctional zwitterionic hydrogels for the rapid elimination of organic and inorganic micropollutants from water. Nat. Water 2, 62–71 (2024).

    Article  CAS  Google Scholar 

  196. Zhi, W., Appling, A. P., Golden, H. E., Podgorski, J. & Li, L. Deep learning for water quality. Nat. Water 2, 228–241 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Kawajiri, K. & Sakamoto, K. Environmental impact of carbon fibers fabricated by an innovative manufacturing process on life cycle greenhouse gas emissions. Sustain. Mater. Technol. 31, e00365 (2022).

    CAS  Google Scholar 

  198. Meng, F., McKechnie, J., Turner, T. & Pickering, S. Energy and environmental assessment and reuse of fluidised bed recycled carbon fibres. Composites A 100, 206–214 (2017).

    Article  CAS  Google Scholar 

  199. Barrios, N. et al. Innovation in lignocellulosics dewatering and drying for energy sustainability and enhanced utilization of forestry, agriculture, and marine resources-a review. Adv. Colloid Interface Sci. 318, 102936 (2023).

    Article  CAS  PubMed  Google Scholar 

  200. Xia, Q. et al. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 4, 627–635 (2021).

    Article  Google Scholar 

  201. Turk, J. et al. Evaluation of an environmental profile comparison for nanocellulose production and supply chain by applying different life cycle assessment methods. J. Clean. Prod. 247, 119107 (2020).

    Article  CAS  Google Scholar 

  202. Berroci, M., Vallejo, C. & Lizundia, E. Environmental impact assessment of chitin nanofibril and nanocrystal isolation from fungi, shrimp shells, and crab shells. ACS Sustain. Chem. Eng. 10, 14280–14293 (2022).

    Article  CAS  Google Scholar 

  203. Hao, Z., Hamad, W. Y. & Yaseneva, P. Understanding the environmental impacts of large-scale cellulose nanocrystals production: case studies in regions dependent on renewable and fossil fuel energy sources. Chem. Eng. J. 478, 147160 (2023).

    Article  CAS  Google Scholar 

  204. Li, Q., McGinnis, S., Sydnor, C., Wong, A. & Renneckar, S. Nanocellulose life cycle assessment. ACS Sustain. Chem. Eng. 1, 919–928 (2013).

    Article  CAS  Google Scholar 

  205. Forte, A. et al. Life cycle assessment of bacterial cellulose production. Int. J. Life Cycle Assess. 26, 864–878 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.C. thanks the National Natural Science Foundation of China (grant nos. 22461142135, 52273091, and 22478307) and the Fundamental Research Funds for the Central Universities (grant no. 691000003) for the financial support. E.L. acknowledges the University of the Basque Country (GIU21/010). S.J.E. acknowledges support from the Engineering and Physical Sciences Research Council (EP/V002651/1) for a fellowship.

Author information

Authors and Affiliations

Authors

Contributions

C.C. and L.C. proposed the topic of the Review and collected the research data. C.C., L.C., L.Y. and L.Q. collaboratively designed and made the figures. C.C., L.C., L.Y., S.J.E., A.I., E.L. and J.Y.Z. contributed to writing the manuscript. All authors made substantial contributions to the discussion of the content and reviewed and edited the manuscript prior to submission.

Corresponding authors

Correspondence to Stephen J. Eichhorn or Chaoji Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Katie Copenhaver, Eero Kontturi, Maren Roman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Yu, L., Qi, L. et al. Cellulose nanocomposites by supramolecular chemistry engineering. Nat Rev Mater 10, 728–749 (2025). https://doi.org/10.1038/s41578-025-00810-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00810-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing