Abstract
Some of the highest-performance materials in nature, including spider silk and collagen, are formed through protein self-assembly. These natural materials, which combine function, performance and assembly under mild aqueous conditions, have inspired a generation of technologically useful biomaterials that use natural proteins as the molecular building blocks. The shift from oil-based feedstocks towards renewable materials has accelerated the search for plastic replacements and has stimulated work in the two major classes of abundant natural polymers, proteins and polysaccharides. Whereas polysaccharides are already used in areas from packaging to structural applications, the unique properties of proteins have not yet been fully harnessed for renewable materials. Advances over the past 15âyears have highlighted the promise of protein systems for high-performance applications, enabled by a fundamental understanding of polypeptide self-assembly, emerging computational methods such as artificial intelligence, feedstocks, and materials processing. In this Review, we highlight developments in this area and provide a perspective on the potential of this important class of molecules in both fundamental materials science and sustainability.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Alberts, B. et al. Molecular Biology of the Cell 6th edn (W.W. Norton, 2015).
Flechsig, H. & Mikhailov, A. S. Simple mechanics of protein machines. J. R. Soc. Interface 16, 20190244 (2019).
Guthold, M. et al. A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers. Cell Biochem. Biophys. 49, 165â181 (2007).
Pardee, A. B. Membrane transport proteins. Science 162, 632â637 (1968).
United Nations Department of Economic and Social Affairs. Transforming our world: the 2030 Agenda for Sustainable Development (United Nations, 2015).
Hinman, M. B., Jones, J. A. & Lewis, R. V. Synthetic spider silk: a modular fiber. Trends Biotechnol. 18, 374â379 (2000).
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871â876 (2021).
Baker, D. & Church, G. Protein design meets biosecurity. Science 383, 349 (2024).
Mout, R. et al. De novo design of modular protein hydrogels with programmable intra- and extracellular viscoelasticity. Proc. Natl Acad. Sci. USA 121, e2309457121 (2024).
Shimanovich, U. et al. Sequential release of proteins from structured multishell microcapsules. Biomacromolecules 18, 3052â3059 (2017).
Falguera, V., Quintero Cerón, J., Jiménez, A., muñoz, A. & Ibarz, A. Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci. Technol. 22, 292â303 (2011).
Calva-Estrada, S. J., Jiménez-Fernández, M. & Lugo-Cervantes, E. Protein-based films: advances in the development of biomaterials applicable to food packaging. Food Eng. Rev. 11, 78â92 (2019).
Gates, Z. P. et al. Xenoprotein engineering via synthetic libraries. Proc. Natl Acad. Sci. USA 115, E5298âE5306 (2018).
Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625â627 (2003).
Kol, N. et al. Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett. 5, 1343â1346 (2005).
Yao, X., Zou, S., Fan, S., Niu, Q. & Zhang, Y. Bioinspired silk fibroin materials: from silk building blocks extraction and reconstruction to advanced biomedical applications. Mater. Today Bio 16, 100381 (2022).
Wu, B. et al. Active encapsulation in biocompatible nanocapsules. Small 16, 2002716 (2020).
Chakraborty, P. et al. A self-healing, all-organic, conducting, composite peptide hydrogel as pressure sensor and electrogenic cell soft substrate. ACS Nano 13, 163â175 (2019).
Bera, S. et al. Rigid helical-like assemblies from a self-aggregating tripeptide. Nat. Mater. 18, 503â509 (2019).
Hiddessen, A. L., Rodgers, S. D., Weitz, D. A. & Hammer, D. A. Assembly of binary colloidal structures via specific biological adhesion. Langmuir 16, 9744â9753 (2000).
Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455â1461 (2020).
Eriksen, M. et al. Plastic pollution in the worldâs oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583â589 (2021).
NeÅ¡iÄ, A. et al. Prospect of polysaccharide-based materials as advanced food packaging. Molecules 25, 135 (2019).
Benbettaïeb, N., Gay, J., Karbowiak, T. & Debeaufort, F. Tuning the functional properties of polysaccharideâprotein bioâbased edible films by chemical, enzymatic, and physical crossâlinking. Compr. Rev. Food Sci. Food Saf. 15, 739â752 (2016).
Knowles, T. P. J. & Buehler, M. J. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol. 6, 469â479 (2011).
Schulz G. E. & Schirmer, H. R. Principles of Protein Structure (Springer, 1979).
Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl Acad. Sci. USA 37, 205â211 (1951).
Nick Pace, C. & Martin Scholtz, J. A helix propensity scale based on experimental studies of peptides and proteins. Biophys. J. 75, 422â427 (1998).
Nowick, J. S. Exploring β-sheet structure and interactions with chemical model systems. Acc. Chem. Res. 41, 1319â1330 (2008).
Blake, C. C. F. et al. Structure of hen egg-white lysozyme: a three-dimensional Fourier synthesis at 2âà resolution. Nature 206, 757â761 (1965).
Gazit, E. A possible role for Ïâstacking in the selfâassembly of amyloid fibrils. FASEB J. 16, 77â83 (2002).
Li, J., Du, X., Hashim, S., Shy, A. & Xu, B. Aromaticâaromatic interactions enable α-helix to β-sheet transition of peptides to form supramolecular hydrogels. J. Am. Chem. Soc. 139, 71â74 (2017).
Smith, A. M. et al. Fmocâdiphenylalanine self assembles to a hydrogel via a novel architecture based on ÏâÏ Interlocked βâsheets. Adv. Mater. 20, 37â41 (2008).
Whitesides, M. G. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418â2421 (2002).
Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813â817 (2012).
Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615â634 (2020).
Lehn, J. M. Toward complex matter: supramolecular chemistry and self-organization. Proc. Natl Acad. Sci. USA 99, 4763â4768 (2002).
Bai, Y., Luo, Q. & Liu, J. Protein self-assembly via supramolecular strategies. Chem. Soc. Rev. 45, 2756â2767 (2016).
Luo, Q., Hou, C., Bai, Y., Wang, R. & Liu, J. Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem. Rev. 116, 13571â13632 (2016).
Sun, H., Li, Y., Yu, S. & Liu, J. Hierarchical self-assembly of proteins through rationally designed supramolecular interfaces. Front. Bioeng. Biotechnol. 8, 295 (2020).
Wiedemann, C., Kumar, A., Lang, A. & Ohlenschläger, O. Cysteines and disulfide bonds as structure-forming units: insights from different domains of life and the potential for characterization by NMR. Front Chem 8, 280 (2020).
Musafia, B., Buchner, V. & Arad, D. Complex salt bridges in proteins: statistical analysis of structure and function. J. Mol. Biol. 254, 761â770 (1995).
Sasidharan, S. & Ramakrishnan, V. Aromatic interactions directing peptide nano-assembly. Adv. Protein Chem. Struct. Biol. 130, 119â160 (2022).
McManus, J. J., Charbonneau, P., Zaccarelli, E. & Asherie, N. The physics of protein self-assembly. Curr. Opin. Colloid Interface Sci. 22, 73â79 (2016).
Du, M. et al. Noncovalent self-assembly of protein crystals with tunable structures. Nano Lett. 21, 1749â1757 (2021).
Kojima, M., Abe, S. & Ueno, T. Engineering of protein crystals for use as solid biomaterials. Biomater. Sci. 10, 354â367 (2022).
Shapiro, D. M. et al. Protein nanowires with tunable functionality and programmable self-assembly using sequence-controlled synthesis. Nat. Commun. 13, 829 (2022).
Creasey, R. C. G. et al. Biomimetic peptide nanowires designed for conductivity. ACS Omega 4, 1748â1756 (2019).
Puiu, M. et al. Label-free detection of target proteins using peptide molecular wires as conductive supports. Sens. Actuators B Chem. 345, 130416 (2021).
Nguyen, T. K., Negishi, H., Abe, S. & Ueno, T. Construction of supramolecular nanotubes from protein crystals. Chem. Sci. 10, 1046â1051 (2019).
Munialo, C. D., Martin, A. H., van der Linden, E. & de Jongh, H. H. J. Fibril formation from pea protein and subsequent gel formation. J. Agric. Food Chem. 62, 2418â2427 (2014).
de Vries, A., Wesseling, A., van der Linden, E. & Scholten, E. Protein oleogels from heat-set whey protein aggregates. J. Colloid Interface Sci. 486, 75â83 (2017).
Wiita, E. G., Toprakcioglu, Z., Jayaram, A. K. & Knowles, T. P. J. Selenium-silk microgels as antifungal and antibacterial agents. Nanoscale Horiz. 9, 609â619 (2024).
Toprakcioglu, Z., Wiita, E. G., Jayaram, A. K., Gregory, R. C. & Knowles, T. P. J. Selenium silk nanostructured films with antifungal and antibacterial activity. ACS Appl. Mater. Interfaces 15, 10452â10463 (2023).
Li, K., Jin, S., Chen, H., He, J. & Li, J. A high-performance soy protein isolate-based nanocomposite film modified with microcrystalline cellulose and Cu and Zn nanoclusters. Polymers 9, 167 (2017).
Lu, Q. et al. Water-insoluble silk films with silk I structure. Acta Biomater. 6, 1380â1387 (2010).
Wiernik, G. et al. A colored hydrophobic peptide film based on self-assembled two-fold topology. J. Colloid Interface Sci. 594, 326â333 (2021).
Shen, Y. et al. From protein building blocks to functional materials. ACS Nano 15, 5819â5837 (2021).
Schnaider, L. et al. Biocompatible hybrid organic/inorganic microhydrogels promote bacterial adherence and eradication in vitro and in vivo. Nano Lett. 20, 1590â1597 (2020).
Maji, S. K. et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325, 328â332 (2009).
Fowler, D. M. et al. Functional amyloid formation within mammalian tissue. PLoS Biol. 4, 100â107 (2006).
Karthika, S., Radhakrishnan, T. K. & Kalaichelvi, P. A review of classical and nonclassical nucleation theories. Cryst. Growth Des. 16, 6663â6681 (2016).
Shim, J., Cristobal, G., Link, D. R., Thorsen, T. & Fraden, S. Using microfluidics to decouple nucleation and growth of protein crystals. Cryst. Growth Des. 7, 2192â2194 (2007).
Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58â60 (1984).
Tisdale, J. F., Thein, S. L. & Eaton, W. A. Treating sickle cell anemia. Science 367, 1198â1199 (2020).
Levin, A. et al. Elastic instability-mediated actuation by a supra-molecular polymer. Nat. Phys. 12, 926â930 (2016).
Pollard, T. D. & Cooper, J. A. Actin, a central player in cell shape and movement. Science 326, 1208â1212 (2009).
Cohen, S. I. A. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl Acad. Sci. USA 110, 9758â9763 (2013).
Törnquist, M. et al. Secondary nucleation in amyloid formation. Chem. Commun. 54, 8667â8684 (2018).
Dey, A. et al. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat. Mater. 9, 1010â1014 (2010).
Gebauer, D., Kellermeier, M., Gale, J. D., Bergström, L. & Cölfen, H. Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 43, 2348â2371 (2014).
Levin, A. et al. Ostwaldâs rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nat. Commun. 5, 5219 (2014).
Riback, J. A. et al. Viscoelasticity and advective flow of RNA underlies nucleolar form and function. Mol. Cell 83, 3095â3107 (2023).
Linsenmeier, M. et al. The interface of condensates of the hnRNPA1 low-complexity domain promotes formation of amyloid fibrils. Nat. Chem. 15, 1340â1349 (2023).
Choi, C.-H., Lee, D. S. W., Sanders, D. W. & Brangwynne, C. P. Condensate interfaces can accelerate protein aggregation. Biophys. J. 123, 1404â1413 (2024).
Shen, Y. et al. The liquid-to-solid transition of FUS is promoted by the condensate surface. Proc. Natl Acad. Sci. USA 120, e2301366120 (2023).
Malay, A. D. et al. Spider silk self-assembly via modular liquid-liquid phase separation and nanofibrillation. Sci. Adv. 6, eabb6030 (2020).
Lemetti, L. et al. Liquid-liquid phase separation and assembly of silk-like proteins is dependent on the polymer length. Biomacromolecules 23, 3142â3153 (2022).
Leppert, A. et al. Liquidâliquid phase separation primes spider silk proteins for fiber formation via a conditional sticker domain. Nano Lett. 23, 5836â5841 (2023).
Deepankumar, K. et al. Liquidâliquid phase separation of the green mussel adhesive protein Pvfpâ5 is regulated by the postâtranslated dopa amino acid. Adv. Mater. 34, e2103828 (2022).
Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595â599 (2016).
Wheeler, J. R., Matheny, T., Jain, S., Abrisch, R. & Parker, R. Distinct stages in stress granule assembly and disassembly. eLife 5, e18413 (2016).
Pakravan, D., Orlando, G., Bercier, V. & Van Den Bosch, L. Role and therapeutic potential of liquidâliquid phase separation in amyotrophic lateral sclerosis. J. Mol. Cell Biol. 13, 15â28 (2021).
Ambadipudi, S., Biernat, J., Riedel, D., Mandelkow, E. & Zweckstetter, M. Liquidâliquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat. Commun. 8, 275 (2017).
Yuan, C. et al. Nucleation and growth of amino acid and peptide supramolecular polymers through liquidâliquid phase separation. Angew. Chem. Int. Ed. 58, 18116â18123 (2019).
Xiao, L., Lu, G., Lu, Q. & Kaplan, D. L. Direct formation of silk nanoparticles for drug delivery. ACS Biomater. Sci. Eng. 2, 2050â2057 (2016).
Tian, Y. et al. Peptide-based optical/electronic materials: assembly and recent applications in biomedicine, sensing, and energy storage. Macromol. Biosci. 23, 2300171 (2023).
Wang, F. et al. Progress report on phase separation in polymer solutions. Adv. Mater. 31, 1806733 (2019).
Ersch, C., van der Linden, E., Venema, P. & Martin, A. The microstructure and rheology of homogeneous and phase separated gelatine gels. Food Hydrocoll. 61, 311â317 (2016).
Fu, H. et al. Supramolecular polymers form tactoids through liquidâliquid phase separation. Nature 626, 1011â1018 (2024).
Zhou, P. et al. Steering phase-separated droplets to control fibrillar network evolution of supramolecular peptide hydrogels. Matter 6, 1945â1963 (2023).
Yuan, H. et al. Piezoelectric peptide and metabolite materials. Research 2019, 9025939 (2019).
Meyers, M. A., Chen, P.-Y., Lin, A. Y.-M. & Seki, Y. Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1â206 (2008).
Yan, C. & Pochan, D. J. Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem. Soc. Rev. 39, 3528â3540 (2010).
Mondal, S., Das, S. & Nandi, A. K. A review on recent advances in polymer and peptide hydrogels. Soft Matter 16, 1404â1454 (2020).
Adler-Abramovich, L. & Gazit, E. The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem. Soc. Rev. 43, 6881â6893 (2014).
Keten, S. & Buehler, M. J. Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Lett. 8, 743â748 (2008).
Keten, S. & Buehler, M. J. Asymptotic strength limit of hydrogen-bond assemblies in proteins at vanishing pulling rates. Phys. Rev. Lett. 100, 198301 (2008).
Giesa, T., Arslan, M., Pugno, N. & Buehler, M. Nanoconfinement of spider silk fibrils begets superior strength, extensibility and toughness. Nat. Prec. https://doi.org/10.1038/npre.2011.5916.2 (2011).
Hayashi, C. Y. & Lewis, R. V. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J. Mol. Biol. 275, 773â784 (1998).
Launey, M. E., Buehler, M. J. & Ritchie, R. O. On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 40, 25â53 (2010).
Ackbarow, T., Sen, D., Thaulow, C. & Buehler, M. J. Alpha-helical protein networks are self-protective and flaw-tolerant. PLoS ONE 4, e6015 (2009).
Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929â958 (2009).
Bielajew, B. J., Hu, J. C. & Athanasiou, K. A. Collagen: quantification, biomechanics and role of minor subtypes in cartilage. Nat. Rev. Mater. 5, 730â747 (2020).
Buehler, M. J. Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl Acad. Sci. USA 103, 12285â12290 (2006).
Wenger, M. P. E., Bozec, L., Horton, M. A. & Mesquida, P. Mechanical properties of collagen fibrils. Biophys. J. 93, 1255â1263 (2007).
Gosline, J. et al. Elastic proteins: biological roles and mechanical properties. Phil. Trans. R. Soc. B 357, 121â132 (2002).
Buehler, M., Keten, S. & Ackbarow, T. Theoretical and computational hierarchical nanomechanics of protein materials: deformation and fracture. Prog. Mater. Sci. 53, 1101â1241 (2008).
Sun, H., Luo, Q., Hou, C. & Liu, J. Nanostructures based on protein self-assembly: from hierarchical construction to bioinspired materials. Nano Today 14, 16â41 (2017).
Buehler, M. J. & Yung, Y. C. Deformation and failure of protein materials in physiologically extreme conditions and disease. Nat. Mater. 8, 175â188 (2009).
Buehler, M. J. Tu(r)ning weakness to strength. Nano Today 5, 379â383 (2010).
Suresh, S. J. & Naik, V. M. Hydrogen bond thermodynamic properties of water from dielectric constant data. J. Chem. Phys. 113, 9727â9732 (2000).
Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223â230 (1973).
Dill, K. A. Dominant forces in protein folding. Biochemistry 29, 7133â7155 (1990).
Keten, S., Xu, Z., Ihle, B. & Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 9, 359â367 (2010).
Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640â647 (2005).
Xie, Z., Hu, B.-L., Li, R.-W. & Zhang, Q. Hydrogen bonding in self-healing elastomers. ACS Omega 6, 9319â9333 (2021).
Wang, S. & Urban, M. W. Self-healing polymers. Nat. Rev. Mater. 5, 562â583 (2020).
Finkelstein-Zuta, G. et al. A self-healing multispectral transparent adhesive peptide glass. Nature 630, 368â374 (2024).
Deptuch, T. & Dams-Kozlowska, H. Silk materials functionalized via genetic engineering for biomedical applications. Materials 10, 1417 (2017).
Krasnov, I. et al. Mechanical properties of silk: interplay of deformation on macroscopic and molecular length scales. Phys. Rev. Lett. 100, 48104 (2008).
Xiao, S., Stacklies, W., Cetinkaya, M., Markert, B. & Gräter, F. Mechanical response of silk crystalline units from force-distribution analysis. Biophys. J. 96, 3997â4005 (2009).
Xiao, S., Xiao, S. & Gräter, F. Dissecting the structural determinants for the difference in mechanical stability of silk and amyloid beta-sheet stacks. Phys. Chem. Chem. Phys. 15, 8765â8771 (2013).
Wang, Z., Cang, Y., Kremer, F., Thomas, E. L. & Fytas, G. Determination of the complete elasticity of Nephila pilipes spider silk. Biomacromolecules 21, 1179â1185 (2020).
Yoshimura, Y. et al. Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation. Proc. Natl Acad. Sci. USA 109, 14446â14451 (2012).
Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900â1903 (2007).
Holten-Andersen, N. et al. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl Acad. Sci. USA 108, 2651â2655 (2011).
Holten-Andersen, N. et al. Metal-coordination: using one of natureâs tricks to control soft material mechanics. J. Mater. Chem. B 2, 2467â2472 (2014).
Khare, E., Holten-Andersen, N. & Buehler, M. J. Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties. Nat. Rev. Mater. 6, 421â436 (2021).
Li, J. et al. Spider silk-inspired artificial fibers. Adv. Sci. 9, 2103965 (2022).
Li, L. & Kiick, K. L. Resilin-based materials for biomedical applications. ACS Macro Lett. 2, 635â640 (2013).
Ashby, M. F., Gibson, L. J., Wegst, U. & Olive, R. The mechanical properties of natural materials. I. Material property charts. Proc. R. Soc. Lond. A 450, 123â140 (1995).
Vollrath, F. & Porter, D. Spider silk as archetypal protein elastomer. Soft Matter 2, 377â385 (2006).
Rockwood, D. N. et al. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612â1631 (2011).
Koh, L. D. et al. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 46, 86â110 (2015).
Shao, Z. & Vollrath, F. Surprising strength of silkworm silk. Nature 418, 741 (2002).
Marelli, B., Brenckle, M. A., Kaplan, D. L. & Omenetto, F. G. Silk fibroin as edible coating for perishable food preservation. Sci. Rep. 6, 25263 (2016).
Ding, Z. et al. Biomimetic vascular grafts with circumferentially and axially oriented microporous structures for native blood vessel regeneration. Adv. Funct. Mater. 34, 2308888 (2024).
Jin, H.-J. et al. Water-stable silk films with reduced β-sheet content. Adv. Funct. Mater. 15, 1241â1247 (2005).
Wang, Y., Kim, H.-J., Vunjak-Novakovic, G. & Kaplan, D. L. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27, 6064â6082 (2006).
Kim, D. H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511â517 (2010).
Kirkness, M. W. H., Lehmann, K. & Forde, N. R. Mechanics and structural stability of the collagen triple helix. Curr. Opin. Chem. Biol. 53, 98â105 (2019).
Long, K. et al. Improving the mechanical properties of collagenâbased membranes using silk fibroin for corneal tissue engineering. J. Biomed. Mater. Res. A 103, 1159â1168 (2015).
Lei, X. et al. Mechanical and optical properties of reinforced collagen membranes for corneal regeneration through polyrotaxane cross-linking. ACS Appl. Bio Mater. 2, 3861â3869 (2019).
Sun, W., Gregory, D. A., Tomeh, M. A. & Zhao, X. Silk fibroin as a functional biomaterial for tissue engineering. Int. J. Mol. Sci. 22, 1499 (2021).
MartÃnez, A., Blanco, M. D., Davidenko, N. & Cameron, R. E. Tailoring chitosan/collagen scaffolds for tissue engineering: effect of composition and different crosslinking agents on scaffold properties. Carbohydr. Polym. 132, 606â619 (2015).
Sun, L., Li, B., Yao, D., Song, W. & Hou, H. Effects of cross-linking on mechanical, biological properties and biodegradation behavior of Nile tilapia skin collagen sponge as a biomedical material. J. Mech. Behav. Biomed. Mater. 80, 51â58 (2018).
Sun, L., Li, B., Jiang, D. & Hou, H. Nile tilapia skin collagen sponge modified with chemical cross-linkers as a biomedical hemostatic material. Colloids Surf. B Biointerfaces 159, 89â96 (2017).
Sarrigiannidis, S. O. et al. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater. Today Bio 10, 100098 (2021).
Kreger, S. T. et al. Polymerization and matrix physical properties as important design considerations for soluble collagen formulations. Biopolymers 93, 690â707 (2010).
Roeder, B. A., Kokini, K., Sturgis, J. E., Robinson, J. P. & Voytik-Harbin, S. L. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124, 214â222 (2002).
Gautieri, A., Vesentini, S., Redaelli, A. & Buehler, M. J. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11, 757â766 (2011).
Glowacki, J. & Mizuno, S. Collagen scaffolds for tissue engineering. Biopolymers 89, 338â344 (2008).
Abou Neel, E. A. et al. Collagen â emerging collagen based therapies hit the patient. Adv. Drug Deliv. Rev. 65, 429â456 (2013).
Parenteau-Bareil, R., Gauvin, R. & Berthod, F. Collagen-based biomaterials for tissue engineering applications. Materials 3, 1863â1887 (2010).
Ben-Nun, Y. et al. Cathepsin nanofiber substrates as potential agents for targeted drug delivery. J. Controlled Release 257, 60â67 (2017).
Soria-Carrera, H., Atrián-Blasco, E., MartÃn-Rapún, R. & Mitchell, S. G. Polyoxometalateâpeptide hybrid materials: from structureâproperty relationships to applications. Chem. Sci. 14, 10â28 (2023).
Murai, K. Development of peptideâinorganic hybrid materials based on biomineralization and their functional design based on structural controls. Polym. J. 55, 817â827 (2023).
Wijayanti, H. B., Bansal, N. & Deeth, H. C. Stability of whey proteins during thermal processing: a review. Compr. Rev. Food Sci. Food Saf. 13, 1235â1251 (2014).
Schmid, M. & Müller, K. in Whey Proteins (eds Deeth, H. C. & Bansal, N.) 407â437 (Academic, 2019).
Berardy, A., Costello, C. & Seager, T. Life cycle assessment of soy protein isolate. In Proc. Int. Symp. Sustain. Syst. Technol. 1517821 (ISSST, 2015).
Narayanan, H. et al. Machine learning for biologics: opportunities for protein engineering, developability, and formulation. Trends Pharmacol. Sci. 42, 151â165 (2021).
Liu, F. Y. C., Ni, B. & Buehler, M. J. PRESTO: rapid protein mechanical strength prediction with an end-to-end deep learning model. Extreme Mech. Lett. 55, 101803 (2022).
Sun, T., Zhou, B., Lai, L. & Pei, J. Sequence-based prediction of protein protein interaction using a deep-learning algorithm. BMC Bioinformatics 18, 277 (2017).
Hu, Y. & Buehler, M. J. End-to-end protein normal mode frequency predictions using language and graph models and application to sonification. ACS Nano 16, 20656â20670 (2022).
Hashemifar, S., Neyshabur, B., Khan, A. A. & Xu, J. Predicting proteinâprotein interactions through sequence-based deep learning. Bioinformatics 34, i802âi810 (2018).
Ma, W. et al. Enhancing protein function prediction performance by utilizing AlphaFold-predicted protein structures. J. Chem. Inf. Model. 62, 4008â4017 (2022).
GligorijeviÄ, V. et al. Structure-based protein function prediction using graph convolutional networks. Nat. Commun. 12, 3168 (2021).
Wang, W., Peng, Z. & Yang, J. Single-sequence protein structure prediction using supervised transformer protein language models. Nat. Comput. Sci. 2, 804â814 (2022).
Chowdhury, R. et al. Single-sequence protein structure prediction using a language model and deep learning. Nat. Biotechnol. 40, 1617â1623 (2022).
Wu, R. et al. High-resolution de novo structure prediction from primary sequence. Preprint at bioRxiv https://doi.org/10.1101/2022.07.21.500999 (2022).
Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123â1130 (2023).
Vaswani, A. et al. Attention is all you need. In Advances Neural Inform. Process. Syst. (eds. Guyon, I. et al.) 6000â6010 (NIPS, 2017).
Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735â1780 (1997).
Song, B. et al. Pretraining model for biological sequence data. Brief. Funct. Genomics 20, 181â195 (2021).
Brandes, N., Ofer, D., Peleg, Y., Rappoport, N. & Linial, M. ProteinBERT: a universal deep-learning model of protein sequence and function. Bioinformatics 38, 2102â2110 (2022).
Reed, S. et al. A generalist agent. Preprint at https://doi.org/10.48550/arXiv.2205.06175 (2022).
Hu, Y. & Buehler, M. J. Deep language models for interpretative and predictive materials science. APL Mach. Learn. 1, 10901 (2023).
Khare, E., Gonzalez-Obeso, C., Kaplan, D. L. & Buehler, M. J. CollagenTransformer: end-to-end transformer model to predict thermal stability of collagen triple helices using an NLP approach. ACS Biomater. Sci. Eng. 8, 4301â4310 (2022).
Luu, R. K. & Buehler, M. J. BioinspiredLLM: conversational large language model for the mechanics of biological and bio-inspired materials. Adv. Sci. 11, 2306724 (2024).
Buehler, M. J. Generative pretrained autoregressive transformer graph neural network applied to the analysis and discovery of novel proteins. J. Appl. Phys. 134, 84902 (2023).
Lu, W., Kaplan, D. L. & Buehler, M. J. Generative modeling, design and analysis of spider silk protein sequences for enhanced mechanical properties. Adv. Func. Mat. 34, 2311324 (2024).
Zhang, X. M., Liang, L., Liu, L. & Tang, M. J. Graph neural networks and their current applications in bioinformatics. Front. Genet. 12, 1â22 (2021).
Wu, Z. et al. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4â24 (2021).
Noid, W. G. et al. The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys. 128, 244114 (2008).
Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & de Vries, A. H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812â7824 (2007).
Periole, X., Cavalli, M., Marrink, S.-J. & Ceruso, M. A. Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J. Chem. Theory Comput. 5, 2531â2543 (2009).
Wang, J. et al. Machine learning of coarse-grained molecular dynamics force fields. ACS Cent. Sci. 5, 755â767 (2019).
Gkeka, P. et al. Machine learning force fields and coarse-grained variables in molecular dynamics: application to materials and biological systems. J. Chem. Theory Comput. 16, 4757â4775 (2020).
Ingólfsson, H. I. et al. Machine learning-driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins. Proc. Natl Acad. Sci. USA 119, e2113297119 (2022).
Bhatia, H. et al. Machine-learning-based dynamic-importance sampling for adaptive multiscale simulations. Nat. Mach. Intell. 3, 401â409 (2021).
Yang, Y. I., Shao, Q., Zhang, J., Yang, L. & Gao, Y. Q. Enhanced sampling in molecular dynamics. J. Chem. Phys. 151, 70902 (2019).
Sidky, H., Chen, W. & Ferguson, A. L. Machine learning for collective variable discovery and enhanced sampling in biomolecular simulation. Mol. Phys. 118, e1737742 (2020).
Sun, L. et al. Multitask machine learning of collective variables for enhanced sampling of rare events. J. Chem. Theory Comput. 18, 2341â2353 (2022).
Chen, M. Collective variable-based enhanced sampling and machine learning. Eur. Phys. J. B 94, 211 (2021).
Noé, F., Olsson, S., Köhler, J. & Wu, H. Boltzmann generators: sampling equilibrium states of many-body systems with deep learning. Science 365, eaaw1147 (2019).
Bajorath, J. Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1, 882â894 (2002).
Macarron, R. et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 10, 188â195 (2011).
Frederix, P., Ulijn, R. V., Hunt, N. T. & Tuttle, T. Virtual screening for dipeptide aggregation: toward predictive tools for peptide self-assembly. J. Phys. Chem. Lett. 2, 2380â2384 (2011).
Frederix, P. W. J. M. et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem. 7, 30â37 (2015).
Reynolds, K. A., Russ, W. P., Socolich, M. & Ranganathan, R. in Methods in Protein Design Vol. 523 Ch. 10 (ed. Keating, A. E.) 213â235 (Academic, 2013).
Mignon, D. et al. Physics-based computational protein design: an update. J. Phys. Chem. A 124, 10637â10648 (2020).
Bera, S. et al. Molecular engineering of piezoelectricity in collagen-mimicking peptide assemblies. Nat. Commun. 12, 2634 (2021).
Yoshida, M. et al. Using evolutionary algorithms and machine learning to explore sequence space for the discovery of antimicrobial peptides. Chem 4, 533â543 (2018).
Greener, J. G., Moffat, L. & Jones, D. T. Design of metalloproteins and novel protein folds using variational autoencoders. Sci. Rep. 8, 16189 (2018).
Lin, E., Lin, C.-H. & Lane, H.-Y. De novo peptide and protein design using generative adversarial networks: an update. J. Chem. Inf. Model. 62, 761â774 (2022).
Anand, N. & Achim, T. Protein structure and sequence generation with equivariant denoising diffusion probabilistic models. Preprint at https://doi.org/10.48550/arXiv.2205.15019 (2022).
Ni, B., Kaplan, D. L. & Buehler, M. J. Generative design of de novo proteins based on secondary-structure constraints using an attention-based diffusion model. Chem 9, 1828â1849 (2023).
Nations, U. Our Common Future (Oxford Univ. Press, 1987).
Graça, J., Godinho, C. & Truninger, M. Reducing meat consumption and following plant-based diets: current evidence and future directions to inform integrated transitions. Trends Food Sci. Technol. https://doi.org/10.1016/j.tifs.2019.07.046 (2019).
Silva, A., Silva, M. & Ribeiro, B. D. Health issues and technological aspects of plant-based alternative milk. Food Res. Int. 131, 108972 (2020).
Heidebrecht, A. & Scheibel, T. Recombinant production of spider silk proteins. Adv. Appl. Microbiol. 82, 115â153 (2013).
Widhe, M., Johansson, J., Hedhammar, M. & Rising, A. Current progress and limitations of spider silk for biomedical applications. Biopolymers 97, 468â478 (2012).
Kumar, P. et al. in Sustainable Food Science â A Comprehensive Approach (eds Levina, A. et al.) 219â231 (Elsevier, 2023).
Thrane, M., Paulsen, P. V., Orcutt, M. W. & Krieger, T. M. in Sustainable Protein Sources Ch. 2 (eds Nadathur, S. R. et al.) 23â45 (Academic, 2017).
Emkani, M., Oliete, B. & Saurel, R. Pea protein extraction assisted by lactic fermentation: impact on protein profile and thermal properties. Foods 10, 54 (2021).
Wang, Y., Katyal, P. & Montclare, J. K. Protein-engineered functional materials. Adv. Healthc. Mater. 8, 1801374 (2019).
Straley, K. S. & Heilshorn, S. C. Independent tuning of multiple biomaterial properties using protein engineering. Soft Matter 5, 114â124 (2009).
Mulyasasmita, W., Madl, C. M. & Heilshorn, S. C. in Comprehensive Biomaterials II (ed. Ducheyne, P.) 18â40 (Elsevier, 2017).
Bini, E. et al. RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 7, 3139â3145 (2006).
Straley, K. S. & Heilshorn, S. C. Dynamic, 3D-pattern formation within enzyme-responsive hydrogels. Adv. Mater. 21, 4148â4152 (2009).
Zhang, T., Sanguramath, R. A., Israel, S. & Silverstein, M. S. Emulsion templating: porous polymers and beyond. Macromolecules 52, 5445â5479 (2019).
Kumar, A., Li, S., Cheng, C. M. & Lee, D. Recent developments in phase inversion emulsification. Ind. Eng. Chem. Res. 54, 8375â8396 (2015).
Xue, J., Wu, T., Dai, Y. & Xia, Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119, 5298â5415 (2019).
Kaliyaraj Selva Kumar, A., Zhang, Y., Li, D. & Compton, R. G. A mini-review: How reliable is the drop casting technique? Electrochem. Commun. 121, 106867 (2020).
Meyer, M. Processing of collagen based biomaterials and the resulting materials properties. Biomed. Eng. Online 18, 24 (2019).
Zuo, C. & Ding, L. Drop-casting to make efficient perovskite solar cells under high humidity. Angew. Chem. Int. Ed. 60, 11242â11246 (2021).
Saber, D. & Abd El-Aziz, K. Advanced materials used in wearable health care devices and medical textiles in the battle against coronavirus (COVID-19): a review. J. Ind. Text. 51, 246Sâ271S (2022).
Lai, Z. et al. Dropâcasting halide microcrystals enabled by green glycol solvent for highâperformance photodetectors. Adv. Photonics Res. 3, 2200041 (2022).
Dane, T. G. et al. Influence of solvent polarity on the structure of drop-cast electroactive tetra(aniline)-surfactant thin films. Phys. Chem. Chem. Phys. 18, 24498â24505 (2016).
Sim, S. Y. J., Srv, A., Chiang, J. H. & Henry, C. J. Plant proteins for future foods: a roadmap. Foods 10, 1967 (2021).
Qing, R. et al. Protein design: from the aspect of water solubility and stability. Chem. Rev. 122, 14085â14179 (2022).
Ma, K. K. et al. Functional performance of plant proteins. Foods 11, 594 (2022).
Kramer, R. M., Shende, V. R., Motl, N., Pace, C. N. & Scholtz, J. M. Toward a molecular understanding of protein solubility: increased negative surface charge correlates with increased solubility. Biophys. J. 102, 1907â1915 (2012).
Aghanouri, A., Shoemaker, C. F. & Sun, G. Characterization of conformational structures of plant proteins in solutions. Ind. Eng. Chem. Res. 54, 188â197 (2015).
Mo, X. & Sun, X. Thermal and mechanical properties of plastics molded from ureaâmodified soy protein isolates. J. Am. Oil Chem. Soc. 78, 867â872 (2001).
Zubair, M. & Ullah, A. Recent advances in protein derived bionanocomposites for food packaging applications. Crit. Rev. Food Sci. Nutr. 60, 406â434 (2020).
Kamada, A. et al. Controlled self-assembly of plant proteins into high-performance multifunctional nanostructured films. Nat. Commun. 12, 3529 (2021).
Preece, K. E., Hooshyar, N. & Zuidam, N. J. Whole soybean protein extraction processes: a review. Innov. Food Sci. Emerg. Technol. 43, 163â172 (2017).
Krishna, M., Nindo, C. I. & Min, S. C. Development of fish gelatin edible films using extrusion and compression molding. J. Food Eng. 108, 337â344 (2012).
Domenek, S., Morel, M.-H., Bonicel, J. & Guilbert, S. Polymerization kinetics of wheat gluten upon thermosetting. A mechanistic model. J. Agric. Food Chem. 50, 5947â5954 (2002).
Reddy, N. & Yang, Y. Thermoplastic films from plant proteins. J. Appl. Polym. Sci. 130, 729â738 (2013).
HernandezâIzquierdo, V. M. & Krochta, J. M. Thermoplastic processing of proteins for film formation â a review. J. Food Sci. 73, R30âR39 (2008).
Cunningham, P., Ogale, A. A., Dawson, P. L. & Acton, J. C. Tensile properties of soy protein isolate films produced by a thermal compaction technique. J. Food Sci. 65, 668â671 (2000).
Sun, S., Song, Y. & Zheng, Q. Thermo-molded wheat gluten plastics plasticized with glycerol: effect of molding temperature. Food Hydrocoll. 22, 1006â1013 (2008).
Reis, J. P., de Moura, M. & Samborski, S. Thermoplastic composites and their promising applications in joining and repair composites structures: a review. Materials 13, 1â33 (2020).
Guna, V., Touchaleaume, F., Saulnier, B., Grohens, Y. & Reddy, N. Sustainable bioproducts through thermoplastic processing of wheat gluten and its blends. J. Thermoplast. Compos. Mater. 36, 1775â1806 (2023).
Gällstedt, M., Mattozzi, A., Johansson, E. & Hedenqvist, M. S. Transport and tensile properties of compression-molded wheat gluten films. Biomacromolecules 5, 2020â2028 (2004).
ZubeldÃa, F., Ansorena, M. R. & Marcovich, N. E. Wheat gluten films obtained by compression molding. Polym. Test. 43, 68â77 (2015).
Ansorena, M. R., ZubeldÃa, F. & Marcovich, N. E. Active wheat gluten films obtained by thermoplastic processing. LWT Food Sci. Technol. 69, 47â54 (2016).
Mangavel, C. et al. Properties and microstructure of thermo-pressed wheat gluten films: a comparison with cast films. Biomacromolecules 5, 1596â1601 (2004).
Xu, J. & Li, Y. Wheat glutenâbased coatings and films: preparation, properties, and applications. J. Food Sci. 88, 582â594 (2023).
Rausch, K. D. & Belyea, R. L. The future of coproducts from corn processing. Appl. Biochem. Biotechnol. 128, 47â86 (2006).
Freddi, G., Pessina, G. & Tsukada, M. Swelling and dissolution of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide. Int. J. Biol. Macromol. 24, 251â263 (1999).
Marelli, B. et al. Programming function into mechanical forms by directed assembly of silk bulk materials. Proc. Natl Acad. Sci. USA 114, 451â456 (2017).
Freire, P., Zambrano, A., Zamora, A. & Castillo, M. Thermal denaturation of milk whey proteins: a comprehensive review on rapid quantification methods being studied, developed and implemented. Dairy 3, 500â512 (2022).
Mosher, C. Z. et al. Green electrospinning for biomaterials and biofabrication. Biofabrication 13, 35049 (2021).
Pillay, V. et al. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J. Nanomater. 2013, 1â22 (2013).
Chen, H. et al. Recent developments of electrospun zein nanofibres: strategies, fabrication and therapeutic applications. Mater. Today Adv. 16, 100307 (2022).
Federici, E., Selling, G. W., Campanella, O. H. & Jones, O. G. Incorporation of plasticizers and co-proteins in zein electrospun fibers. J. Agric. Food Chem. 68, 14610â14619 (2020).
Zdraveva, E. et al. Agro-industrial plant proteins in electrospun materials for biomedical application. Polymers 15, 2684 (2023).
de Oliveira Mori, C. L. S. et al. Electrospinning of zein/tannin bio-nanofibers. Ind. Crop. Prod. 52, 298â304 (2014).
Aytac, Z. et al. Development of biodegradable and antimicrobial electrospun zein fibers for food packaging. ACS Sustain. Chem. Eng. 8, 15354â15365 (2020).
Jiménez, A., Fabra, M. J., Talens, P. & Chiralt, A. Edible and biodegradable starch films: a review. Food Bioprocess Technol. 5, 2058â2076 (2012).
Kontturi, E. & Spirk, S. Ultrathin films of cellulose: a materials perspective. Front. Chem. 7, 488 (2019).
Mushi, N. E., Nishino, T., Berglund, L. A. & Zhou, Q. Strong and tough chitin film from α-chitin nanofibers prepared by high pressure homogenization and chitosan addition. ACS Sustain. Chem. Eng. 7, 1692â1697 (2019).
Chen, H. et al. Application of protein-based films and coatings for food packaging: a review. Polymers 11, 2039 (2019).
Omenetto, F. G. & Kaplan, D. L. New opportunities for an ancient material. Science 329, 528â531 (2010).
Márquez, A. et al. Nanoporous silk films with capillary action and size-exclusion capacity for sensitive glucose determination in whole blood. Lab Chip 21, 608â615 (2021).
Hardy, J. G. & Scheibel, T. R. Production and processing of spider silk proteins. J. Polym. Sci. A Polym. Chem. 47, 3957â3963 (2009).
Rammensee, S., Slotta, U., Scheibel, T. & Bausch, A. R. Assembly mechanism of recombinant spider silk proteins. Proc. Natl Acad. Sci. USA 105, 6590â6595 (2008).
Chong, K. Y. & Brooks, M. S.-L. Development of pea protein-based films and coatings with haskap leaf extracts. Appl. Food Res. 2, 100102 (2022).
Liu, X. et al. Development of eco-friendly soy protein isolate films with high mechanical properties through HNTs, PVA, and PTGE synergism effect. Sci. Rep. 7, 44289 (2017).
Flint, F. O. & Johnson, R. F. P. A study of film formation by soy protein isolate. J. Food Sci. 46, 1351â1353 (1981).
Gustavsson, J., Cederberg, C., Sonesson, U., Otterdijk, R. & Meybeck, A. Global food losses and food waste â extent, causes and prevention (FAO, 2011).
DÃaz-Montes, E. & Castro-Muñoz, R. Edible films and coatings as food-quality preservers: an overview. Foods 10, 249 (2021).
Ruggeri, E. et al. A multilayered edible coating to extend produce shelf life. ACS Sustain. Chem. Eng. 8, 14312â14321 (2020).
Mi, J. et al. High-strength and ultra-tough whole spider silk fibers spun from transgenic silkworms. Matter 6, 3661â3683 (2023).
Arad, E. et al. Native glucagon amyloids catalyze key metabolic reactions. ACS Nano 16, 12889â12899 (2022).
Gulseren, G., Khalily, M. A., Tekinay, A. B. & Guler, M. O. Catalytic supramolecular self-assembled peptide nanostructures for ester hydrolysis. J. Mater. Chem. B 4, 4605â4611 (2016).
Arad, E., Baruch Leshem, A., Rapaport, H. & Jelinek, R. β-Amyloid fibrils catalyze neurotransmitter degradation. Chem. Catal. 1, 908â922 (2021).
Monzani, E. et al. Dopamine, oxidative stress and proteinâquinone modifications in Parkinsonâs and other neurodegenerative diseases. Angew. Chem. Int. Ed. 58, 6512â6527 (2019).
Omosun, T. O. et al. Catalytic diversity in self-propagating peptide assemblies. Nat. Chem. 9, 805â809 (2017).
Guler, M. O. & Stupp, S. I. A self-assembled nanofiber catalyst for ester hydrolysis. J. Am. Chem. Soc. 129, 12082â12083 (2007).
Baruch-Leshem, A. et al. Catalytically active peptides affected by self-assembly and residues order. Colloids Surf. B Biointerfaces 203, 111751 (2021).
Polgár, L. The catalytic triad of serine peptidases. Cell Mol. Life Sci. 62, 2161â2172 (2005).
Peydayesh, M. & Mezzenga, R. Protein nanofibrils for next generation sustainable water purification. Nat. Commun. 12, 3248 (2021).
Geise, G. M. et al. Water purification by membranes: the role of polymer science. J. Polym. Sci. B Polym. Phys. 48, 1685â1718 (2010).
Bolisetty, S., Peydayesh, M. & Mezzenga, R. Sustainable technologies for water purification from heavy metals: review and analysis. Chem. Soc. Rev. 48, 463â487 (2019).
Pendergast, M. M. & Hoek, E. M. V. A review of water treatment membrane nanotechnologies. Energy Env. Sci. 4, 1946 (2011).
Azimi, A., Azari, A., Rezakazemi, M. & Ansarpour, M. Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev. 4, 37â59 (2017).
Fu, F. & Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Env. Manag. 92, 407â418 (2011).
KrupiÅska, I. Aluminium drinking water treatment residuals and their toxic impact on human health. Molecules 25, 641 (2020).
Yang, F., Tao, F., Li, C., Gao, L. & Yang, P. Self-assembled membrane composed of amyloid-like proteins for efficient size-selective molecular separation and dialysis. Nat. Commun. 9, 5443 (2018).
Suarez, M. et al. Expression of a plantâderived peptide harboring waterâcleaning and antimicrobial activities. Biotechnol. Bioeng. 81, 13â20 (2003).
Ahn, J. H. et al. Phase separation drives aberrant chromatin looping and cancer development. Nature 595, 591â595 (2021).
Zhao, Q. et al. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat. Mater. 15, 407â412 (2016).
Lee, H., Lee, B. & Messersmith, P. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448, 338â341 (2007).
Rose, S. et al. Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382â385 (2014).
Li, J. et al. Tough adhesives for diverse wet surfaces. Science 357, 378â381 (2017).
Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41, 99â132 (2011).
Desmond, K. W., Zacchia, N. A., Waite, J. H. & Valentine, M. T. Dynamics of mussel plaque detachment. Soft Matter 11, 6832â6839 (2015).
Guo, Q., Chen, J., Wang, J., Zeng, H. & Yu, J. Recent progress in synthesis and application of mussel-inspired adhesives. Nanoscale 12, 1307â1324 (2020).
Shafiq, Z. et al. Bioinspired underwater bonding and debonding on demand. Angew. Chem. Int. Ed. 51, 4332â4335 (2012).
Ahn, B., Lee, D., Israelachvili, J. & Waite, J. Surface-initiated self-healing of polymers in aqueous media. Nat Mater 13, 867â872 (2014).
Sparks, B., Hoff, E., Hayes, L. & Patton, D. Mussel-inspired thiol-ene polymer networks: influencing network properties and adhesion with catechol functionality. Chem. Mater. 24, 3633â3642 (2012).
Brubaker, C. & Messersmith, P. The present and future of biologically inspired adhesive interfaces and materials. Langmuir 28, 2200â2205 (2012).
Mian, S. A., Gao, X., Nagase, S. & Jang, J. Adsorption of catechol on a wet silica surface: density functional theory study. Theor. Chem. Acc. 130, 333â339 (2011).
Stewart, R., Wang, C. & Shao, H. Complex coacervates as a foundation for synthetic underwater adhesives. Adv. Colloid Interface Sci. 167, 85â93 (2010).
Pham, T.-N., Su, C.-F., Huang, C.-C. & Jan, J.-S. Biomimetic hydrogels based on L-Dopa conjugated gelatin as pH-responsive drug carriers and antimicrobial agents. Colloids Surf. B Biointerfaces 196, 111316 (2020).
Manolakis, I., Noordover, B., Vendamme, R. & Eevers, W. Novel LâDOPAâderived poly(ester amide)s: monomers, polymers, and the first LâDOPAâfunctionalized biobased adhesive tape. Macromol. Rapid Commun. 35, 71â76 (2014).
Silverman, H. & Roberto, F. Understanding marine mussel adhesion. Mar. Biotechnol. 9, 661â681 (2007).
Bahri, S. et al. Adsorption and surface complexation study of L-DOPA on rutile (α-TiO2) in NaCl solutions. Env. Sci. Technol. 45, 3959â3966 (2011).
Kim, S., Kim, J. H., Lee, J. S. & Park, C. B. Beta-sheet-forming, self-assembled peptide nanomaterials towards optical, energy, and healthcare applications. Small 11, 3623â3640 (2015).
Yan, X., Zhu, P. & Li, J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 39, 1877â1890 (2010).
Amdursky, N., Molotskii, M., Gazit, E. & Rosenman, G. Self-assembled bioinspired quantum dots: optical properties. Appl. Phys. Lett. 94, 261907 (2009).
Amdursky, N., Gazit, E. & Rosenman, G. Quantum confinement in self-assembled bioinspired peptide hydrogels. Adv. Mater. 22, 2311â2315 (2010).
Yemini, M., Reches, M., Rishpon, J. & Gazit, E. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett. 5, 183â186 (2005).
Adler-Abramovich, L., Badihi-Mossberg, M., Gazit, E. & Rishpon, J. Characterization of peptide-nanostructure-modified electrodes and their application for ultrasensitive environmental monitoring. Small 6, 825â831 (2010).
Peydayesh, M., Boschi, E., Donat, F. & Mezzenga, R. Gold recovery from e-waste by food-waste amyloid aerogels. Adv. Mater. 36, 2310642 (2024).
Keten, S. & Buehler, M. J. Nanostructure and molecular mechanics of spider dragline silk protein assemblies. J. R. Soc. Interface 7, 1709â1721 (2010).
OâNeill, H. L., Tokunaga, K. & White, W. T. Morphology of the unique egg cases of hornsharks (Heterodontiformes: Heterodontidae). J. Fish Biol. 106, 389â402 (2024).
Vega-Lugo, A.-C. & Lim, L.-T. Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Res. Int. 42, 933â940 (2009).
Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. USA. 95, 6181â6186 (1998).
Logan, N. et al. TiO2-coated CoCrMo: improving the osteogenic differentiation and adhesion of mesenchymal stem cells in vitro. J. Biomed. Mater. Res. A 103, 1208â1217 (2015).
Erkamp, N. A. et al. Spatially non-uniform condensates emerge from dynamically arrested phase separation. Nat. Commun. 14, 684 (2023).
Du, N., Yang, Z., Liu, X. Y., Li, Y. & Xu, H. Y. Structural origin of the strain-hardening of spider silk. Adv. Funct. Mater. 21, 772â778 (2011).
Guo, C. et al. Comparative study of strain-dependent structural changes of silkworm silks: insight into the structural origin of strain-stiffening. Small 13, 1702266 (2017).
Asakura, T., Yao, J., Yamane, T., Umemura, K. & Ulrich, A. S. Heterogeneous structure of silk fibers from Bombyx mori resolved by 13C solid-state NMR spectroscopy. J. Am. Chem. Soc. 124, 8794â8795 (2002).
Paquet-Mercier, F., Lefèvre, T., Auger, M. & Pézolet, M. Evidence by infrared spectroscopy of the presence of two types of β-sheets in major ampullate spider silk and silkworm silk. Soft Matter 9, 208â215 (2013).
Boulet-Audet, M., Lefèvre, T., Buffeteau, T. & Pézolet, M. Attenuated total reflection infrared spectroscopy: an efficient technique to quantitatively determine the orientation and conformation of proteins in single silk fibers. Appl. Spectrosc. 62, 956â962 (2008).
Naghilou, A. et al. Correlating the secondary protein structure of natural spider silk with its guiding properties for Schwann cells. Mater. Sci. Eng. C 116, 111219 (2020).
Guo, C. et al. Structural comparison of various silkworm silks: an insight into the structureâproperty relationship. Biomacromolecules 19, 906â917 (2018).
Liu, R. et al. âNano-fishnetâ structure making silk fibers tougher. Adv. Funct. Mater. 26, 5534â5541 (2016).
Rousseau, M.-E., Lefèvre, T. & Pézolet, M. Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders. Biomacromolecules 10, 2945â2953 (2009).
Jenkins, J. E., Creager, M. S., Lewis, R. V., Holland, G. P. & Yarger, J. L. Quantitative correlation between the protein primary sequences and secondary structures in spider dragline silks. Biomacromolecules 11, 192â200 (2010).
Fändrich, M. et al. Myoglobin forms amyloid fibrils by association of unfolded polypeptide segments. Proc. Natl Acad. Sci. USA 100, 15463â15468 (2003).
Zandomeneghi, G., Krebs, M. R. H., McCammon, M. G. & Fändrich, M. FTIR reveals structural differences between native β-sheet proteins and amyloid fibrils. Protein Sci. 13, 3314â3321 (2009).
VandenAkker, C. C. et al. Multimodal spectroscopic study of amyloid fibril polymorphism. J. Phys. Chem. B 120, 8809â8817 (2016).
Cerf, E. et al. Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem. J. 421, 415â423 (2009).
Celej, M. S. et al. Toxic prefibrillar α-synuclein amyloid oligomers adopt a distinctive antiparallel β-sheet structure. Biochem. J. 443, 719â726 (2012).
Sarroukh, R. et al. Transformation of amyloid β(1â40) oligomers into fibrils is characterized by a major change in secondary structure. Cell. Mol. Life Sci. 68, 1429â1438 (2011).
Berthelot, K., Ta, H. P., Géan, J., Lecomte, S. & Cullin, C. In vivo and in vitro analyses of toxic mutants of HET-s: FTIR antiparallel signature correlates with amyloid toxicity. J. Mol. Biol. 412, 137â152 (2011).
Debelle, L. & Alix, A. J. P. The structures of elastins and their function. Biochimie 81, 981â994 (1999).
Debelle, L. et al. Bovine elastin and κ-elastin secondary structure determination by optical spectroscopies. J. Biol. Chem. 270, 26099â26103 (1995).
Green, E., Ellis, R. & Winlove, P. The molecular structure and physical properties of elastin fibers as revealed by Raman microspectroscopy. Biopolymers 89, 931â940 (2008).
Debelle, L. & Alix, A. J. P. Optical spectroscopic determination of bovine tropoelastin molecular model. J. Mol. Struct. 348, 321â324 (1995).
Nairn, K. M. et al. A synthetic resilin is largely unstructured. Biophys. J. 95, 3358â3365 (2008).
Charati, M. B., Ifkovits, J. L., Burdick, J. A., Linhardt, J. G. & Kiick, K. L. Hydrophilic elastomeric biomaterials based on resilin-like polypeptides. Soft Matter 5, 3412â3416 (2009).
Qin, G. et al. Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials 32, 9231â9243 (2011).
Chen, X., Roeters, S. J., Cavanna, F., Alvarado, J. & Baiz, C. R. Crowding alters F-actin secondary structure and hydration. Commun. Biol. 6, 900 (2023).
Rosin, C., Erlkamp, M., Ecken, J., von der, Raunser, S. & Winter, R. Exploring the stability limits of actin and its suprastructures. Biophys. J. 107, 2982â2992 (2014).
Graceffa, P. & Dominguez, R. Crystal structure of monomeric actin in the ATP state: structural basis of nucleotide-dependent actin dynamics. J. Biol. Chem. 278, 34172â34180 (2003).
Stani, C., Vaccari, L., Mitri, E. & Birarda, G. FTIR investigation of the secondary structure of type I collagen: new insight into the amide III band. Spectrochim. Acta A Mol. Biomol. Spectrosc. 229, 118006 (2020).
Rabotyagova, O. S., Cebe, P. & Kaplan, D. L. Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mater. Sci. Eng. C 28, 1420â1429 (2008).
Long, C. G. et al. Characterization of collagen-like peptides containing interruptions in the repeating Gly-X-Y sequence. Biochemistry 32, 11688â11695 (1993).
Cardamone, J. M. Investigating the microstructure of keratin extracted from wool: peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR). J. Mol. Struct. 969, 97â105 (2010).
Nuutinen, E.-M. et al. Green process to regenerate keratin from feathers with an aqueous deep eutectic solvent. RSC Adv. 9, 19720â19728 (2019).
Yu, P., McKinnon, J. J., Christensen, C. R. & Christensen, D. A. Using synchrotron-based FTIR microspectroscopy to reveal chemical features of feather protein secondary structure: comparison with other feed protein sources. J. Agric. Food Chem. 52, 7353â7361 (2004).
Kreplak, L., Doucet, J., Dumas, P. & Briki, F. New aspects of the α-helix to β-sheet transition in stretched hard α-keratin fibers. Biophys. J. 87, 640â647 (2004).
Pielesz, A., Freeman, H. S., WeseÅucha-BirczyÅska, A., Wysocki, M. & WÅochowicz, A. Assessing secondary structure of a dyed wool fibre by means of FTIR and FTR spectroscopies. J. Mol. Struct. 651â653, 405â418 (2003).
Jiang, Z., Li, W., Wang, Y. & Wang, Q. Second-order derivation Fourier transform infrared spectral analysis of regenerated wool keratin structural changes. AATCC J. Res. 9, 43â48 (2022).
Wang, K., Li, R., Ma, J. H., Jian, Y. K. & Che, J. N. Extracting keratin from wool by using L-cysteine. Green. Chem. 18, 476â481 (2016).
Wojciechowska, E., Rom, M., WÅochowicz, A., Wysocki, M. & WeseÅucha-BirczyÅska, A. The use of Fourier transform-infrared (FTIR) and Raman spectroscopy (FTR) for the investigation of structural changes in wool fibre keratin after enzymatic treatment. J. Mol. Struct. 704, 315â321 (2004).
Wang, Y. et al. Efficient extraction of wool keratin governed by simultaneous cation and anion effects: from secondary structure studies to high α-helix keratin content. ACS Sustain. Chem. Eng. 12, 6003â6012 (2024).
Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089â1100 (2023).
Guo, C. et al. Thermoplastic moulding of regenerated silk. Nat. Mater. 19, 102â108 (2020).
Mattice, K. D. & Marangoni, A. G. Comparing methods to produce fibrous material from zein. Food Res. Int. 128, 108804 (2020).
Acknowledgements
E.G.W. is funded by the Gates Cambridge Trust. S.K.Y is funded by the Engineering and Physical Sciences Research Council Cambridge NanoDTC (EP/S022953/1) and Cambridge Display Technology. T.P.J.K. acknowledges funding from the European Research Council (ERC) under the European Unionâs Seventh Horizon 2020 research and innovation programme through the ERC grant DiProPhys (agreement ID 101001615), the Biotechnology and Biological Sciences Research Council, the Frances and Augustus Newman Foundation, and the Centre for Misfolding Diseases. M.J.B and Z.Y. were supported by the Army Research Office (W911NF1920098 and W911NF2220213), the Office of Naval Research (N00014-19-1-2375 and N00014-20-1-2189) and the US Department of Agriculture (2021-69012-35978).
Author information
Authors and Affiliations
Contributions
S.K.Y., Z.Y. and E.G.W. contributed equally to this work. T.P.J.K. and M.J.B. conceived the Review. All authors contributed to the discussion and writing of the Review.
Corresponding authors
Ethics declarations
Competing interests
T.P.J.K. is a co-founder of Xampla, a Cambridge University spin-off company focusing on the development of plant based materials. A.K. is a research scientist and shareholder of Xampla. The other authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Damien Thompson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yorke, S.K., Yang, Z., Wiita, E.G. et al. Design and sustainability of polypeptide material systems. Nat Rev Mater 10, 750â768 (2025). https://doi.org/10.1038/s41578-025-00793-3
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41578-025-00793-3


