Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Design and sustainability of polypeptide material systems

Abstract

Some of the highest-performance materials in nature, including spider silk and collagen, are formed through protein self-assembly. These natural materials, which combine function, performance and assembly under mild aqueous conditions, have inspired a generation of technologically useful biomaterials that use natural proteins as the molecular building blocks. The shift from oil-based feedstocks towards renewable materials has accelerated the search for plastic replacements and has stimulated work in the two major classes of abundant natural polymers, proteins and polysaccharides. Whereas polysaccharides are already used in areas from packaging to structural applications, the unique properties of proteins have not yet been fully harnessed for renewable materials. Advances over the past 15 years have highlighted the promise of protein systems for high-performance applications, enabled by a fundamental understanding of polypeptide self-assembly, emerging computational methods such as artificial intelligence, feedstocks, and materials processing. In this Review, we highlight developments in this area and provide a perspective on the potential of this important class of molecules in both fundamental materials science and sustainability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polypeptide self-assembly across length scales.
Fig. 2: Nucleation pathways for supramolecular protein systems.
Fig. 3: Mechanical properties of polypeptide materials.
Fig. 4: Data-driven methods for understanding and designing polypeptide materials.
Fig. 5: Polypeptide extraction approaches.
Fig. 6: Processing and applications of protein materials.

Similar content being viewed by others

References

  1. Alberts, B. et al. Molecular Biology of the Cell 6th edn (W.W. Norton, 2015).

  2. Flechsig, H. & Mikhailov, A. S. Simple mechanics of protein machines. J. R. Soc. Interface 16, 20190244 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Guthold, M. et al. A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers. Cell Biochem. Biophys. 49, 165–181 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pardee, A. B. Membrane transport proteins. Science 162, 632–637 (1968).

    Article  CAS  PubMed  Google Scholar 

  5. United Nations Department of Economic and Social Affairs. Transforming our world: the 2030 Agenda for Sustainable Development (United Nations, 2015).

  6. Hinman, M. B., Jones, J. A. & Lewis, R. V. Synthetic spider silk: a modular fiber. Trends Biotechnol. 18, 374–379 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baker, D. & Church, G. Protein design meets biosecurity. Science 383, 349 (2024).

    Article  PubMed  Google Scholar 

  9. Mout, R. et al. De novo design of modular protein hydrogels with programmable intra- and extracellular viscoelasticity. Proc. Natl Acad. Sci. USA 121, e2309457121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shimanovich, U. et al. Sequential release of proteins from structured multishell microcapsules. Biomacromolecules 18, 3052–3059 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Falguera, V., Quintero Cerón, J., Jiménez, A., muñoz, A. & Ibarz, A. Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci. Technol. 22, 292–303 (2011).

    Article  CAS  Google Scholar 

  12. Calva-Estrada, S. J., Jiménez-Fernández, M. & Lugo-Cervantes, E. Protein-based films: advances in the development of biomaterials applicable to food packaging. Food Eng. Rev. 11, 78–92 (2019).

    Article  CAS  Google Scholar 

  13. Gates, Z. P. et al. Xenoprotein engineering via synthetic libraries. Proc. Natl Acad. Sci. USA 115, E5298–E5306 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Kol, N. et al. Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett. 5, 1343–1346 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Yao, X., Zou, S., Fan, S., Niu, Q. & Zhang, Y. Bioinspired silk fibroin materials: from silk building blocks extraction and reconstruction to advanced biomedical applications. Mater. Today Bio 16, 100381 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, B. et al. Active encapsulation in biocompatible nanocapsules. Small 16, 2002716 (2020).

    Article  CAS  Google Scholar 

  18. Chakraborty, P. et al. A self-healing, all-organic, conducting, composite peptide hydrogel as pressure sensor and electrogenic cell soft substrate. ACS Nano 13, 163–175 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Bera, S. et al. Rigid helical-like assemblies from a self-aggregating tripeptide. Nat. Mater. 18, 503–509 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hiddessen, A. L., Rodgers, S. D., Weitz, D. A. & Hammer, D. A. Assembly of binary colloidal structures via specific biological adhesion. Langmuir 16, 9744–9753 (2000).

    Article  CAS  Google Scholar 

  21. Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Eriksen, M. et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nešić, A. et al. Prospect of polysaccharide-based materials as advanced food packaging. Molecules 25, 135 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Benbettaïeb, N., Gay, J., Karbowiak, T. & Debeaufort, F. Tuning the functional properties of polysaccharide–protein bio‐based edible films by chemical, enzymatic, and physical cross‐linking. Compr. Rev. Food Sci. Food Saf. 15, 739–752 (2016).

    Article  PubMed  Google Scholar 

  26. Knowles, T. P. J. & Buehler, M. J. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol. 6, 469–479 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Schulz G. E. & Schirmer, H. R. Principles of Protein Structure (Springer, 1979).

  28. Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl Acad. Sci. USA 37, 205–211 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nick Pace, C. & Martin Scholtz, J. A helix propensity scale based on experimental studies of peptides and proteins. Biophys. J. 75, 422–427 (1998).

    Article  Google Scholar 

  30. Nowick, J. S. Exploring β-sheet structure and interactions with chemical model systems. Acc. Chem. Res. 41, 1319–1330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blake, C. C. F. et al. Structure of hen egg-white lysozyme: a three-dimensional Fourier synthesis at 2 Å resolution. Nature 206, 757–761 (1965).

    Article  CAS  PubMed  Google Scholar 

  32. Gazit, E. A possible role for π‐stacking in the self‐assembly of amyloid fibrils. FASEB J. 16, 77–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Li, J., Du, X., Hashim, S., Shy, A. & Xu, B. Aromatic–aromatic interactions enable α-helix to β-sheet transition of peptides to form supramolecular hydrogels. J. Am. Chem. Soc. 139, 71–74 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Smith, A. M. et al. Fmoc‐diphenylalanine self assembles to a hydrogel via a novel architecture based on π–π Interlocked β‐sheets. Adv. Mater. 20, 37–41 (2008).

    Article  CAS  Google Scholar 

  35. Whitesides, M. G. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lehn, J. M. Toward complex matter: supramolecular chemistry and self-organization. Proc. Natl Acad. Sci. USA 99, 4763–4768 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bai, Y., Luo, Q. & Liu, J. Protein self-assembly via supramolecular strategies. Chem. Soc. Rev. 45, 2756–2767 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Luo, Q., Hou, C., Bai, Y., Wang, R. & Liu, J. Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem. Rev. 116, 13571–13632 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Sun, H., Li, Y., Yu, S. & Liu, J. Hierarchical self-assembly of proteins through rationally designed supramolecular interfaces. Front. Bioeng. Biotechnol. 8, 295 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wiedemann, C., Kumar, A., Lang, A. & Ohlenschläger, O. Cysteines and disulfide bonds as structure-forming units: insights from different domains of life and the potential for characterization by NMR. Front Chem 8, 280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Musafia, B., Buchner, V. & Arad, D. Complex salt bridges in proteins: statistical analysis of structure and function. J. Mol. Biol. 254, 761–770 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Sasidharan, S. & Ramakrishnan, V. Aromatic interactions directing peptide nano-assembly. Adv. Protein Chem. Struct. Biol. 130, 119–160 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. McManus, J. J., Charbonneau, P., Zaccarelli, E. & Asherie, N. The physics of protein self-assembly. Curr. Opin. Colloid Interface Sci. 22, 73–79 (2016).

    Article  CAS  Google Scholar 

  46. Du, M. et al. Noncovalent self-assembly of protein crystals with tunable structures. Nano Lett. 21, 1749–1757 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Kojima, M., Abe, S. & Ueno, T. Engineering of protein crystals for use as solid biomaterials. Biomater. Sci. 10, 354–367 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Shapiro, D. M. et al. Protein nanowires with tunable functionality and programmable self-assembly using sequence-controlled synthesis. Nat. Commun. 13, 829 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Creasey, R. C. G. et al. Biomimetic peptide nanowires designed for conductivity. ACS Omega 4, 1748–1756 (2019).

    Article  CAS  Google Scholar 

  50. Puiu, M. et al. Label-free detection of target proteins using peptide molecular wires as conductive supports. Sens. Actuators B Chem. 345, 130416 (2021).

    Article  CAS  Google Scholar 

  51. Nguyen, T. K., Negishi, H., Abe, S. & Ueno, T. Construction of supramolecular nanotubes from protein crystals. Chem. Sci. 10, 1046–1051 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Munialo, C. D., Martin, A. H., van der Linden, E. & de Jongh, H. H. J. Fibril formation from pea protein and subsequent gel formation. J. Agric. Food Chem. 62, 2418–2427 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. de Vries, A., Wesseling, A., van der Linden, E. & Scholten, E. Protein oleogels from heat-set whey protein aggregates. J. Colloid Interface Sci. 486, 75–83 (2017).

    Article  PubMed  Google Scholar 

  54. Wiita, E. G., Toprakcioglu, Z., Jayaram, A. K. & Knowles, T. P. J. Selenium-silk microgels as antifungal and antibacterial agents. Nanoscale Horiz. 9, 609–619 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Toprakcioglu, Z., Wiita, E. G., Jayaram, A. K., Gregory, R. C. & Knowles, T. P. J. Selenium silk nanostructured films with antifungal and antibacterial activity. ACS Appl. Mater. Interfaces 15, 10452–10463 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, K., Jin, S., Chen, H., He, J. & Li, J. A high-performance soy protein isolate-based nanocomposite film modified with microcrystalline cellulose and Cu and Zn nanoclusters. Polymers 9, 167 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lu, Q. et al. Water-insoluble silk films with silk I structure. Acta Biomater. 6, 1380–1387 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Wiernik, G. et al. A colored hydrophobic peptide film based on self-assembled two-fold topology. J. Colloid Interface Sci. 594, 326–333 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Shen, Y. et al. From protein building blocks to functional materials. ACS Nano 15, 5819–5837 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schnaider, L. et al. Biocompatible hybrid organic/inorganic microhydrogels promote bacterial adherence and eradication in vitro and in vivo. Nano Lett. 20, 1590–1597 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Maji, S. K. et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325, 328–332 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fowler, D. M. et al. Functional amyloid formation within mammalian tissue. PLoS Biol. 4, 100–107 (2006).

    CAS  Google Scholar 

  63. Karthika, S., Radhakrishnan, T. K. & Kalaichelvi, P. A review of classical and nonclassical nucleation theories. Cryst. Growth Des. 16, 6663–6681 (2016).

    Article  CAS  Google Scholar 

  64. Shim, J., Cristobal, G., Link, D. R., Thorsen, T. & Fraden, S. Using microfluidics to decouple nucleation and growth of protein crystals. Cryst. Growth Des. 7, 2192–2194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58–60 (1984).

    Article  CAS  PubMed  Google Scholar 

  66. Tisdale, J. F., Thein, S. L. & Eaton, W. A. Treating sickle cell anemia. Science 367, 1198–1199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Levin, A. et al. Elastic instability-mediated actuation by a supra-molecular polymer. Nat. Phys. 12, 926–930 (2016).

    Article  Google Scholar 

  68. Pollard, T. D. & Cooper, J. A. Actin, a central player in cell shape and movement. Science 326, 1208–1212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cohen, S. I. A. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl Acad. Sci. USA 110, 9758–9763 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Törnquist, M. et al. Secondary nucleation in amyloid formation. Chem. Commun. 54, 8667–8684 (2018).

    Article  Google Scholar 

  71. Dey, A. et al. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat. Mater. 9, 1010–1014 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Gebauer, D., Kellermeier, M., Gale, J. D., Bergström, L. & Cölfen, H. Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 43, 2348–2371 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Levin, A. et al. Ostwald’s rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nat. Commun. 5, 5219 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Riback, J. A. et al. Viscoelasticity and advective flow of RNA underlies nucleolar form and function. Mol. Cell 83, 3095–3107 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Linsenmeier, M. et al. The interface of condensates of the hnRNPA1 low-complexity domain promotes formation of amyloid fibrils. Nat. Chem. 15, 1340–1349 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Choi, C.-H., Lee, D. S. W., Sanders, D. W. & Brangwynne, C. P. Condensate interfaces can accelerate protein aggregation. Biophys. J. 123, 1404–1413 (2024).

    Article  CAS  PubMed  Google Scholar 

  77. Shen, Y. et al. The liquid-to-solid transition of FUS is promoted by the condensate surface. Proc. Natl Acad. Sci. USA 120, e2301366120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Malay, A. D. et al. Spider silk self-assembly via modular liquid-liquid phase separation and nanofibrillation. Sci. Adv. 6, eabb6030 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lemetti, L. et al. Liquid-liquid phase separation and assembly of silk-like proteins is dependent on the polymer length. Biomacromolecules 23, 3142–3153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Leppert, A. et al. Liquid–liquid phase separation primes spider silk proteins for fiber formation via a conditional sticker domain. Nano Lett. 23, 5836–5841 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Deepankumar, K. et al. Liquid–liquid phase separation of the green mussel adhesive protein Pvfp‐5 is regulated by the post‐translated dopa amino acid. Adv. Mater. 34, e2103828 (2022).

    Article  PubMed  Google Scholar 

  82. Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wheeler, J. R., Matheny, T., Jain, S., Abrisch, R. & Parker, R. Distinct stages in stress granule assembly and disassembly. eLife 5, e18413 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pakravan, D., Orlando, G., Bercier, V. & Van Den Bosch, L. Role and therapeutic potential of liquid–liquid phase separation in amyotrophic lateral sclerosis. J. Mol. Cell Biol. 13, 15–28 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Ambadipudi, S., Biernat, J., Riedel, D., Mandelkow, E. & Zweckstetter, M. Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat. Commun. 8, 275 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yuan, C. et al. Nucleation and growth of amino acid and peptide supramolecular polymers through liquid–liquid phase separation. Angew. Chem. Int. Ed. 58, 18116–18123 (2019).

    Article  CAS  Google Scholar 

  87. Xiao, L., Lu, G., Lu, Q. & Kaplan, D. L. Direct formation of silk nanoparticles for drug delivery. ACS Biomater. Sci. Eng. 2, 2050–2057 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Tian, Y. et al. Peptide-based optical/electronic materials: assembly and recent applications in biomedicine, sensing, and energy storage. Macromol. Biosci. 23, 2300171 (2023).

    Article  CAS  Google Scholar 

  89. Wang, F. et al. Progress report on phase separation in polymer solutions. Adv. Mater. 31, 1806733 (2019).

    Article  Google Scholar 

  90. Ersch, C., van der Linden, E., Venema, P. & Martin, A. The microstructure and rheology of homogeneous and phase separated gelatine gels. Food Hydrocoll. 61, 311–317 (2016).

    Article  CAS  Google Scholar 

  91. Fu, H. et al. Supramolecular polymers form tactoids through liquid–liquid phase separation. Nature 626, 1011–1018 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhou, P. et al. Steering phase-separated droplets to control fibrillar network evolution of supramolecular peptide hydrogels. Matter 6, 1945–1963 (2023).

    Article  CAS  Google Scholar 

  93. Yuan, H. et al. Piezoelectric peptide and metabolite materials. Research 2019, 9025939 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Meyers, M. A., Chen, P.-Y., Lin, A. Y.-M. & Seki, Y. Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008).

    Article  CAS  Google Scholar 

  95. Yan, C. & Pochan, D. J. Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem. Soc. Rev. 39, 3528–3540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mondal, S., Das, S. & Nandi, A. K. A review on recent advances in polymer and peptide hydrogels. Soft Matter 16, 1404–1454 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Adler-Abramovich, L. & Gazit, E. The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem. Soc. Rev. 43, 6881–6893 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Keten, S. & Buehler, M. J. Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Lett. 8, 743–748 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Keten, S. & Buehler, M. J. Asymptotic strength limit of hydrogen-bond assemblies in proteins at vanishing pulling rates. Phys. Rev. Lett. 100, 198301 (2008).

    Article  PubMed  Google Scholar 

  100. Giesa, T., Arslan, M., Pugno, N. & Buehler, M. Nanoconfinement of spider silk fibrils begets superior strength, extensibility and toughness. Nat. Prec. https://doi.org/10.1038/npre.2011.5916.2 (2011).

  101. Hayashi, C. Y. & Lewis, R. V. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J. Mol. Biol. 275, 773–784 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Launey, M. E., Buehler, M. J. & Ritchie, R. O. On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 40, 25–53 (2010).

    Article  CAS  Google Scholar 

  103. Ackbarow, T., Sen, D., Thaulow, C. & Buehler, M. J. Alpha-helical protein networks are self-protective and flaw-tolerant. PLoS ONE 4, e6015 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bielajew, B. J., Hu, J. C. & Athanasiou, K. A. Collagen: quantification, biomechanics and role of minor subtypes in cartilage. Nat. Rev. Mater. 5, 730–747 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Buehler, M. J. Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl Acad. Sci. USA 103, 12285–12290 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wenger, M. P. E., Bozec, L., Horton, M. A. & Mesquida, P. Mechanical properties of collagen fibrils. Biophys. J. 93, 1255–1263 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gosline, J. et al. Elastic proteins: biological roles and mechanical properties. Phil. Trans. R. Soc. B 357, 121–132 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Buehler, M., Keten, S. & Ackbarow, T. Theoretical and computational hierarchical nanomechanics of protein materials: deformation and fracture. Prog. Mater. Sci. 53, 1101–1241 (2008).

    Article  CAS  Google Scholar 

  110. Sun, H., Luo, Q., Hou, C. & Liu, J. Nanostructures based on protein self-assembly: from hierarchical construction to bioinspired materials. Nano Today 14, 16–41 (2017).

    Article  CAS  Google Scholar 

  111. Buehler, M. J. & Yung, Y. C. Deformation and failure of protein materials in physiologically extreme conditions and disease. Nat. Mater. 8, 175–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Buehler, M. J. Tu(r)ning weakness to strength. Nano Today 5, 379–383 (2010).

    Article  CAS  Google Scholar 

  113. Suresh, S. J. & Naik, V. M. Hydrogen bond thermodynamic properties of water from dielectric constant data. J. Chem. Phys. 113, 9727–9732 (2000).

    Article  CAS  Google Scholar 

  114. Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  PubMed  Google Scholar 

  115. Dill, K. A. Dominant forces in protein folding. Biochemistry 29, 7133–7155 (1990).

    Article  CAS  PubMed  Google Scholar 

  116. Keten, S., Xu, Z., Ihle, B. & Buehler, M. J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 9, 359–367 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Xie, Z., Hu, B.-L., Li, R.-W. & Zhang, Q. Hydrogen bonding in self-healing elastomers. ACS Omega 6, 9319–9333 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, S. & Urban, M. W. Self-healing polymers. Nat. Rev. Mater. 5, 562–583 (2020).

    Article  CAS  Google Scholar 

  120. Finkelstein-Zuta, G. et al. A self-healing multispectral transparent adhesive peptide glass. Nature 630, 368–374 (2024).

    Article  CAS  PubMed  Google Scholar 

  121. Deptuch, T. & Dams-Kozlowska, H. Silk materials functionalized via genetic engineering for biomedical applications. Materials 10, 1417 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Krasnov, I. et al. Mechanical properties of silk: interplay of deformation on macroscopic and molecular length scales. Phys. Rev. Lett. 100, 48104 (2008).

    Article  Google Scholar 

  123. Xiao, S., Stacklies, W., Cetinkaya, M., Markert, B. & Gräter, F. Mechanical response of silk crystalline units from force-distribution analysis. Biophys. J. 96, 3997–4005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xiao, S., Xiao, S. & Gräter, F. Dissecting the structural determinants for the difference in mechanical stability of silk and amyloid beta-sheet stacks. Phys. Chem. Chem. Phys. 15, 8765–8771 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Wang, Z., Cang, Y., Kremer, F., Thomas, E. L. & Fytas, G. Determination of the complete elasticity of Nephila pilipes spider silk. Biomacromolecules 21, 1179–1185 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Yoshimura, Y. et al. Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation. Proc. Natl Acad. Sci. USA 109, 14446–14451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Holten-Andersen, N. et al. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl Acad. Sci. USA 108, 2651–2655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Holten-Andersen, N. et al. Metal-coordination: using one of nature’s tricks to control soft material mechanics. J. Mater. Chem. B 2, 2467–2472 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Khare, E., Holten-Andersen, N. & Buehler, M. J. Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties. Nat. Rev. Mater. 6, 421–436 (2021).

    Article  CAS  Google Scholar 

  131. Li, J. et al. Spider silk-inspired artificial fibers. Adv. Sci. 9, 2103965 (2022).

    Article  Google Scholar 

  132. Li, L. & Kiick, K. L. Resilin-based materials for biomedical applications. ACS Macro Lett. 2, 635–640 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ashby, M. F., Gibson, L. J., Wegst, U. & Olive, R. The mechanical properties of natural materials. I. Material property charts. Proc. R. Soc. Lond. A 450, 123–140 (1995).

    Article  Google Scholar 

  134. Vollrath, F. & Porter, D. Spider silk as archetypal protein elastomer. Soft Matter 2, 377–385 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Rockwood, D. N. et al. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612–1631 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Koh, L. D. et al. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 46, 86–110 (2015).

    Article  CAS  Google Scholar 

  137. Shao, Z. & Vollrath, F. Surprising strength of silkworm silk. Nature 418, 741 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Marelli, B., Brenckle, M. A., Kaplan, D. L. & Omenetto, F. G. Silk fibroin as edible coating for perishable food preservation. Sci. Rep. 6, 25263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ding, Z. et al. Biomimetic vascular grafts with circumferentially and axially oriented microporous structures for native blood vessel regeneration. Adv. Funct. Mater. 34, 2308888 (2024).

    Article  CAS  Google Scholar 

  140. Jin, H.-J. et al. Water-stable silk films with reduced β-sheet content. Adv. Funct. Mater. 15, 1241–1247 (2005).

    Article  CAS  Google Scholar 

  141. Wang, Y., Kim, H.-J., Vunjak-Novakovic, G. & Kaplan, D. L. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27, 6064–6082 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Kim, D. H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kirkness, M. W. H., Lehmann, K. & Forde, N. R. Mechanics and structural stability of the collagen triple helix. Curr. Opin. Chem. Biol. 53, 98–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Long, K. et al. Improving the mechanical properties of collagen‐based membranes using silk fibroin for corneal tissue engineering. J. Biomed. Mater. Res. A 103, 1159–1168 (2015).

    Article  PubMed  Google Scholar 

  145. Lei, X. et al. Mechanical and optical properties of reinforced collagen membranes for corneal regeneration through polyrotaxane cross-linking. ACS Appl. Bio Mater. 2, 3861–3869 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Sun, W., Gregory, D. A., Tomeh, M. A. & Zhao, X. Silk fibroin as a functional biomaterial for tissue engineering. Int. J. Mol. Sci. 22, 1499 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Martínez, A., Blanco, M. D., Davidenko, N. & Cameron, R. E. Tailoring chitosan/collagen scaffolds for tissue engineering: effect of composition and different crosslinking agents on scaffold properties. Carbohydr. Polym. 132, 606–619 (2015).

    Article  PubMed  Google Scholar 

  148. Sun, L., Li, B., Yao, D., Song, W. & Hou, H. Effects of cross-linking on mechanical, biological properties and biodegradation behavior of Nile tilapia skin collagen sponge as a biomedical material. J. Mech. Behav. Biomed. Mater. 80, 51–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Sun, L., Li, B., Jiang, D. & Hou, H. Nile tilapia skin collagen sponge modified with chemical cross-linkers as a biomedical hemostatic material. Colloids Surf. B Biointerfaces 159, 89–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Sarrigiannidis, S. O. et al. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater. Today Bio 10, 100098 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kreger, S. T. et al. Polymerization and matrix physical properties as important design considerations for soluble collagen formulations. Biopolymers 93, 690–707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Roeder, B. A., Kokini, K., Sturgis, J. E., Robinson, J. P. & Voytik-Harbin, S. L. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124, 214–222 (2002).

    Article  PubMed  Google Scholar 

  153. Gautieri, A., Vesentini, S., Redaelli, A. & Buehler, M. J. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11, 757–766 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Glowacki, J. & Mizuno, S. Collagen scaffolds for tissue engineering. Biopolymers 89, 338–344 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Abou Neel, E. A. et al. Collagen — emerging collagen based therapies hit the patient. Adv. Drug Deliv. Rev. 65, 429–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Parenteau-Bareil, R., Gauvin, R. & Berthod, F. Collagen-based biomaterials for tissue engineering applications. Materials 3, 1863–1887 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  157. Ben-Nun, Y. et al. Cathepsin nanofiber substrates as potential agents for targeted drug delivery. J. Controlled Release 257, 60–67 (2017).

    Article  CAS  Google Scholar 

  158. Soria-Carrera, H., Atrián-Blasco, E., Martín-Rapún, R. & Mitchell, S. G. Polyoxometalate–peptide hybrid materials: from structure–property relationships to applications. Chem. Sci. 14, 10–28 (2023).

    Article  CAS  Google Scholar 

  159. Murai, K. Development of peptide–inorganic hybrid materials based on biomineralization and their functional design based on structural controls. Polym. J. 55, 817–827 (2023).

    Article  CAS  Google Scholar 

  160. Wijayanti, H. B., Bansal, N. & Deeth, H. C. Stability of whey proteins during thermal processing: a review. Compr. Rev. Food Sci. Food Saf. 13, 1235–1251 (2014).

    Article  CAS  Google Scholar 

  161. Schmid, M. & Müller, K. in Whey Proteins (eds Deeth, H. C. & Bansal, N.) 407–437 (Academic, 2019).

  162. Berardy, A., Costello, C. & Seager, T. Life cycle assessment of soy protein isolate. In Proc. Int. Symp. Sustain. Syst. Technol. 1517821 (ISSST, 2015).

  163. Narayanan, H. et al. Machine learning for biologics: opportunities for protein engineering, developability, and formulation. Trends Pharmacol. Sci. 42, 151–165 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Liu, F. Y. C., Ni, B. & Buehler, M. J. PRESTO: rapid protein mechanical strength prediction with an end-to-end deep learning model. Extreme Mech. Lett. 55, 101803 (2022).

    Article  Google Scholar 

  165. Sun, T., Zhou, B., Lai, L. & Pei, J. Sequence-based prediction of protein protein interaction using a deep-learning algorithm. BMC Bioinformatics 18, 277 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Hu, Y. & Buehler, M. J. End-to-end protein normal mode frequency predictions using language and graph models and application to sonification. ACS Nano 16, 20656–20670 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Hashemifar, S., Neyshabur, B., Khan, A. A. & Xu, J. Predicting protein–protein interactions through sequence-based deep learning. Bioinformatics 34, i802–i810 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ma, W. et al. Enhancing protein function prediction performance by utilizing AlphaFold-predicted protein structures. J. Chem. Inf. Model. 62, 4008–4017 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Gligorijević, V. et al. Structure-based protein function prediction using graph convolutional networks. Nat. Commun. 12, 3168 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Wang, W., Peng, Z. & Yang, J. Single-sequence protein structure prediction using supervised transformer protein language models. Nat. Comput. Sci. 2, 804–814 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Chowdhury, R. et al. Single-sequence protein structure prediction using a language model and deep learning. Nat. Biotechnol. 40, 1617–1623 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wu, R. et al. High-resolution de novo structure prediction from primary sequence. Preprint at bioRxiv https://doi.org/10.1101/2022.07.21.500999 (2022).

  173. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

    Article  CAS  PubMed  Google Scholar 

  174. Vaswani, A. et al. Attention is all you need. In Advances Neural Inform. Process. Syst. (eds. Guyon, I. et al.) 6000–6010 (NIPS, 2017).

  175. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Article  CAS  PubMed  Google Scholar 

  176. Song, B. et al. Pretraining model for biological sequence data. Brief. Funct. Genomics 20, 181–195 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Brandes, N., Ofer, D., Peleg, Y., Rappoport, N. & Linial, M. ProteinBERT: a universal deep-learning model of protein sequence and function. Bioinformatics 38, 2102–2110 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Reed, S. et al. A generalist agent. Preprint at https://doi.org/10.48550/arXiv.2205.06175 (2022).

  179. Hu, Y. & Buehler, M. J. Deep language models for interpretative and predictive materials science. APL Mach. Learn. 1, 10901 (2023).

    Article  Google Scholar 

  180. Khare, E., Gonzalez-Obeso, C., Kaplan, D. L. & Buehler, M. J. CollagenTransformer: end-to-end transformer model to predict thermal stability of collagen triple helices using an NLP approach. ACS Biomater. Sci. Eng. 8, 4301–4310 (2022).

    Article  CAS  PubMed  Google Scholar 

  181. Luu, R. K. & Buehler, M. J. BioinspiredLLM: conversational large language model for the mechanics of biological and bio-inspired materials. Adv. Sci. 11, 2306724 (2024).

    Article  Google Scholar 

  182. Buehler, M. J. Generative pretrained autoregressive transformer graph neural network applied to the analysis and discovery of novel proteins. J. Appl. Phys. 134, 84902 (2023).

    Article  CAS  Google Scholar 

  183. Lu, W., Kaplan, D. L. & Buehler, M. J. Generative modeling, design and analysis of spider silk protein sequences for enhanced mechanical properties. Adv. Func. Mat. 34, 2311324 (2024).

    Article  CAS  Google Scholar 

  184. Zhang, X. M., Liang, L., Liu, L. & Tang, M. J. Graph neural networks and their current applications in bioinformatics. Front. Genet. 12, 1–22 (2021).

    Google Scholar 

  185. Wu, Z. et al. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2021).

    Article  PubMed  Google Scholar 

  186. Noid, W. G. et al. The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys. 128, 244114 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & de Vries, A. H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Periole, X., Cavalli, M., Marrink, S.-J. & Ceruso, M. A. Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J. Chem. Theory Comput. 5, 2531–2543 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Wang, J. et al. Machine learning of coarse-grained molecular dynamics force fields. ACS Cent. Sci. 5, 755–767 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gkeka, P. et al. Machine learning force fields and coarse-grained variables in molecular dynamics: application to materials and biological systems. J. Chem. Theory Comput. 16, 4757–4775 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ingólfsson, H. I. et al. Machine learning-driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins. Proc. Natl Acad. Sci. USA 119, e2113297119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Bhatia, H. et al. Machine-learning-based dynamic-importance sampling for adaptive multiscale simulations. Nat. Mach. Intell. 3, 401–409 (2021).

    Article  Google Scholar 

  193. Yang, Y. I., Shao, Q., Zhang, J., Yang, L. & Gao, Y. Q. Enhanced sampling in molecular dynamics. J. Chem. Phys. 151, 70902 (2019).

    Article  Google Scholar 

  194. Sidky, H., Chen, W. & Ferguson, A. L. Machine learning for collective variable discovery and enhanced sampling in biomolecular simulation. Mol. Phys. 118, e1737742 (2020).

    Article  Google Scholar 

  195. Sun, L. et al. Multitask machine learning of collective variables for enhanced sampling of rare events. J. Chem. Theory Comput. 18, 2341–2353 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Chen, M. Collective variable-based enhanced sampling and machine learning. Eur. Phys. J. B 94, 211 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Noé, F., Olsson, S., Köhler, J. & Wu, H. Boltzmann generators: sampling equilibrium states of many-body systems with deep learning. Science 365, eaaw1147 (2019).

    Article  PubMed  Google Scholar 

  198. Bajorath, J. Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1, 882–894 (2002).

    Article  CAS  PubMed  Google Scholar 

  199. Macarron, R. et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 10, 188–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  200. Frederix, P., Ulijn, R. V., Hunt, N. T. & Tuttle, T. Virtual screening for dipeptide aggregation: toward predictive tools for peptide self-assembly. J. Phys. Chem. Lett. 2, 2380–2384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Frederix, P. W. J. M. et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem. 7, 30–37 (2015).

    Article  CAS  PubMed  Google Scholar 

  202. Reynolds, K. A., Russ, W. P., Socolich, M. & Ranganathan, R. in Methods in Protein Design Vol. 523 Ch. 10 (ed. Keating, A. E.) 213–235 (Academic, 2013).

  203. Mignon, D. et al. Physics-based computational protein design: an update. J. Phys. Chem. A 124, 10637–10648 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. Bera, S. et al. Molecular engineering of piezoelectricity in collagen-mimicking peptide assemblies. Nat. Commun. 12, 2634 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Yoshida, M. et al. Using evolutionary algorithms and machine learning to explore sequence space for the discovery of antimicrobial peptides. Chem 4, 533–543 (2018).

    Article  CAS  Google Scholar 

  206. Greener, J. G., Moffat, L. & Jones, D. T. Design of metalloproteins and novel protein folds using variational autoencoders. Sci. Rep. 8, 16189 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Lin, E., Lin, C.-H. & Lane, H.-Y. De novo peptide and protein design using generative adversarial networks: an update. J. Chem. Inf. Model. 62, 761–774 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. Anand, N. & Achim, T. Protein structure and sequence generation with equivariant denoising diffusion probabilistic models. Preprint at https://doi.org/10.48550/arXiv.2205.15019 (2022).

  209. Ni, B., Kaplan, D. L. & Buehler, M. J. Generative design of de novo proteins based on secondary-structure constraints using an attention-based diffusion model. Chem 9, 1828–1849 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Nations, U. Our Common Future (Oxford Univ. Press, 1987).

  211. Graça, J., Godinho, C. & Truninger, M. Reducing meat consumption and following plant-based diets: current evidence and future directions to inform integrated transitions. Trends Food Sci. Technol. https://doi.org/10.1016/j.tifs.2019.07.046 (2019).

  212. Silva, A., Silva, M. & Ribeiro, B. D. Health issues and technological aspects of plant-based alternative milk. Food Res. Int. 131, 108972 (2020).

    Article  CAS  PubMed  Google Scholar 

  213. Heidebrecht, A. & Scheibel, T. Recombinant production of spider silk proteins. Adv. Appl. Microbiol. 82, 115–153 (2013).

    Article  CAS  PubMed  Google Scholar 

  214. Widhe, M., Johansson, J., Hedhammar, M. & Rising, A. Current progress and limitations of spider silk for biomedical applications. Biopolymers 97, 468–478 (2012).

    Article  CAS  PubMed  Google Scholar 

  215. Kumar, P. et al. in Sustainable Food Science — A Comprehensive Approach (eds Levina, A. et al.) 219–231 (Elsevier, 2023).

  216. Thrane, M., Paulsen, P. V., Orcutt, M. W. & Krieger, T. M. in Sustainable Protein Sources Ch. 2 (eds Nadathur, S. R. et al.) 23–45 (Academic, 2017).

  217. Emkani, M., Oliete, B. & Saurel, R. Pea protein extraction assisted by lactic fermentation: impact on protein profile and thermal properties. Foods 10, 54 (2021).

    Article  Google Scholar 

  218. Wang, Y., Katyal, P. & Montclare, J. K. Protein-engineered functional materials. Adv. Healthc. Mater. 8, 1801374 (2019).

    Article  Google Scholar 

  219. Straley, K. S. & Heilshorn, S. C. Independent tuning of multiple biomaterial properties using protein engineering. Soft Matter 5, 114–124 (2009).

    Article  CAS  Google Scholar 

  220. Mulyasasmita, W., Madl, C. M. & Heilshorn, S. C. in Comprehensive Biomaterials II (ed. Ducheyne, P.) 18–40 (Elsevier, 2017).

  221. Bini, E. et al. RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 7, 3139–3145 (2006).

    Article  CAS  PubMed  Google Scholar 

  222. Straley, K. S. & Heilshorn, S. C. Dynamic, 3D-pattern formation within enzyme-responsive hydrogels. Adv. Mater. 21, 4148–4152 (2009).

    Article  CAS  Google Scholar 

  223. Zhang, T., Sanguramath, R. A., Israel, S. & Silverstein, M. S. Emulsion templating: porous polymers and beyond. Macromolecules 52, 5445–5479 (2019).

    Article  CAS  Google Scholar 

  224. Kumar, A., Li, S., Cheng, C. M. & Lee, D. Recent developments in phase inversion emulsification. Ind. Eng. Chem. Res. 54, 8375–8396 (2015).

    Article  CAS  Google Scholar 

  225. Xue, J., Wu, T., Dai, Y. & Xia, Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119, 5298–5415 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kaliyaraj Selva Kumar, A., Zhang, Y., Li, D. & Compton, R. G. A mini-review: How reliable is the drop casting technique? Electrochem. Commun. 121, 106867 (2020).

    Article  CAS  Google Scholar 

  227. Meyer, M. Processing of collagen based biomaterials and the resulting materials properties. Biomed. Eng. Online 18, 24 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Zuo, C. & Ding, L. Drop-casting to make efficient perovskite solar cells under high humidity. Angew. Chem. Int. Ed. 60, 11242–11246 (2021).

    Article  CAS  Google Scholar 

  229. Saber, D. & Abd El-Aziz, K. Advanced materials used in wearable health care devices and medical textiles in the battle against coronavirus (COVID-19): a review. J. Ind. Text. 51, 246S–271S (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Lai, Z. et al. Drop‐casting halide microcrystals enabled by green glycol solvent for high‐performance photodetectors. Adv. Photonics Res. 3, 2200041 (2022).

    Article  CAS  Google Scholar 

  231. Dane, T. G. et al. Influence of solvent polarity on the structure of drop-cast electroactive tetra(aniline)-surfactant thin films. Phys. Chem. Chem. Phys. 18, 24498–24505 (2016).

    Article  CAS  PubMed  Google Scholar 

  232. Sim, S. Y. J., Srv, A., Chiang, J. H. & Henry, C. J. Plant proteins for future foods: a roadmap. Foods 10, 1967 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Qing, R. et al. Protein design: from the aspect of water solubility and stability. Chem. Rev. 122, 14085–14179 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Ma, K. K. et al. Functional performance of plant proteins. Foods 11, 594 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kramer, R. M., Shende, V. R., Motl, N., Pace, C. N. & Scholtz, J. M. Toward a molecular understanding of protein solubility: increased negative surface charge correlates with increased solubility. Biophys. J. 102, 1907–1915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Aghanouri, A., Shoemaker, C. F. & Sun, G. Characterization of conformational structures of plant proteins in solutions. Ind. Eng. Chem. Res. 54, 188–197 (2015).

    Article  CAS  Google Scholar 

  237. Mo, X. & Sun, X. Thermal and mechanical properties of plastics molded from urea‐modified soy protein isolates. J. Am. Oil Chem. Soc. 78, 867–872 (2001).

    Article  CAS  Google Scholar 

  238. Zubair, M. & Ullah, A. Recent advances in protein derived bionanocomposites for food packaging applications. Crit. Rev. Food Sci. Nutr. 60, 406–434 (2020).

    Article  CAS  PubMed  Google Scholar 

  239. Kamada, A. et al. Controlled self-assembly of plant proteins into high-performance multifunctional nanostructured films. Nat. Commun. 12, 3529 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Preece, K. E., Hooshyar, N. & Zuidam, N. J. Whole soybean protein extraction processes: a review. Innov. Food Sci. Emerg. Technol. 43, 163–172 (2017).

    Article  CAS  Google Scholar 

  241. Krishna, M., Nindo, C. I. & Min, S. C. Development of fish gelatin edible films using extrusion and compression molding. J. Food Eng. 108, 337–344 (2012).

    Article  CAS  Google Scholar 

  242. Domenek, S., Morel, M.-H., Bonicel, J. & Guilbert, S. Polymerization kinetics of wheat gluten upon thermosetting. A mechanistic model. J. Agric. Food Chem. 50, 5947–5954 (2002).

    Article  CAS  PubMed  Google Scholar 

  243. Reddy, N. & Yang, Y. Thermoplastic films from plant proteins. J. Appl. Polym. Sci. 130, 729–738 (2013).

    Article  CAS  Google Scholar 

  244. Hernandez‐Izquierdo, V. M. & Krochta, J. M. Thermoplastic processing of proteins for film formation — a review. J. Food Sci. 73, R30–R39 (2008).

    Article  PubMed  Google Scholar 

  245. Cunningham, P., Ogale, A. A., Dawson, P. L. & Acton, J. C. Tensile properties of soy protein isolate films produced by a thermal compaction technique. J. Food Sci. 65, 668–671 (2000).

    Article  CAS  Google Scholar 

  246. Sun, S., Song, Y. & Zheng, Q. Thermo-molded wheat gluten plastics plasticized with glycerol: effect of molding temperature. Food Hydrocoll. 22, 1006–1013 (2008).

    Article  CAS  Google Scholar 

  247. Reis, J. P., de Moura, M. & Samborski, S. Thermoplastic composites and their promising applications in joining and repair composites structures: a review. Materials 13, 1–33 (2020).

    Article  Google Scholar 

  248. Guna, V., Touchaleaume, F., Saulnier, B., Grohens, Y. & Reddy, N. Sustainable bioproducts through thermoplastic processing of wheat gluten and its blends. J. Thermoplast. Compos. Mater. 36, 1775–1806 (2023).

    Article  CAS  Google Scholar 

  249. Gällstedt, M., Mattozzi, A., Johansson, E. & Hedenqvist, M. S. Transport and tensile properties of compression-molded wheat gluten films. Biomacromolecules 5, 2020–2028 (2004).

    Article  PubMed  Google Scholar 

  250. Zubeldía, F., Ansorena, M. R. & Marcovich, N. E. Wheat gluten films obtained by compression molding. Polym. Test. 43, 68–77 (2015).

    Article  Google Scholar 

  251. Ansorena, M. R., Zubeldía, F. & Marcovich, N. E. Active wheat gluten films obtained by thermoplastic processing. LWT Food Sci. Technol. 69, 47–54 (2016).

    Article  CAS  Google Scholar 

  252. Mangavel, C. et al. Properties and microstructure of thermo-pressed wheat gluten films: a comparison with cast films. Biomacromolecules 5, 1596–1601 (2004).

    Article  CAS  PubMed  Google Scholar 

  253. Xu, J. & Li, Y. Wheat gluten–based coatings and films: preparation, properties, and applications. J. Food Sci. 88, 582–594 (2023).

    Article  CAS  PubMed  Google Scholar 

  254. Rausch, K. D. & Belyea, R. L. The future of coproducts from corn processing. Appl. Biochem. Biotechnol. 128, 47–86 (2006).

    Article  CAS  PubMed  Google Scholar 

  255. Freddi, G., Pessina, G. & Tsukada, M. Swelling and dissolution of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide. Int. J. Biol. Macromol. 24, 251–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  256. Marelli, B. et al. Programming function into mechanical forms by directed assembly of silk bulk materials. Proc. Natl Acad. Sci. USA 114, 451–456 (2017).

    Article  CAS  PubMed  Google Scholar 

  257. Freire, P., Zambrano, A., Zamora, A. & Castillo, M. Thermal denaturation of milk whey proteins: a comprehensive review on rapid quantification methods being studied, developed and implemented. Dairy 3, 500–512 (2022).

    Article  Google Scholar 

  258. Mosher, C. Z. et al. Green electrospinning for biomaterials and biofabrication. Biofabrication 13, 35049 (2021).

    Article  CAS  Google Scholar 

  259. Pillay, V. et al. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J. Nanomater. 2013, 1–22 (2013).

    Article  Google Scholar 

  260. Chen, H. et al. Recent developments of electrospun zein nanofibres: strategies, fabrication and therapeutic applications. Mater. Today Adv. 16, 100307 (2022).

    Article  CAS  Google Scholar 

  261. Federici, E., Selling, G. W., Campanella, O. H. & Jones, O. G. Incorporation of plasticizers and co-proteins in zein electrospun fibers. J. Agric. Food Chem. 68, 14610–14619 (2020).

    Article  CAS  PubMed  Google Scholar 

  262. Zdraveva, E. et al. Agro-industrial plant proteins in electrospun materials for biomedical application. Polymers 15, 2684 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. de Oliveira Mori, C. L. S. et al. Electrospinning of zein/tannin bio-nanofibers. Ind. Crop. Prod. 52, 298–304 (2014).

    Article  Google Scholar 

  264. Aytac, Z. et al. Development of biodegradable and antimicrobial electrospun zein fibers for food packaging. ACS Sustain. Chem. Eng. 8, 15354–15365 (2020).

    Article  CAS  Google Scholar 

  265. Jiménez, A., Fabra, M. J., Talens, P. & Chiralt, A. Edible and biodegradable starch films: a review. Food Bioprocess Technol. 5, 2058–2076 (2012).

    Article  Google Scholar 

  266. Kontturi, E. & Spirk, S. Ultrathin films of cellulose: a materials perspective. Front. Chem. 7, 488 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Mushi, N. E., Nishino, T., Berglund, L. A. & Zhou, Q. Strong and tough chitin film from α-chitin nanofibers prepared by high pressure homogenization and chitosan addition. ACS Sustain. Chem. Eng. 7, 1692–1697 (2019).

    Article  CAS  Google Scholar 

  268. Chen, H. et al. Application of protein-based films and coatings for food packaging: a review. Polymers 11, 2039 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Omenetto, F. G. & Kaplan, D. L. New opportunities for an ancient material. Science 329, 528–531 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Márquez, A. et al. Nanoporous silk films with capillary action and size-exclusion capacity for sensitive glucose determination in whole blood. Lab Chip 21, 608–615 (2021).

    Article  PubMed  Google Scholar 

  271. Hardy, J. G. & Scheibel, T. R. Production and processing of spider silk proteins. J. Polym. Sci. A Polym. Chem. 47, 3957–3963 (2009).

    Article  CAS  Google Scholar 

  272. Rammensee, S., Slotta, U., Scheibel, T. & Bausch, A. R. Assembly mechanism of recombinant spider silk proteins. Proc. Natl Acad. Sci. USA 105, 6590–6595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Chong, K. Y. & Brooks, M. S.-L. Development of pea protein-based films and coatings with haskap leaf extracts. Appl. Food Res. 2, 100102 (2022).

    Article  CAS  Google Scholar 

  274. Liu, X. et al. Development of eco-friendly soy protein isolate films with high mechanical properties through HNTs, PVA, and PTGE synergism effect. Sci. Rep. 7, 44289 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Flint, F. O. & Johnson, R. F. P. A study of film formation by soy protein isolate. J. Food Sci. 46, 1351–1353 (1981).

    Article  CAS  Google Scholar 

  276. Gustavsson, J., Cederberg, C., Sonesson, U., Otterdijk, R. & Meybeck, A. Global food losses and food waste — extent, causes and prevention (FAO, 2011).

  277. Díaz-Montes, E. & Castro-Muñoz, R. Edible films and coatings as food-quality preservers: an overview. Foods 10, 249 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Ruggeri, E. et al. A multilayered edible coating to extend produce shelf life. ACS Sustain. Chem. Eng. 8, 14312–14321 (2020).

    Article  CAS  Google Scholar 

  279. Mi, J. et al. High-strength and ultra-tough whole spider silk fibers spun from transgenic silkworms. Matter 6, 3661–3683 (2023).

    Article  CAS  Google Scholar 

  280. Arad, E. et al. Native glucagon amyloids catalyze key metabolic reactions. ACS Nano 16, 12889–12899 (2022).

    Article  CAS  PubMed  Google Scholar 

  281. Gulseren, G., Khalily, M. A., Tekinay, A. B. & Guler, M. O. Catalytic supramolecular self-assembled peptide nanostructures for ester hydrolysis. J. Mater. Chem. B 4, 4605–4611 (2016).

    Article  CAS  PubMed  Google Scholar 

  282. Arad, E., Baruch Leshem, A., Rapaport, H. & Jelinek, R. β-Amyloid fibrils catalyze neurotransmitter degradation. Chem. Catal. 1, 908–922 (2021).

    CAS  Google Scholar 

  283. Monzani, E. et al. Dopamine, oxidative stress and protein–quinone modifications in Parkinson’s and other neurodegenerative diseases. Angew. Chem. Int. Ed. 58, 6512–6527 (2019).

    Article  CAS  Google Scholar 

  284. Omosun, T. O. et al. Catalytic diversity in self-propagating peptide assemblies. Nat. Chem. 9, 805–809 (2017).

    Article  CAS  PubMed  Google Scholar 

  285. Guler, M. O. & Stupp, S. I. A self-assembled nanofiber catalyst for ester hydrolysis. J. Am. Chem. Soc. 129, 12082–12083 (2007).

    Article  CAS  PubMed  Google Scholar 

  286. Baruch-Leshem, A. et al. Catalytically active peptides affected by self-assembly and residues order. Colloids Surf. B Biointerfaces 203, 111751 (2021).

    Article  CAS  PubMed  Google Scholar 

  287. Polgár, L. The catalytic triad of serine peptidases. Cell Mol. Life Sci. 62, 2161–2172 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Peydayesh, M. & Mezzenga, R. Protein nanofibrils for next generation sustainable water purification. Nat. Commun. 12, 3248 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Geise, G. M. et al. Water purification by membranes: the role of polymer science. J. Polym. Sci. B Polym. Phys. 48, 1685–1718 (2010).

    Article  CAS  Google Scholar 

  290. Bolisetty, S., Peydayesh, M. & Mezzenga, R. Sustainable technologies for water purification from heavy metals: review and analysis. Chem. Soc. Rev. 48, 463–487 (2019).

    Article  CAS  PubMed  Google Scholar 

  291. Pendergast, M. M. & Hoek, E. M. V. A review of water treatment membrane nanotechnologies. Energy Env. Sci. 4, 1946 (2011).

    Article  CAS  Google Scholar 

  292. Azimi, A., Azari, A., Rezakazemi, M. & Ansarpour, M. Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev. 4, 37–59 (2017).

    Article  Google Scholar 

  293. Fu, F. & Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Env. Manag. 92, 407–418 (2011).

    Article  CAS  Google Scholar 

  294. Krupińska, I. Aluminium drinking water treatment residuals and their toxic impact on human health. Molecules 25, 641 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Yang, F., Tao, F., Li, C., Gao, L. & Yang, P. Self-assembled membrane composed of amyloid-like proteins for efficient size-selective molecular separation and dialysis. Nat. Commun. 9, 5443 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Suarez, M. et al. Expression of a plant‐derived peptide harboring water‐cleaning and antimicrobial activities. Biotechnol. Bioeng. 81, 13–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  297. Ahn, J. H. et al. Phase separation drives aberrant chromatin looping and cancer development. Nature 595, 591–595 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Zhao, Q. et al. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat. Mater. 15, 407–412 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Lee, H., Lee, B. & Messersmith, P. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448, 338–341 (2007).

    Article  CAS  PubMed  Google Scholar 

  300. Rose, S. et al. Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382–385 (2014).

    Article  CAS  PubMed  Google Scholar 

  301. Li, J. et al. Tough adhesives for diverse wet surfaces. Science 357, 378–381 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41, 99–132 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Desmond, K. W., Zacchia, N. A., Waite, J. H. & Valentine, M. T. Dynamics of mussel plaque detachment. Soft Matter 11, 6832–6839 (2015).

    Article  CAS  PubMed  Google Scholar 

  304. Guo, Q., Chen, J., Wang, J., Zeng, H. & Yu, J. Recent progress in synthesis and application of mussel-inspired adhesives. Nanoscale 12, 1307–1324 (2020).

    Article  CAS  PubMed  Google Scholar 

  305. Shafiq, Z. et al. Bioinspired underwater bonding and debonding on demand. Angew. Chem. Int. Ed. 51, 4332–4335 (2012).

    Article  CAS  Google Scholar 

  306. Ahn, B., Lee, D., Israelachvili, J. & Waite, J. Surface-initiated self-healing of polymers in aqueous media. Nat Mater 13, 867–872 (2014).

    Article  CAS  PubMed  Google Scholar 

  307. Sparks, B., Hoff, E., Hayes, L. & Patton, D. Mussel-inspired thiol-ene polymer networks: influencing network properties and adhesion with catechol functionality. Chem. Mater. 24, 3633–3642 (2012).

    Article  CAS  Google Scholar 

  308. Brubaker, C. & Messersmith, P. The present and future of biologically inspired adhesive interfaces and materials. Langmuir 28, 2200–2205 (2012).

    Article  CAS  PubMed  Google Scholar 

  309. Mian, S. A., Gao, X., Nagase, S. & Jang, J. Adsorption of catechol on a wet silica surface: density functional theory study. Theor. Chem. Acc. 130, 333–339 (2011).

    Article  CAS  Google Scholar 

  310. Stewart, R., Wang, C. & Shao, H. Complex coacervates as a foundation for synthetic underwater adhesives. Adv. Colloid Interface Sci. 167, 85–93 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  311. Pham, T.-N., Su, C.-F., Huang, C.-C. & Jan, J.-S. Biomimetic hydrogels based on L-Dopa conjugated gelatin as pH-responsive drug carriers and antimicrobial agents. Colloids Surf. B Biointerfaces 196, 111316 (2020).

    Article  CAS  PubMed  Google Scholar 

  312. Manolakis, I., Noordover, B., Vendamme, R. & Eevers, W. Novel L‐DOPA‐derived poly(ester amide)s: monomers, polymers, and the first L‐DOPA‐functionalized biobased adhesive tape. Macromol. Rapid Commun. 35, 71–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  313. Silverman, H. & Roberto, F. Understanding marine mussel adhesion. Mar. Biotechnol. 9, 661–681 (2007).

    Article  CAS  Google Scholar 

  314. Bahri, S. et al. Adsorption and surface complexation study of L-DOPA on rutile (α-TiO2) in NaCl solutions. Env. Sci. Technol. 45, 3959–3966 (2011).

    Article  CAS  Google Scholar 

  315. Kim, S., Kim, J. H., Lee, J. S. & Park, C. B. Beta-sheet-forming, self-assembled peptide nanomaterials towards optical, energy, and healthcare applications. Small 11, 3623–3640 (2015).

    Article  CAS  PubMed  Google Scholar 

  316. Yan, X., Zhu, P. & Li, J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 39, 1877–1890 (2010).

    Article  CAS  PubMed  Google Scholar 

  317. Amdursky, N., Molotskii, M., Gazit, E. & Rosenman, G. Self-assembled bioinspired quantum dots: optical properties. Appl. Phys. Lett. 94, 261907 (2009).

    Article  Google Scholar 

  318. Amdursky, N., Gazit, E. & Rosenman, G. Quantum confinement in self-assembled bioinspired peptide hydrogels. Adv. Mater. 22, 2311–2315 (2010).

    Article  CAS  PubMed  Google Scholar 

  319. Yemini, M., Reches, M., Rishpon, J. & Gazit, E. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett. 5, 183–186 (2005).

    Article  CAS  PubMed  Google Scholar 

  320. Adler-Abramovich, L., Badihi-Mossberg, M., Gazit, E. & Rishpon, J. Characterization of peptide-nanostructure-modified electrodes and their application for ultrasensitive environmental monitoring. Small 6, 825–831 (2010).

    Article  CAS  PubMed  Google Scholar 

  321. Peydayesh, M., Boschi, E., Donat, F. & Mezzenga, R. Gold recovery from e-waste by food-waste amyloid aerogels. Adv. Mater. 36, 2310642 (2024).

    Article  CAS  Google Scholar 

  322. Keten, S. & Buehler, M. J. Nanostructure and molecular mechanics of spider dragline silk protein assemblies. J. R. Soc. Interface 7, 1709–1721 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. O’Neill, H. L., Tokunaga, K. & White, W. T. Morphology of the unique egg cases of hornsharks (Heterodontiformes: Heterodontidae). J. Fish Biol. 106, 389–402 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  324. Vega-Lugo, A.-C. & Lim, L.-T. Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Res. Int. 42, 933–940 (2009).

    Article  CAS  Google Scholar 

  325. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. USA. 95, 6181–6186 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Logan, N. et al. TiO2-coated CoCrMo: improving the osteogenic differentiation and adhesion of mesenchymal stem cells in vitro. J. Biomed. Mater. Res. A 103, 1208–1217 (2015).

    Article  PubMed  Google Scholar 

  327. Erkamp, N. A. et al. Spatially non-uniform condensates emerge from dynamically arrested phase separation. Nat. Commun. 14, 684 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Du, N., Yang, Z., Liu, X. Y., Li, Y. & Xu, H. Y. Structural origin of the strain-hardening of spider silk. Adv. Funct. Mater. 21, 772–778 (2011).

    Article  CAS  Google Scholar 

  329. Guo, C. et al. Comparative study of strain-dependent structural changes of silkworm silks: insight into the structural origin of strain-stiffening. Small 13, 1702266 (2017).

    Article  Google Scholar 

  330. Asakura, T., Yao, J., Yamane, T., Umemura, K. & Ulrich, A. S. Heterogeneous structure of silk fibers from Bombyx mori resolved by 13C solid-state NMR spectroscopy. J. Am. Chem. Soc. 124, 8794–8795 (2002).

    Article  CAS  PubMed  Google Scholar 

  331. Paquet-Mercier, F., Lefèvre, T., Auger, M. & Pézolet, M. Evidence by infrared spectroscopy of the presence of two types of β-sheets in major ampullate spider silk and silkworm silk. Soft Matter 9, 208–215 (2013).

    Article  CAS  Google Scholar 

  332. Boulet-Audet, M., Lefèvre, T., Buffeteau, T. & Pézolet, M. Attenuated total reflection infrared spectroscopy: an efficient technique to quantitatively determine the orientation and conformation of proteins in single silk fibers. Appl. Spectrosc. 62, 956–962 (2008).

    Article  CAS  PubMed  Google Scholar 

  333. Naghilou, A. et al. Correlating the secondary protein structure of natural spider silk with its guiding properties for Schwann cells. Mater. Sci. Eng. C 116, 111219 (2020).

    Article  CAS  Google Scholar 

  334. Guo, C. et al. Structural comparison of various silkworm silks: an insight into the structure–property relationship. Biomacromolecules 19, 906–917 (2018).

    Article  CAS  PubMed  Google Scholar 

  335. Liu, R. et al. “Nano-fishnet” structure making silk fibers tougher. Adv. Funct. Mater. 26, 5534–5541 (2016).

    Article  CAS  Google Scholar 

  336. Rousseau, M.-E., Lefèvre, T. & Pézolet, M. Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders. Biomacromolecules 10, 2945–2953 (2009).

    Article  CAS  PubMed  Google Scholar 

  337. Jenkins, J. E., Creager, M. S., Lewis, R. V., Holland, G. P. & Yarger, J. L. Quantitative correlation between the protein primary sequences and secondary structures in spider dragline silks. Biomacromolecules 11, 192–200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Fändrich, M. et al. Myoglobin forms amyloid fibrils by association of unfolded polypeptide segments. Proc. Natl Acad. Sci. USA 100, 15463–15468 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  339. Zandomeneghi, G., Krebs, M. R. H., McCammon, M. G. & Fändrich, M. FTIR reveals structural differences between native β-sheet proteins and amyloid fibrils. Protein Sci. 13, 3314–3321 (2009).

    Article  Google Scholar 

  340. VandenAkker, C. C. et al. Multimodal spectroscopic study of amyloid fibril polymorphism. J. Phys. Chem. B 120, 8809–8817 (2016).

    Article  CAS  PubMed  Google Scholar 

  341. Cerf, E. et al. Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem. J. 421, 415–423 (2009).

    Article  CAS  PubMed  Google Scholar 

  342. Celej, M. S. et al. Toxic prefibrillar α-synuclein amyloid oligomers adopt a distinctive antiparallel β-sheet structure. Biochem. J. 443, 719–726 (2012).

    Article  CAS  PubMed  Google Scholar 

  343. Sarroukh, R. et al. Transformation of amyloid β(1–40) oligomers into fibrils is characterized by a major change in secondary structure. Cell. Mol. Life Sci. 68, 1429–1438 (2011).

    Article  CAS  PubMed  Google Scholar 

  344. Berthelot, K., Ta, H. P., Géan, J., Lecomte, S. & Cullin, C. In vivo and in vitro analyses of toxic mutants of HET-s: FTIR antiparallel signature correlates with amyloid toxicity. J. Mol. Biol. 412, 137–152 (2011).

    Article  CAS  PubMed  Google Scholar 

  345. Debelle, L. & Alix, A. J. P. The structures of elastins and their function. Biochimie 81, 981–994 (1999).

    Article  CAS  PubMed  Google Scholar 

  346. Debelle, L. et al. Bovine elastin and κ-elastin secondary structure determination by optical spectroscopies. J. Biol. Chem. 270, 26099–26103 (1995).

    Article  CAS  PubMed  Google Scholar 

  347. Green, E., Ellis, R. & Winlove, P. The molecular structure and physical properties of elastin fibers as revealed by Raman microspectroscopy. Biopolymers 89, 931–940 (2008).

    Article  CAS  PubMed  Google Scholar 

  348. Debelle, L. & Alix, A. J. P. Optical spectroscopic determination of bovine tropoelastin molecular model. J. Mol. Struct. 348, 321–324 (1995).

    Article  CAS  Google Scholar 

  349. Nairn, K. M. et al. A synthetic resilin is largely unstructured. Biophys. J. 95, 3358–3365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Charati, M. B., Ifkovits, J. L., Burdick, J. A., Linhardt, J. G. & Kiick, K. L. Hydrophilic elastomeric biomaterials based on resilin-like polypeptides. Soft Matter 5, 3412–3416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Qin, G. et al. Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials 32, 9231–9243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Chen, X., Roeters, S. J., Cavanna, F., Alvarado, J. & Baiz, C. R. Crowding alters F-actin secondary structure and hydration. Commun. Biol. 6, 900 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Rosin, C., Erlkamp, M., Ecken, J., von der, Raunser, S. & Winter, R. Exploring the stability limits of actin and its suprastructures. Biophys. J. 107, 2982–2992 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Graceffa, P. & Dominguez, R. Crystal structure of monomeric actin in the ATP state: structural basis of nucleotide-dependent actin dynamics. J. Biol. Chem. 278, 34172–34180 (2003).

    Article  CAS  PubMed  Google Scholar 

  355. Stani, C., Vaccari, L., Mitri, E. & Birarda, G. FTIR investigation of the secondary structure of type I collagen: new insight into the amide III band. Spectrochim. Acta A Mol. Biomol. Spectrosc. 229, 118006 (2020).

    Article  CAS  PubMed  Google Scholar 

  356. Rabotyagova, O. S., Cebe, P. & Kaplan, D. L. Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mater. Sci. Eng. C 28, 1420–1429 (2008).

    Article  CAS  Google Scholar 

  357. Long, C. G. et al. Characterization of collagen-like peptides containing interruptions in the repeating Gly-X-Y sequence. Biochemistry 32, 11688–11695 (1993).

    Article  CAS  PubMed  Google Scholar 

  358. Cardamone, J. M. Investigating the microstructure of keratin extracted from wool: peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR). J. Mol. Struct. 969, 97–105 (2010).

    Article  CAS  Google Scholar 

  359. Nuutinen, E.-M. et al. Green process to regenerate keratin from feathers with an aqueous deep eutectic solvent. RSC Adv. 9, 19720–19728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Yu, P., McKinnon, J. J., Christensen, C. R. & Christensen, D. A. Using synchrotron-based FTIR microspectroscopy to reveal chemical features of feather protein secondary structure: comparison with other feed protein sources. J. Agric. Food Chem. 52, 7353–7361 (2004).

    Article  CAS  PubMed  Google Scholar 

  361. Kreplak, L., Doucet, J., Dumas, P. & Briki, F. New aspects of the α-helix to β-sheet transition in stretched hard α-keratin fibers. Biophys. J. 87, 640–647 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Pielesz, A., Freeman, H. S., Wesełucha-Birczyńska, A., Wysocki, M. & Włochowicz, A. Assessing secondary structure of a dyed wool fibre by means of FTIR and FTR spectroscopies. J. Mol. Struct. 651–653, 405–418 (2003).

    Article  Google Scholar 

  363. Jiang, Z., Li, W., Wang, Y. & Wang, Q. Second-order derivation Fourier transform infrared spectral analysis of regenerated wool keratin structural changes. AATCC J. Res. 9, 43–48 (2022).

    Article  CAS  Google Scholar 

  364. Wang, K., Li, R., Ma, J. H., Jian, Y. K. & Che, J. N. Extracting keratin from wool by using L-cysteine. Green. Chem. 18, 476–481 (2016).

    Article  CAS  Google Scholar 

  365. Wojciechowska, E., Rom, M., Włochowicz, A., Wysocki, M. & Wesełucha-Birczyńska, A. The use of Fourier transform-infrared (FTIR) and Raman spectroscopy (FTR) for the investigation of structural changes in wool fibre keratin after enzymatic treatment. J. Mol. Struct. 704, 315–321 (2004).

    Article  CAS  Google Scholar 

  366. Wang, Y. et al. Efficient extraction of wool keratin governed by simultaneous cation and anion effects: from secondary structure studies to high α-helix keratin content. ACS Sustain. Chem. Eng. 12, 6003–6012 (2024).

    Article  CAS  Google Scholar 

  367. Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Guo, C. et al. Thermoplastic moulding of regenerated silk. Nat. Mater. 19, 102–108 (2020).

    Article  CAS  PubMed  Google Scholar 

  369. Mattice, K. D. & Marangoni, A. G. Comparing methods to produce fibrous material from zein. Food Res. Int. 128, 108804 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.G.W. is funded by the Gates Cambridge Trust. S.K.Y is funded by the Engineering and Physical Sciences Research Council Cambridge NanoDTC (EP/S022953/1) and Cambridge Display Technology. T.P.J.K. acknowledges funding from the European Research Council (ERC) under the European Union’s Seventh Horizon 2020 research and innovation programme through the ERC grant DiProPhys (agreement ID 101001615), the Biotechnology and Biological Sciences Research Council, the Frances and Augustus Newman Foundation, and the Centre for Misfolding Diseases. M.J.B and Z.Y. were supported by the Army Research Office (W911NF1920098 and W911NF2220213), the Office of Naval Research (N00014-19-1-2375 and N00014-20-1-2189) and the US Department of Agriculture (2021-69012-35978).

Author information

Authors and Affiliations

Authors

Contributions

S.K.Y., Z.Y. and E.G.W. contributed equally to this work. T.P.J.K. and M.J.B. conceived the Review. All authors contributed to the discussion and writing of the Review.

Corresponding authors

Correspondence to Tuomas P. J. Knowles or Markus J. Buehler.

Ethics declarations

Competing interests

T.P.J.K. is a co-founder of Xampla, a Cambridge University spin-off company focusing on the development of plant based materials. A.K. is a research scientist and shareholder of Xampla. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Damien Thompson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yorke, S.K., Yang, Z., Wiita, E.G. et al. Design and sustainability of polypeptide material systems. Nat Rev Mater 10, 750–768 (2025). https://doi.org/10.1038/s41578-025-00793-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00793-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing