Abstract
Increasing environmental concerns demand the replacement of petroleum with renewable, sustainable resources to produce biodegradable and carbon-neutral products. As a natural, abundant and versatile biopolymer, cellulose has long been used in traditional applications such as paper and textiles and is now emerging in advanced fields including energy storage, healthcare, food, cosmetics, and paints and emulsions. Supramolecular chemistry offers a powerful strategy for engineering cellulose nanocomposites through specific, directional, tunable and reversible non-covalent interactions between nanocellulose and matrix components to achieve certain mechanical, chemical and biological properties. In this Review, we present the multiscale supramolecular engineering of cellulose nanocomposites and their fabrication and processing into materials. We provide a material and structural perspective of how the mechanical, ionic, optical and thermal properties and the environmental degradability of these nanocomposites can be regulated through supramolecular chemistry. Finally, we discuss how these approaches might address circularity and environmental sustainability goals, and we highlight major challenges and future prospects in the field, calling for further attention on supramolecular chemistry engineering to maximize the potential of these materials.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Kaplan, D. L. in Biopolymers from Renewable Resources (ed. Kaplan, D. L.) 1â29 (Springer, 1998).
Klemm, D., Heublein, B., Fink, H. P. & Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358â3393 (2005).
Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941â3994 (2011).
Payen, A. Mémoire sur la composition du tissu propre des plantes et du ligneux. C. R. Acad. Sci. 7, 1052â1056 (1838).
Turbak, A. F., Snyder, F. W. & Sandberg, K. R. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J. Appl. Polym. Sci. 37, 815â827 (1983).
RÃ¥nby, B. G. Fibrous macromolecular systems. cellulose and muscle. the colloidal properties of cellulose micelles. Discuss. Faraday Soc. 11, 158â164 (1951).
Nishiyama, Y., Langan, P. & Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074â9082 (2002).
Nishiyama, Y., Sugiyama, J., Chanzy, H. & Langan, P. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300â14306 (2003).
Beck-Candanedo, S., Roman, M. & Gray, D. G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6, 1048â1054 (2005).
Revol, J. F., Bradford, H., Giasson, J., Marchessault, R. H. & Gray, D. G. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14, 170â172 (1992).
Isogai, A. Emerging nanocellulose technologies: recent developments. Adv. Mater. 33, 2000630 (2021).
Isogai, A., Saito, T. & Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71â85 (2011).
Saito, T. & Isogai, A. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5, 1983â1989 (2004).
Noguchi, Y., Homma, I. & Matsubara, Y. Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose 24, 1295â1305 (2017).
Chen, L., Zhu, J. Y., Baez, C., Kitin, P. & Elder, T. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem. 18, 3835â3843 (2016).
Hou, G., Zhao, S., Peng, L., Fang, Z. & Isogai, A. A systematic study for the structures and properties of phosphorylated pulp fibers prepared under various conditions. Cellulose 29, 7365â7376 (2022).
Shimotoyodome, A., Suzuki, J., Kumamoto, Y., Hase, T. & Isogai, A. Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nanofibers. Biomacromolecules 12, 3812â3818 (2011).
Pääkkö, M. et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8, 1934â1941 (2007).
Diddens, I., Murphy, B., Krisch, M. & Muller, M. Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41, 9755â9759 (2008).
Klemm, D. et al. Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50, 5438â5466 (2011).
Siró, I. & Plackett, D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17, 459â494 (2010).
Eichhorn, S. J. et al. Current international research into cellulose as a functional nanomaterial for advanced applications. J. Mater. Sci. 57, 5697â5767 (2022).
Appel, E. A., del Barrio, J., Loh, X. J. & Scherman, O. A. Supramolecular polymeric hydrogels. Chem. Soc. Rev. 41, 6195â6214 (2012).
Wang, Z., Xu, C., Qi, L. & Chen, C. Chemical modification of polysaccharides for sustainable bioplastics. Trends Chem. 6, 314â331 (2024).
Yang, X. et al. Surface and interface engineering for nanocellulosic advanced materials. Adv. Mater. 33, 2002264 (2021).
Ghasemlou, M., Daver, F., Ivanova, E. P., Habibi, Y. & Adhikari, B. Surface modifications of nanocellulose: from synthesis to high-performance nanocomposites. Prog. Polym. Sci. 119, 101418 (2021).
Folmer, B. J. B., Sijbesma, R. P., Versteegen, R. M., van der Rijt, J. A. J. & Meijer, E. W. Supramolecular polymer materials: chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv. Mater. 12, 874â878 (2000).
Biyani, M. V., Foster, E. J. & Weder, C. Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals. ACS Macro Lett. 2, 236â240 (2013).
McKee, J. R. et al. Molecular engineering of fracture energy dissipating sacrificial bonds into cellulose nanocrystal nanocomposites. Angew. Chem. Int. Ed. 53, 5049â5053 (2014).
Cao, J. et al. Multiple hydrogen bonding enables the self-healing of sensors for humanâmachine interactions. Angew. Chem. Int. Ed. 129, 8921â8926 (2017).
Sun, H. et al. Highly tough, degradable, and water-resistant bio-based supramolecular plastics comprised of cellulose and tannic acid. J. Mater. Chem. A 11, 7193â7200 (2023).
Tu, H., Zhu, M., Duan, B. & Zhang, L. Recent progress in highâstrength and robust regenerated cellulose materials. Adv. Mater. 33, 2000682 (2021).
Wang, S. et al. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv. Mater. 29, 1702498 (2017).
Ye, D. et al. Robust anisotropic cellulose hydrogels fabricated via strong self-aggregation forces for cardiomyocytes unidirectional growth. Chem. Mater. 30, 5175â5183 (2018).
Zhao, D. et al. A dynamic gel with reversible and tunable topological networks and performances. Matter 2, 390â403 (2020).
Zhao, D. et al. A stiffness-switchable, biomimetic smart material enabled by supramolecular reconfiguration. Adv. Mater. 34, e2107857 (2021).
Zeng, Z. et al. Tuning waterâcellulose interactions via copper-coordinated mercerization for hydro-actuated, shape-memory cellulosic hydroplastics. Matter 7, 3036â3052 (2024).
Jing, S. et al. The critical roles of water in the processing, structure, and properties of nanocellulose. ACS Nano 17, 22196â22226 (2023).
Cui, Y. et al. Hydration programmable, shape memorable artificial muscles for antagonistic movements. Adv. Funct. Mater. 34, 2401005 (2024).
Zhou, J. et al. Supramolecular scale hydrophilicity regulation enabling efficient dewatering and assembly of nanocellulose into dense and strong bulk materials as sustainable plastic substitutes. Adv. Mater. 37, 2415313 (2025).
Gong, K., Hou, L. & Wu, P. Hydrogen-bonding affords sustainable plastics with ultrahigh robustness and water-assisted arbitrarily shape engineering. Adv. Mater. 34, 2201065 (2022).
Wang, J., Emmerich, L., Wu, J., Vana, P. & Zhang, K. Hydroplastic polymers as eco-friendly hydrosetting plastics. Nat. Sustain. 4, 877â883 (2021).
Qi, Z., Saito, T., Fan, Y. & Isogai, A. Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils. Biomacromolecules 13, 553â558 (2012).
Yang, J., Zhang, X., Ma, M. & Xu, F. Modulation of assembly and dynamics in colloidal hydrogels via ionic bridge from cellulose nanofibrils and poly(ethylene glycol). ACS Macro Lett. 4, 829â833 (2015).
Yang, J., Ma, M., Zhang, X. & Xu, F. Elucidating dynamics of precoordinated ionic bridges as sacrificial bonds in interpenetrating network hydrogels. Macromolecules 49, 4340â4348 (2016).
Kalashnikova, I., Bizot, H., Cathala, B. & Capron, I. New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 27, 7471â7479 (2011).
Kalashnikova, I., Bizot, H., Cathala, B. & Capron, I. Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules 13, 267â275 (2012).
Yang, Y. et al. pH- and redox-responsive Pickering emulsions based on cellulose nanocrystal surfactants. Angew. Chem. Int. Ed. 62, e202218440 (2023).
Hu, Z., Ballinger, S., Pelton, R. & Cranston, E. D. Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J. Colloid Interface Sci. 439, 139â148 (2015).
Bai, L., Xiang, W., Huan, S. & Rojas, O. J. Formulation and stabilization of concentrated edible oil-in-water emulsions based on electrostatic complexes of a food-grade cationic surfactant (ethyl lauroyl arginate) and cellulose nanocrystals. Biomacromolecules 19, 1674â1685 (2018).
Liu, F., Zheng, J., Huang, C. H., Tang, C. H. & Ou, S. Y. Pickering high internal phase emulsions stabilized by protein-covered cellulose nanocrystals. Food Hydrocoll. 82, 96â105 (2018).
Feng, Y. et al. Pickering emulsions stabilized by a naturally derived one-dimensional all-in-one hybrid nanostructure. Langmuir 41, 4748â4755 (2025).
Li, Y. et al. Adaptive structured Pickering emulsions and porous materials based on cellulose nanocrystal surfactants. Angew. Chem. Int. Ed. 57, 13560â13564 (2018).
Majoinen, J. et al. Chiral plasmonics using twisting along cellulose nanocrystals as a template for gold nanoparticles. Adv. Mater. 28, 5262â5267 (2016).
Wang, M. et al. Colloidal ionic assembly between anionic native cellulose nanofibrils and cationic block copolymer micelles into biomimetic nanocomposites. Biomacromolecules 12, 2074â2081 (2011).
Dong, H., Snyder, J. F., Williams, K. S. & Andzelm, J. W. Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromolecules 14, 3338â3345 (2013).
Masruchin, N., Park, B. D., Causin, V. & Um, I. C. Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties. Cellulose 22, 1993â2010 (2015).
Yang, C. et al. Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598, 590â596 (2021).
Yan, J., Abdelgawad, A. M., El-Naggar, M. E. & Rojas, O. J. Antibacterial activity of silver nanoparticles synthesized in-situ by solution spraying onto cellulose. Carbohydr. Polym. 147, 500â508 (2016).
Qian, J. et al. Highly stable, antiviral, antibacterial cotton textiles via molecular engineering. Nat. Nanotechnol. 18, 168â176 (2023).
Zhang, L. et al. Cellulose nanofiber-mediated manifold dynamic synergy enabling adhesive and photo-detachable hydrogel for self-powered e-skin. Nat. Commun. 15, 3859 (2024).
Basu, A., Lindh, J., à lander, E., Strømme, M. & Ferraz, N. On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: physicochemical properties and application-oriented biocompatibility studies. Carbohydr. Polym. 174, 299â308 (2017).
Yang, W. et al. A universal strategy for constructing robust and antifouling cellulose nanocrystal coating. Adv. Funct. Mater. 32, 2109989 (2022).
Shao, C. et al. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 30, 3110â3121 (2018).
Song, Y., Seo, J. Y., Kim, H. & Beak, K.-Y. Structural control of cellulose nanofibrous composite membrane with metal organic framework (ZIF-8) for highly selective removal of cationic dye. Carbohydr. Polym. 222, 115018 (2019).
Zhou, S., Strømme, M. & Xu, C. Highly transparent, flexible, and mechanically strong nanopapers of cellulose nanofibers@metalâorganic frameworks. Chem. Eur. J. 25, 3515â3520 (2019).
Zhou, S. et al. Cellulose nanofiber@conductive metalâorganic frameworks for high-performance flexible supercapacitors. ACS Nano 13, 9578â9586 (2019).
Matsumoto, M. & Kitaoka, T. Ultraselective gas separation by nanoporous metalâorganic frameworks embedded in gas-barrier nanocellulose films. Adv. Mater. 28, 1765â1769 (2016).
Zhu, L. et al. Shapeable fibrous aerogels of metalâorganic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 12, 4462â4468 (2018).
Li, S.-C. et al. General synthesis and solution processing of metalâorganic framework nanofibers. Adv. Mater. 34, 2202504 (2022).
Cho, K., Andrew, L. J. & MacLachlan, M. J. Uniform growth of nanocrystalline ZIF-8 on cellulose nanocrystals: useful template for microporous organic polymers. Angew. Chem. Int. Ed. 62, e202300960 (2023).
Kim, M. et al. Bio-templated chiral zeolitic imidazolate framework for enantioselective chemoresistive sensing. Angew. Chem. Int. Ed. 135, e202305646 (2023).
Yang, J. et al. Extremely low-cost and green cellulose passivating perovskites for stable and high-performance solar cells. ACS Appl. Mater. Interfaces 11, 13491â13498 (2019).
Sun, S. et al. Enhanced flexibility and stability of emissive layer enable high-performance flexible light-emitting diodes by cross-linking of biomass material. Adv. Funct. Mater. 32, 2204286 (2022).
Jin, B. et al. Fiber-bridging-induced toughening of perovskite for resistance to crack propagation. Matter 6, 1622â1638 (2023).
Appel, E. A. et al. Self-assembled hydrogels utilizing polymerânanoparticle interactions. Nat. Commun. 6, 6295 (2015).
Nigmatullin, R. et al. Mechanically robust gels formed from hydrophobized cellulose nanocrystals. ACS Appl. Mater. Interfaces 10, 19318â19322 (2018).
Xiong, R. et al. Template-guided assembly of silk fibroin on cellulose nanofibers for robust nanostructures with ultrafast water transport. ACS Nano 11, 12008â12019 (2017).
Wang, S. et al. Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by celluloseâbentonite coordination interactions. Nat. Commun. 13, 3408 (2022).
Zhou, Y. et al. A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. Mater. Today 30, 17â25 (2019).
Alqus, R., Eichhorn, S. J. & Bryce, R. A. Molecular dynamics of cellulose amphiphilicity at the grapheneâwater interface. Biomacromolecules 16, 1771â1783 (2015).
Kong, L. et al. Cellulose Iβ microfibril interaction with pristine graphene in water: effects of amphiphilicity by molecular simulation. J. Mol. Graph. Model. 118, 108336 (2023).
Xiong, R. et al. Wrapping nanocellulose nets around graphene oxide sheets. Angew. Chem. Int. Ed. 57, 8508â8513 (2018).
Yu, L. et al. 3D-printed mechanically strong and extreme environment adaptable boron nitride/cellulose nanofluidic macrofibers. Nano Res. 16, 7609â7617 (2023).
Li, Y. et al. Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy 13, 346â354 (2015).
Tian, W. et al. Multifunctional nanocomposites with high strength and capacitance using 2D Mxene and 1D nanocellulose. Adv. Mater. 31, 1902977 (2019).
Onyianta, A. J. et al. Amphiphilic cellulose nanocrystals for aqueous processing of thermoplastics. ACS Appl. Polym. Mater. 4, 8684â8693 (2022).
Chen, W., Huang, C., Biehl, P. & Zhang, K. Water training initiates spatially regulated microstructures with competitive mechanics in hydroadaptive polymers. Nat. Commun. 15, 6093 (2024).
Appel, E. A. et al. Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness. J. Am. Chem. Soc. 134, 11767â11773 (2012).
Wu, Y. et al. Bioinspired supramolecular fibers drawn from a multiphase self-assembled hydrogel. Proc. Natl Acad. Sci. USA 114, 8163â8168 (2017).
Wu, Y. et al. Biomimetic supramolecular fibers exhibit water-induced supercontraction. Adv. Mater. 30, 1707169 (2018).
McKee, J. R. et al. Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv. Funct. Mater. 24, 2706â2713 (2014).
Gherrou, A., Kerdjoudj, H., Molinari, R., Seta, P. & Drioli, E. Fixed sites plasticized cellulose triacetate membranes containing crown ethers for silver(I), copper(II) and gold(III) ions transport. J. Membr. Sci. 228, 149â157 (2004).
Tan, X. et al. Pillar[6]arene-modified gold nanoparticles grafted on cellulose nanocrystals for the electrochemical detection of bisphenol A. New J. Chem. 45, 14126â14133 (2021).
Liu, S. et al. Construction of a novel electrochemical sensor based on biomass material nanocellulose and its detection of acetaminophen. RSC Adv. 12, 27736â27745 (2022).
Risteen, B. E. et al. Enhanced alignment of water-soluble polythiophene using cellulose nanocrystals as a liquid crystal template. Biomacromolecules 18, 1556â1562 (2017).
Perutz, M. F., Fermi, G., Abraham, D. J., Poyart, C. & Bursaux, E. Hemoglobin as a receptor of drugs and peptides: X-ray studies of the stereochemistry of binding. J. Am. Chem. Soc. 108, 1064â1078 (1986).
Dougherty, D. A. Cation-Ï interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271, 163â168 (1996).
Gabrielli, V., Missale, E., Cattelan, M., Pantano, M. F. & Frasconi, M. Supramolecular modulation of the mechanical properties of amino acid-functionalized cellulose nanocrystal films. Mater. Today Chem. 24, 100886 (2022).
Layek, R. K. et al. Reduced graphene oxide integrated poly (ionic liquid) functionalized nano-fibrillated cellulose composite paper with improved toughness, ductility and hydrophobicity. Mater. Adv. 2, 948â952 (2021).
Ikada, Y., Jamshidi, K., Tsuji, H. & Hyon, S. H. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20, 904â906 (1987).
Xie, Y. et al. Various-sized nanocelluloses induced stereocomplexes crystallization formation and its mechanism of stereoisomers poly(lactide acid) blend. ACS Sustain. Chem. Eng. 11, 13164â13178 (2023).
Gupta, A. & Katiyar, V. Cellulose functionalized high molecular weight stereocomplex polylactic acid biocomposite films with improved gas barrier, thermomechanical properties. ACS Sustain. Chem. Eng. 5, 6835â6844 (2017).
Yan, Y. et al. Bioinspired hydrogen bonds of nucleobases enable programmable morphological transformations of mixed nanostructures. Macromolecules 55, 7798â7805 (2022).
Zhou, Y. et al. Super-strong hydrogel reinforced by an interconnected hollow microfiber network via regulating the waterâcellulose-copolymer interplay. Sci. Bull. 70, 923â933 (2025).
Wu, Y. et al. Revivable self-assembled supramolecular biomass fibrous framework for efficient microplastic removal. Sci. Adv. 10, eadn8662 (2024).
Himmelein, S., Lewe, V., Stuart, M. C. A. & Ravoo, B. J. A carbohydrate-based hydrogel containing vesicles as responsive non-covalent cross-linkers. Chem. Sci. 5, 1054â1058 (2014).
Liu, Y., Zhang, S., Li, L. & Li, N. High-performance cellulose nanofibers/carbon nanotubes composite for constructing multifunctional sensors and wearable electronics. Adv. Fiber Mater. 6, 758â771 (2024).
Dong, X. M., Revol, J. F. & Gray, D. G. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5, 19â32 (1998).
Dong, X. M., Kimura, T., Revol, J. F. & Gray, D. G. Effects of ionic strength on the isotropicâchiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12, 2076â2082 (1996).
Revol, J. F. et al. Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq. Cryst. 16, 127â134 (1994).
Revol, J. F., Godbout, L. & Gray, D. G. Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J. Pulp Pap. Sci. 24, 146â149 (1998).
Shopsowitz, K. E., Qi, H., Hamad, W. Y. & MacLachlan, M. J. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468, 422â425 (2010).
Kelly, J. A. et al. Responsive photonic hydrogels based on nanocrystalline cellulose. Angew. Chem. Int. Ed. 52, 8912â8916 (2013).
Yao, K., Meng, Q., Bulone, V. & Zhou, Q. Flexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural color. Adv. Mater. 29, 1701323 (2017).
Giese, M., Blusch, L. K., Khan, M. K. & MacLachlan, M. J. Functional materials from cellulose-derived liquid-crystal templates. Angew. Chem. Int. Ed. 54, 2888â2910 (2015).
Frka-Petesic, B. et al. Structural color from cellulose nanocrystals or chitin nanocrystals: self-assembly, optics, and applications. Chem. Rev. 123, 12595â12756 (2023).
Richardson, J. J., Björnmalm, M. & Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 348, aaa2491 (2015).
Cerclier, C., Cousin, F., Bizot, H., Moreau, C. & Cathala, B. Elaboration of spin-coated celluloseâxyloglucan multilayered thin films. Langmuir 26, 17248â17255 (2010).
Tardy, B. L. et al. Exploiting supramolecular interactions from polymeric colloids for strong anisotropic adhesion between solid surfaces. Adv. Mater. 32, 1906886 (2020).
HÃ¥kansson, K. M. O. et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5, 4018 (2014).
Huan, S., Liu, G., Cheng, W., Han, G. & Bai, L. Electrospun poly(lactic acid)-based fibrous nanocomposite reinforced by cellulose nanocrystals: impact of fiber uniaxial alignment on microstructure and mechanical properties. Biomacromolecules 19, 1037â1046 (2018).
Walther, A., Timonen, J. V. I., DÃez, I., Laukkanen, A. & Ikkala, O. Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv. Mater. 23, 2924â2928 (2011).
Liang, Z. et al. General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment. ACS Nano 13, 12653â12661 (2019).
Xu, G. F. et al. Octylamine-modified cellulose nanocrystal-enhanced stabilization of Pickering emulsions for self-healing composite coatings. ACS Appl. Mater. Interfaces 14, 12722â12733 (2022).
Zhang, Z. et al. Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in-situ polymerization. Chem. Eng. J. 428, 11 (2022).
Lovell, P. A. & Schork, F. J. Fundamentals of emulsion polymerization. Biomacromolecules 21, 4396â4441 (2020).
Haaj, S. B., Thielemans, W., Magnin, A. & Boufi, S. Starch nanocrystal stabilized Pickering emulsion polymerization for nanocomposites with improved performance. ACS Appl. Mater. Interfaces 6, 8263â8273 (2014).
Yue, L. et al. Surface-modified cellulose nanocrystals for biobased epoxy nanocomposites. Polymer 134, 155â162 (2018).
Rosilo, H., Kontturi, E., Seitsonen, J., Kolehmainen, E. & Ikkala, O. Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiolâene click chemistry. Biomacromolecules 14, 1547â1554 (2013).
Yan, C. et al. Thermoplastic cellulose-graft-poly(l-lactide) copolymers homogeneously synthesized in an ionic liquid with 4-dimethylaminopyridine catalyst. Biomacromolecules 10, 2013â2018 (2009).
Geng, S., Yao, K., Zhou, Q. & Oksman, K. High-strength, high-toughness aligned polymer-based nanocomposite reinforced with ultralow weight fraction of functionalized nanocellulose. Biomacromolecules 19, 4075â4083 (2018).
Nagalakshmaiah, M., El Kissi, N. & Dufresne, A. Ionic compatibilization of cellulose nanocrystals with quaternary ammonium salt and their melt extrusion with polypropylene. ACS Appl. Mater. Interfaces 8, 8755â8764 (2016).
Venkatraman, P., Gohn, A. M., Rhoades, A. M. & Foster, E. J. Developing high performance PA 11/cellulose nanocomposites for industrial-scale melt processing. Composites B 174, 106988 (2019).
Camarero Espinosa, S., Kuhnt, T., Foster, E. J. & Weder, C. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14, 1223â1230 (2013).
Martinez, V., Stolar, T., Karadeniz, B., Brekalo, I. & UžareviÄ, K. Advancing mechanochemical synthesis by combining milling with different energy sources. Nat. Rev. Chem. 7, 51â65 (2022).
Iyer, K. A., Schueneman, G. T. & Torkelson, J. M. Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: superior dispersion leading to synergistic property enhancements. Polymer 56, 464â475 (2015).
Hietala, M., Mathew, A. P. & Oksman, K. Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur. Polym. J. 49, 950â956 (2013).
Madhavan Nampoothiri, K., Nair, N. R. & John, R. P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101, 8493â8501 (2010).
Bondeson, D. & Oksman, K. Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Composites A 38, 2486â2492 (2007).
Pei, A., Zhou, Q. & Berglund, L. A. Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA) â crystallization and mechanical property effects. Compos. Sci. Technol. 70, 815â821 (2010).
Wohlert, J., Chen, P., Berglund, L. A. & Lo Re, G. Acetylation of nanocellulose: miscibility and reinforcement mechanisms in polymer nanocomposites. ACS Nano 18, 1882â1891 (2024).
Bruel, C., Queffeulou, S., Carreau, P. J., Tavares, J. R. & Heuzey, M. C. Orienting cellulose nanocrystal functionalities tunes the wettability of water-cast films. Langmuir 36, 12179â12189 (2020).
GÃ¥rdebjer, S. et al. Using hansen solubility parameters to predict the dispersion of nano-particles in polymeric films. Polym. Chem. 7, 1756â1764 (2016).
Gao, H., Ji, B., Jäger, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597â5600 (2003).
Sturcová, A., Davies, G. R. & Eichhorn, S. J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6, 1055â1061 (2005).
Sakurada, I., Nukushina, Y. & Ito, T. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J. Polym. Sci. 57, 651â660 (2003).
Iwamoto, S., Kai, W., Isogai, A. & Iwata, T. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10, 2571â2576 (2009).
Saito, T., Kuramae, R., Wohlert, J., Berglund, L. A. & Isogai, A. An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14, 248â253 (2012).
Khoshkava, V. & Kamal, M. R. Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. Biomacromolecules 14, 3155â3163 (2013).
Herrera, N., Mathew, A. P. & Oksman, K. Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos. Sci. Technol. 106, 149â155 (2015).
Siqueira, G., Mathew, A. P. & Oksman, K. Processing of cellulose nanowhiskers/cellulose acetate butyrate nanocomposites using solâgel process to facilitate dispersion. Compos. Sci. Technol. 71, 1886â1892 (2011).
Lönnberg, H., Fogelström, L., Berglund, L., Malmström, E. & Hult, A. Surface grafting of microfibrillated cellulose with poly(ε-caprolactone) â synthesis and characterization. Eur. Polym. J. 44, 2991â2997 (2008).
Pullawan, T., Wilkinson, A. N. & Eichhorn, S. J. Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites. Biomacromolecules 13, 2528â2536 (2012).
Sugiyama, J., Chanzy, H. D. & Maret, G. Orientation of cellulose microcrystals by strong magnetic fields. Macromolecules 25, 4232â4234 (1992).
Gevorkian, A. et al. Actuation of three-dimensional-printed nanocolloidal hydrogel with structural anisotropy. Adv. Funct. Mater. 31, 2010743 (2021).
Bordel, D., Putaux, J.-L. & Heux, L. Orientation of native cellulose in an electric field. Langmuir 22, 4899â4901 (2006).
Mendoza-Galván, A. et al. Linear birefringent films of cellulose nanocrystals produced by dip-coating. Nanomaterials 9, 45 (2018).
Torres-Rendon, J. G., Schacher, F. H., Ifuku, S. & Walther, A. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison. Biomacromolecules 15, 2709â2717 (2014).
Layek, R. K. et al. Reduced graphene oxide integrated poly(ionic liquid) functionalized nano-fibrillated cellulose composite paper with improved toughness, ductility and hydrophobicity. Mater. Adv. 2, 948â952 (2021).
Yue, X. et al. Tough and moldable sustainable cellulose-based structural materials via multiscale interface engineering. Adv. Mater. 36, 2306451 (2024).
Reimer, M. & Zollfrank, C. Cellulose for light manipulation: methods, applications, and prospects. Adv. Energy Mater. 11, 2003866 (2021).
Yano, H. et al. Optically transparent composites reinforced with networks of bacterial nanofibers. Adv. Mater. 17, 153â155 (2005).
Tran, A., Boott, C. E. & MacLachlan, M. J. Understanding the selfâassembly of cellulose nanocrystals â toward chiral photonic materials. Adv. Mater. 32, 1905876 (2020).
Vries, H. D. Rotatory power and other optical properties of certain liquid crystals. Acta Cryst. 4, 31â38 (1951).
Fernandes, S. N. et al. Mind the microgap in iridescent cellulose nanocrystal films. Adv. Mater. 29, 5262â5267 (2016).
Lv, J. et al. Self-assembled inorganic chiral superstructures. Nat. Rev. Chem. 6, 125â145 (2022).
Apostolopoulou-Kalkavoura, V., Munier, P. & Bergström, L. Thermally insulating nanocellulose-based materials. Adv. Mater. 33, 2001839 (2021).
Nie, S., Hao, N., Zhang, K., Xing, C. & Wang, S. Cellulose nanofibrils-based thermally conductive composites for flexible electronics: a mini review. Cellulose 27, 4173â4187 (2020).
Ahankari, S., Paliwal, P., Subhedar, A. & Kargarzadeh, H. Recent developments in nanocellulose-based aerogels in thermal applications: a review. ACS Nano 15, 3849â3874 (2021).
Sen, S., Singh, A., Bera, C., Roy, S. & Kailasam, K. Recent developments in biomass derived cellulose aerogel materials for thermal insulation application: a review. Cellulose 29, 4805â4833 (2022).
Chen, C. et al. Lightweight, thermally insulating, fire-proof graphiteâcellulose foam. Adv. Funct. Mater. 33, 2204219 (2023).
Kobayashi, Y., Saito, T. & Isogai, A. Aerogels with 3D ordered nanofiber skeletons of liquidâcrystalline nanocellulose derivatives as tough and transparent insulators. Angew. Chem. Int. Ed. 53, 10394â10397 (2014).
Liu, P. et al. Aerogels meet phase change materials: fundamentals, advances, and beyond. ACS Nano 16, 15586â15626 (2022).
Zeng, X. et al. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 11, 5167â5178 (2017).
WÃ¥gberg, L. & Erlandsson, J. The use of layer-by-layer self-assembly and nanocellulose to prepare advanced functional materials. Adv. Mater. 33, 2001474 (2021).
Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540â544 (2014).
Zeng, S. et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692â696 (2021).
Chen, Y. et al. Cellulose-based hybrid structural material for radiative cooling. Nano Lett. 21, 397â404 (2021).
Son, C. Y. & Wang, Z. G. Ion transport in small-molecule and polymer electrolytes. J. Chem. Phys. 153, 100903 (2020).
Jabbour, L., Bongiovanni, R., Chaussy, D., Gerbaldi, C. & Beneventi, D. Cellulose-based Li-ion batteries: a review. Cellulose 20, 1523â1545 (2013).
Zhou, X. et al. Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications. Chem. Soc. Rev. 53, 5291â5337 (2024).
Ye, Y. et al. Cellulose-based ionic conductor: an emerging material toward sustainable devices. Chem. Rev. 123, 9204â9264 (2023).
Chen, C. & Hu, L. Nanoscale ion regulation in wood-based structures and their device applications. Adv. Mater. 33, 2002890 (2021).
Wu, Y. et al. Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. Mater. Horiz. 7, 2702â2709 (2020).
Zhang, Z., Wen, L. & Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6, 622â639 (2021).
Zhou, Y. et al. Decoupling ionic and electronic pathways in low-dimensional hybrid conductors. J. Am. Chem. Soc. 141, 17830â17837 (2019).
Yang, H. B. et al. Simultaneously strengthening and toughening all-natural structural materials via 3D nanofiber network interfacial design. Angew. Chem. Int. Ed. 63, e202408458 (2024).
Chen, T. et al. Machine intelligence-accelerated discovery of all-natural plastic substitutes. Nat. Nanotechnol. 19, 782â791 (2024).
Zhou, G. et al. A biodegradable, waterproof, and thermally processable cellulosic bioplastic enabled by dynamic covalent modification. Adv. Mater. 35, 2301398 (2023).
Saito, T. et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8, 2485â2491 (2007).
Hoeben, F. J., Jonkheijm, P., Meijer, E. & Schenning, A. P. About supramolecular assemblies of Ï-conjugated systems. Chem. Rev. 105, 1491â1546 (2005).
Zhao, X. et al. Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 121, 4309â4372 (2021).
Dang, C. et al. Structure integration and architecture of solar-driven interfacial desalination from miniaturization designs to industrial applications. Nat. Water 2, 115â126 (2024).
Gokhale, D., Hamelberg, A. F. & Doyle, P. S. Multifunctional zwitterionic hydrogels for the rapid elimination of organic and inorganic micropollutants from water. Nat. Water 2, 62â71 (2024).
Zhi, W., Appling, A. P., Golden, H. E., Podgorski, J. & Li, L. Deep learning for water quality. Nat. Water 2, 228â241 (2024).
Kawajiri, K. & Sakamoto, K. Environmental impact of carbon fibers fabricated by an innovative manufacturing process on life cycle greenhouse gas emissions. Sustain. Mater. Technol. 31, e00365 (2022).
Meng, F., McKechnie, J., Turner, T. & Pickering, S. Energy and environmental assessment and reuse of fluidised bed recycled carbon fibres. Composites A 100, 206â214 (2017).
Barrios, N. et al. Innovation in lignocellulosics dewatering and drying for energy sustainability and enhanced utilization of forestry, agriculture, and marine resources-a review. Adv. Colloid Interface Sci. 318, 102936 (2023).
Xia, Q. et al. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 4, 627â635 (2021).
Turk, J. et al. Evaluation of an environmental profile comparison for nanocellulose production and supply chain by applying different life cycle assessment methods. J. Clean. Prod. 247, 119107 (2020).
Berroci, M., Vallejo, C. & Lizundia, E. Environmental impact assessment of chitin nanofibril and nanocrystal isolation from fungi, shrimp shells, and crab shells. ACS Sustain. Chem. Eng. 10, 14280â14293 (2022).
Hao, Z., Hamad, W. Y. & Yaseneva, P. Understanding the environmental impacts of large-scale cellulose nanocrystals production: case studies in regions dependent on renewable and fossil fuel energy sources. Chem. Eng. J. 478, 147160 (2023).
Li, Q., McGinnis, S., Sydnor, C., Wong, A. & Renneckar, S. Nanocellulose life cycle assessment. ACS Sustain. Chem. Eng. 1, 919â928 (2013).
Forte, A. et al. Life cycle assessment of bacterial cellulose production. Int. J. Life Cycle Assess. 26, 864â878 (2021).
Acknowledgements
C.C. thanks the National Natural Science Foundation of China (grant nos. 22461142135, 52273091, and 22478307) and the Fundamental Research Funds for the Central Universities (grant no. 691000003) for the financial support. E.L. acknowledges the University of the Basque Country (GIU21/010). S.J.E. acknowledges support from the Engineering and Physical Sciences Research Council (EP/V002651/1) for a fellowship.
Author information
Authors and Affiliations
Contributions
C.C. and L.C. proposed the topic of the Review and collected the research data. C.C., L.C., L.Y. and L.Q. collaboratively designed and made the figures. C.C., L.C., L.Y., S.J.E., A.I., E.L. and J.Y.Z. contributed to writing the manuscript. All authors made substantial contributions to the discussion of the content and reviewed and edited the manuscript prior to submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Katie Copenhaver, Eero Kontturi, Maren Roman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, L., Yu, L., Qi, L. et al. Cellulose nanocomposites by supramolecular chemistry engineering. Nat Rev Mater 10, 728â749 (2025). https://doi.org/10.1038/s41578-025-00810-5
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41578-025-00810-5
This article is cited by
-
Cellulose-mediated ionic liquid crystallization enables tough-stiff switchable ionogels
Nature Communications (2025)
-
Rapidly making biodegradable and recyclable paper plastic based on microwave radiation driven dynamic carbamate chemistry
Nature Communications (2025)


