Abstract
Reticular chemistry is the science of connecting molecular building units into crystalline extended structures such as metalâorganic frameworks and covalent organic frameworks. Large language models (LLMs), a type of generative artificial intelligence system, can augment laboratory research in reticular chemistry by helping scientists to extract knowledge from literature, design materials and collect and interpret experimental data â ultimately accelerating scientific discovery. In this Perspective, we explore the concepts and methods used to apply LLMs in research, including prompt engineering, knowledge and tool augmentation and fine-tuning. We discuss how âchemistry-awareâ models can be tailored to specific tasks and integrated into existing practices of reticular chemistry, transforming the traditional âmake, characterize, useâ protocol driven by empirical knowledge into a discovery cycle based on finding synthesisâstructureâpropertyâperformance relationships. Furthermore, we explore how modular LLM agents can be integrated into multi-agent laboratory systems, such as self-driving robotic laboratories, to streamline labour-intensive tasks and collaborate with chemists and how LLMs can lower the barriers to applying generative artificial intelligence and data-driven workflows to such challenging research questions as crystallization. This contribution equips both computational and experimental chemists with the insights necessary to harness LLMs for materials discovery in reticular chemistry and, more broadly, materials science.
Similar content being viewed by others
Enjoying our latest content?
Log in or create an account to continue
- Access the most recent journalism from Nature's award-winning team
- Explore the latest features & opinion covering groundbreaking research
or
References
Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705â714 (2003).
Lyu, H., Ji, Z., Wuttke, S. & Yaghi, O. M. Digital reticular chemistry. Chem 6, 2219â2241 (2020).
Moosavi, S. M. et al. Understanding the diversity of the metalâorganic framework ecosystem. Nat. Commun. 11, 4068 (2020).
Jablonka, K. M., Rosen, A. S., Krishnapriyan, A. S. & Smit, B. An ecosystem for digital reticular chemistry. ACS Cent. Sci. 9, 563â581 (2023).
Yaghi, O. M. & Zheng, Z. Reticular chemistry and new materials. In 26th Int. Solvay Conf. Chem. Chem. Chall. 21st Century (eds Wüthrich, K., Feringa, B. L., Rongy, L. & De Wit, A.) 155â160 (World Scientific, 2024).
Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47â60 (2023).
Gupta, P., Ding, B., Guan, C. & Ding, D. Generative AI: a systematic review using topic modelling techniques. Data Inf. Manag. 8, 100066 (2024).
Bandi, A., Adapa, P. V. S. R. & Kuchi, Y. E. V. P. K. The power of generative AI: a review of requirements, models, inputâoutput formats, evaluation metrics, and challenges. Future Internet 15, 260 (2023).
Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with GPT-4. Preprint at https://arxiv.org/abs/2303.12712 (2023).
Walters, W. P. & Murcko, M. Assessing the impact of generative AI on medicinal chemistry. Nat. Biotechnol. 38, 143â145 (2020).
Ren, Z., Ren, Z., Zhang, Z., Buonassisi, T. & Li, J. Autonomous experiments using active learning and AI. Nat. Rev. Mater. 8, 563â564 (2023).
Microsoft Research AI4Science & Microsoft Azure Quantum. The impact of large language models on scientific discovery: a preliminary study using GPT-4. Preprint at https://arxiv.org/abs/2311.07361 (2023).
White, A. D. The future of chemistry is language. Nat. Rev. Chem. 7, 457â458 (2023).
Lála, J. et al. PaperQA: retrieval-augmented generative agent for scientific research. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2023).
Zheng, Z., Zhang, O., Borgs, C., Chayes, J. T. & Yaghi, O. M. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis. J. Am. Chem. Soc. 145, 18048â18062 (2023).
Bran, A. M. et al. Augmenting large language models with chemistry tools. Nat. Mach. Intell. 6, 525â535 (2024).
OpenAI et al. GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023).
Ouyang, L. et al. Training language models to follow instructions with human feedback. In 36th Conf. Neural Inform. Process. Syst. (Morgan Kaufmann, 2022).
Gemini Team et al. Gemini: a family of highly capable multimodal models. Preprint at https://arxiv.org/abs/2312.11805 (2023).
Touvron, H. et al. LLaMA: open and efficient foundation language models. Preprint at https://arxiv.org/abs/2302.13971 (2023).
Touvron, H. et al. LLaMA 2: open foundation and fine-tuned chat models. Preprint at https://arxiv.org/abs/2307.09288 (2023).
Vaswani, A. et al. Attention is all you need. In 31st Conf. Neural Inform. Process. Syst. (Curran Associates, 2017).
Wei, J. et al. Emergent abilities of large language models. Trans. Mach. Learn. Res. https://openreview.net/forum?id=yzkSU5zdwD (2022).
Xu, P., Zhu, X. & Clifton, D. A. Multimodal learning with transformers: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45, 12113â12132 (2023).
Zhang, D. et al. MM-LLMs: recent advances in multimodal large language models. In Find. Assoc. Comput. Linguist. 12401â12430 (ACL, 2024).
Radford, A. et al. Learning transferable visual models from natural language supervision. In Proc. 38th Int. Conf. Machine Learning 8748â8763 (PMLR, 2021).
Liu, H., Li, C., Wu, Q. & Lee, Y. J. Visual instruction tuning. In 37th Conf. Neural Inform. Process. Syst. (NeurIPS, 2023).
Yang, Z. et al. The dawn of LMMs: preliminary explorations with GPT-4V(ision). Preprint at https://arxiv.org/abs/2309.17421 (2023).
Zheng, Z. et al. Image and data mining in reticular chemistry powered by GPT-4V. Digit. Discov. 3, 491â501 (2024).
Zhao, W. X. et al. A survey of large language models. Preprint at https://arxiv.org/abs/2303.18223 (2023).
Naveed, H. et al. A comprehensive overview of large language models. Preprint at https://arxiv.org/abs/2307.06435 (2024).
Ramos, M. C., Collison, C. J. & White, A. D. A review of large language models and autonomous agents in chemistry. Preprint at https://arxiv.org/abs/2407.01603 (2024).
Lei, G., Docherty, R. & Cooper, S. J. Materials science in the era of large language models: a perspective. Digit. Discov. 3, 1257â1272 (2024).
Min, B. et al. Recent advances in natural language processing via large pre-trained language models: a survey. ACM Comput. Surv. 56, 1â40 (2024).
Wei, J. et al. Chain-of-thought prompting elicits reasoning in large language models. Adv. Neural Inf. Process. Syst. 35, 24824â24837 (2022).
Dong, Q. et al. A survey on in-context learning. Preprint at https://arxiv.org/abs/2301.00234 (2024).
Huang, J. & Chang, K. C.-C. Towards reasoning in large language models: a survey. In Find. Assoc. Comput. Linguist. 1049â1065 (ACL, 2023).
Zheng, Z. et al. A GPT-4 reticular chemist for guiding MOF discovery. Angew. Chem. Int. Ed. 62, e202311983 (2023).
Maik Jablonka, K. et al. 14 examples of how LLMs can transform materials science and chemistry: a reflection on a large language model hackathon. Digit. Discov. 2, 1233â1250 (2023).
Maynez, J., Narayan, S., Bohnet, B. & McDonald, R. On faithfulness and factuality in abstractive summarization. In Proc. 58th Annu. Meet. Assoc. Comput. Linguist. 1906â1919 (ACL, 2020).
Zheng, Z. et al. Shaping the water-harvesting behavior of metalâorganic frameworks aided by fine-tuned GPT models. J. Am. Chem. Soc. 145, 28284â28295 (2023).
Zheng, Z. et al. ChatGPT research group for optimizing the crystallinity of MOFs and COFs. ACS Cent. Sci. 9, 2161â2170 (2023).
Chung, H. W. et al. Scaling instruction-finetuned language models. J. Mach. Learn. Res. 25, 1â53 (2024).
Wang, Y. et al. Super-natural instructions: generalization via declarative instructions on 1600+ NLP tasks. In Proc. 2022 Conf. Empir. Methods Nat. Lang. Process. 5085â5109 (ACL, 2022).
Kim, S. et al. The CoT collection: improving zero-shot and few-shot learning of language models via chain-of-thought fine-tuning. In Proc. 2023 Conf. Empir. Methods Nat. Lang. Process. (ACL, 2023).
Yao, S. et al. Tree of thoughts: deliberate problem solving with large language models. In 37th Conf. Neural Inform. Process. Syst. (NeurIPS, 2023).
Khattab, O. et al. DSPy: compiling declarative language model calls into self-improving pipelines. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2024).
Wang, X. et al. Self-consistency improves chain of thought reasoning in language models. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2024).
Ji, Z. et al. Towards mitigating LLM hallucination via self reflection. In Find. Assoc. Comput. Linguist. (eds Bouamor, H., Pino, J. & Bali, K.) 1827â1843 (ACL, 2023).
Asai, A., Wu, Z., Wang, Y., Sil, A. & Hajishirzi, H. Self-RAG: learning to retrieve, generate, and critique through self-reflection. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2023).
Boiko, D. A., MacKnight, R., Kline, B. & Gomes, G. Autonomous chemical research with large language models. Nature 624, 570â578 (2023).
Kang, Y. & Kim, J. ChatMOF: an artificial intelligence system for predicting and generating metalâorganic frameworks using large language models. Nat. Commun. 15, 4705 (2024).
Ruan, Y. et al. An automatic end-to-end chemical synthesis development platform powered by large language models. Nat. Commun. 15, 10160 (2024).
Lewis, P. et al. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Advances in Neural Inform. Process. Syst. Vol. 33 9459â9474 (Curran Associates, 2020).
Gao, Y. et al. Retrieval-augmented generation for large language models: a survey. Preprint at https://arxiv.org/abs/2312.10997 (2024).
Liu, N. F. et al. Lost in the middle: how language models use long contexts. Trans. Assoc. Comput. Linguist. 12, 157â173 (2024).
Ruan, Y. et al. Accelerated end-to-end chemical synthesis development with large language models. Preprint at https://doi.org/10.26434/chemrxiv-2024-6wmg4 (2024).
Jablonka, K. M., Schwaller, P., Ortega-Guerrero, A. & Smit, B. Leveraging large language models for predictive chemistry. Nat. Mach. Intell. 6, 161â169 (2024).
Gupta, T., Zaki, M., Krishnan, N. M. A. & Mausam MatSciBERT: a materials domain language model for text mining and information extraction. npj Comput. Mater. 8, 1â11 (2022).
Antunes, L. M., Butler, K. T. & Grau-Crespo, R. Crystal structure generation with autoregressive large language modeling. Nat. Commun. 15, 10570 (2024).
Gruver, N. et al. Fine-tuned language models generate stable inorganic materials as text. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2024).
Kim, S., Jung, Y. & Schrier, J. Large language models for inorganic synthesis predictions. J. Am. Chem. Soc. 146, 19654â19659 (2024).
Zhang, W. et al. Fine-tuning large language models for chemical text mining. Chem. Sci. 15, 10600â10611 (2024).
Jiang, A. Q. et al. Mistral 7B. Preprint at https://arxiv.org/abs/2310.06825v1 (2023).
Beltagy, I., Lo, K. & Cohan, A. SciBERT: a pretrained language model for scientific text. Preprint at https://arxiv.org/abs/1903.10676 (2019).
Lewis, M. et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proc. 58th Annu. Meet. Assoc. Comput. Linguist. (ACL, 2020).
Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21, 1â67 (2020).
Hu, E. J. et al. Lora: low-rank adaptation of large language models. In Proc. 10th Int. Conf. Learn. Represent. (ICLR, 2021).
Han, Z., Gao, C., Liu, J., Zhang, J. & Zhang, S. Q. Parameter-efficient fine-tuning for large models: a comprehensive survey. Trans. Mach. Learn. Res. https://openreview.net/forum?id=lIsCS8b6zj (2024).
Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31â36 (1988).
Bai, X., Xie, Y., Zhang, X., Han, H. & Li, J.-R. Evaluation of open-source large language models for metalâorganic frameworks research. J. Chem. Inf. Model. 64, 4958â4965 (2024).
Luo, Y. et al. MOF synthesis prediction enabled by automatic data mining and machine learning. Angew. Chem. Int. Ed. 61, e202200242 (2022).
Park, H., Kang, Y., Choe, W. & Kim, J. Mining insights on metalâorganic framework synthesis from scientific literature texts. J. Chem. Inf. Model. 62, 1190â1198 (2022).
Glasby, L. T. et al. DigiMOF: a database of metalâorganic framework synthesis information generated via text mining. Chem. Mater. 35, 4510â4524 (2023).
Park, S. et al. Text mining metalâorganic framework papers. J. Chem. Inf. Model. 58, 244â251 (2018).
Nandy, A. et al. MOFSimplify, machine learning models with extracted stability data of three thousand metalâorganic frameworks. Sci. Data 9, 74 (2022).
Nandy, A., Duan, C. & Kulik, H. J. Using machine learning and data mining to leverage community knowledge for the engineering of stable metalâorganic frameworks. J. Am. Chem. Soc. 143, 17535â17547 (2021).
Batra, R., Chen, C., Evans, T. G., Walton, K. S. & Ramprasad, R. Prediction of water stability of metalâorganic frameworks using machine learning. Nat. Mach. Intell. 2, 704â710 (2020).
Terrones, G. G. et al. Metalâorganic framework stability in water and harsh environments from data-driven models trained on the diverse WS24 data set. J. Am. Chem. Soc. 146, 20333â20348 (2024).
Lee, W., Kang, Y., Bae, T. & Kim, J. Harnessing large language model to collect and analyze metal-organic framework property dataset. Preprint at https://arxiv.org/abs/2404.13053.
Rampal, N. et al. Single and multi-hop question-answering datasets for reticular chemistry with GPT-4-turbo. J. Chem. Theory Comput. 20, 9128â9137 (2024).
Ansari, M. & Moosavi, S. M. Agent-based learning of materials datasets from the scientific literature. Digit. Discov. 3, 2607â2617 (2024).
Leong, S. X., Pablo-GarcÃa, S., Zhang, Z. & Aspuru-Guzik, A. Automated electrosynthesis reaction mining with multimodal large language models (MLLMs). Preprint at https://doi.org/10.26434/chemrxiv-2024-7fwxv (2024).
Liu, S. et al. Conversational Drug Editing Using Retrieval and Domain Feedback. In Proc. 12th Int. Conf. Learn. Represent. (ICLR, 2024).
Ahn, J. et al. Large language models for mathematical reasoning: progresses and challenges. In Proc. 18th Conf. Eur. Ch. Assoc. Comput. Linguist. 225-237 (ACL, 2024)
Pinheiro, M., Martin, R. L., Rycroft, C. H. & Haranczyk, M. High accuracy geometric analysis of crystalline porous materials. CrystEngComm 15, 7531â7538 (2013).
Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 149, 134â141 (2012).
Pinheiro, M. et al. Characterization and comparison of pore landscapes in crystalline porous materials. J. Mol. Graph. Model. 44, 208â219 (2013).
Sarkisov, L. & Harrison, A. Computational structure characterisation tools in application to ordered and disordered porous materials. Mol. Simul. 37, 1248â1257 (2011).
Sarkisov, L. & Kim, J. Computational structure characterization tools for the era of material informatics. Chem. Eng. Sci. 121, 322â330 (2015).
Dubbeldam, D., Calero, S., Ellis, D. E. & Snurr, R. Q. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 81â101 (2016).
Su, Y. et al. Automation and machine learning augmented by large language models in a catalysis study. Chem. Sci. 15, 12200â12233 (2024).
Zheng, Z. et al. Integrating machine learning and large language models to advance exploration of electrochemical reactions. Angew. Chem. Int. Ed. 63, e202418074 (2024).
Mahjour, B., Hoffstadt, J. & Cernak, T. Designing chemical reaction arrays using phactor and ChatGPT. Org. Process Res. Dev. 27, 1510â1516 (2023).
Chiang, W.-L. et al. Chatbot arena: an open platform for evaluating LLMs by human preference. In Proc. 41st Int. Conf. Mach. Learn. (ICML, 2024).
An, Y. et al. Knowledge graph question answering for materials science (KGQA4MAT): developing natural language interface for metal-organic frameworks knowledge graph (MOF-KG) using LLM. In 17th Int. Conf. Metadata Semantics Res. (Springer, 2023).
Shi, L. et al. LLM-based MOFs synthesis condition extraction using few-shot demonstrations. Preprint at https://arxiv.org/abs/2408.04665 (2024).
Rubungo, A. N., Li, K., Hattrick-Simpers, J. & Dieng, A. B. LLM4Mat-bench: benchmarking large language models for materials property prediction. Preprint at https://arxiv.org/abs/2411.00177 (2024).
de Vries, A. The growing energy footprint of artificial intelligence. Joule 7, 2191â2194 (2023).
Wu, C.-J. et al. Sustainable AI: environmental implications, challenges and opportunities. Preprint at https://arxiv.org/abs/2111.00364 (2022).
Xu, M. et al. A survey of resource-efficient LLM and multimodal foundation models. Preprint at https://arxiv.org/abs/2401.08092 (2024).
Stojkovic, J., Choukse, E., Zhang, C., Goiri, I. & Torrellas, J. Towards greener LLMs: bringing energy-efficiency to the forefront of LLM inference. Preprint at https://arxiv.org/abs/2403.20306 (2024).
Morris, M. R. et al. Levels of AGI: operationalizing progress on the path to AGI. Preprint at https://arxiv.org/abs/2311.02462 (2024).
Gropp, C. et al. Standard practices of reticular chemistry. ACS Cent. Sci. 6, 1255â1273 (2020).
Li, A. et al. The launch of a freely accessible MOF CIF collection from the CSD. Matter 4, 1105â1106 (2021).
Yaghi, O. M., Li, G. & Li, H. Selective binding and removal of guests in a microporous metalâorganic framework. Nature 378, 703â706 (1995).
Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166â1170 (2005).
Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186â10191 (2006).
Deng, H. et al. Multiple functional groups of varying ratios in metalâorganic frameworks. Science 327, 846â850 (2010).
Liu, Y. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351, 365â369 (2016).
El-Kaderi, H. M. et al. Designed synthesis of 3D covalent organic frameworks. Science 316, 268â272 (2007).
Yang, J. et al. Principles of designing extra-large pore openings and cages in zeolitic imidazolate frameworks. J. Am. Chem. Soc. 139, 6448â6455 (2017).
Cmarik, G. E., Kim, M., Cohen, S. M. & Walton, K. S. Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir 28, 15606â15613 (2012).
Wang, Z. & Cohen, S. M. Postsynthetic covalent modification of a neutral metalâorganic framework. J. Am. Chem. Soc. 129, 12368â12369 (2007).
Li, H., Eddaoudi, M., OâKeeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metalâorganic framework. Nature 402, 276â279 (1999).
Seo, J. S. et al. A homochiral metalâorganic porous material for enantioselective separation and catalysis. Nature 404, 982â986 (2000).
Ni, Z. & Masel, R. I. Rapid production of metalâorganic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 128, 12394â12395 (2006).
Pichon, A., Lazuen-Garay, A. & James, S. L. Solvent-free synthesis of a microporous metalâorganic framework. CrystEngComm 8, 211â214 (2006).
Wilmer, C. E. et al. Large-scale screening of hypothetical metalâorganic frameworks. Nat. Chem. 4, 83â89 (2012).
Chung, Y. G. et al. Computation-ready, experimental metalâorganic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem. Mater. 26, 6185â6192 (2014).
Bobbitt, N. S. et al. MOFX-DB: an online database of computational adsorption data for nanoporous materials. J. Chem. Eng. Data 68, 483â498 (2023).
Chung, Y. G. et al. Advances, updates, and analytics for the computation-ready, experimental metalâorganic framework database: CoRE MOF 2019. J. Chem. Eng. Data 64, 5985â5998 (2019).
Rosen, A. S. et al. Machine learning the quantum-chemical properties of metalâorganic frameworks for accelerated materials discovery. Matter 4, 1578â1597 (2021).
Rosi, N. L. et al. Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127â1129 (2003).
Millward, A. R. & Yaghi, O. M. Metalâorganic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998â17999 (2005).
Horcajada, P. et al. Metalâorganic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974â5978 (2006).
Feng, D. et al. Zirconium-metalloporphyrin PCN-222: mesoporous metalâorganic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. 51, 10307 (2012).
Furukawa, H. et al. Water adsorption in porous metalâorganic frameworks and related materials. J. Am. Chem. Soc. 136, 4369â4381 (2014).
Zhou, Z. et al. Carbon dioxide capture from open air using covalent organic frameworks. Nature 635, 96â101 (2024).
Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220â224 (2017).
Acknowledgements
The authors thank the Defense Advanced Research Projects Agency (DARPA) for the financial support under contract HR0011-21-C-0020. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of DARPA.
Author information
Authors and Affiliations
Contributions
O.M.Y. contributed to writing, review and editing, and supervision. Z.Z. contributed to writing, review and editing, and graphics. N.R., T.J.I., J.T.C. and C.B. contributed to review and editing. Z.Z. used ChatGPT-4 for grammar and typos checking during the review and editing of this manuscript. All authors have read, corrected and verified all information presented in this manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Seyed Mohamad Moosavi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- API
-
(Application Programming Interface). A set of rules and protocols that allow different software applications to communicate and share data or commands.
- CIFs
-
(Crystallographic Information Files). A standardized text file format that records crystal structure data, including atomic coordinates and unit cell parameters, enabling consistent sharing of crystal structures.
- JSON
-
(JavaScript Object Notation). A lightweight, text-based format used to structure, store and transfer data between systems in a human-readable manner.
- LLM-in-the-loop
-
A workflow in which a large language model (LLM) continuously participates and provides input, just as a human expert would in a âhuman-in-the-loopâ scenario. The agent may propose actions, analyse data or suggest refinements, and then adapt its guidance based on feedback from experimental results, computational tools or human researchers.
- Neural networks
-
A computational model inspired by the structure of the human brain, composed of layers of interconnected nodes (neurons) that process and learn patterns from data.
- SMILES
-
(Simplified Molecular Input Line Entry System). A textual notation for representing chemical structures, allowing for easy storage, manipulation and computational handling of molecular information.
- Tokens
-
The smallest units of text (such as words, parts of words or symbols) that a language model processes and generates during text analysis and processing.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zheng, Z., Rampal, N., Inizan, T.J. et al. Large language models for reticular chemistry. Nat Rev Mater 10, 369â381 (2025). https://doi.org/10.1038/s41578-025-00772-8
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41578-025-00772-8
This article is cited by
-
The future of reviews writing in the AI era
Nature Reviews Chemistry (2025)
-
Building an end-to-end battery recipe knowledge base via transformer-based text mining
Communications Materials (2025)
-
Towards domain-adapted large language models for water and wastewater management: methods, datasets and benchmarking
npj Clean Water (2025)
-
DeepSeek-LLM with Adaptive RAG for Pharmaceutical Dissolution Prediction
Pharmaceutical Research (2025)
-
Chained LLM-human interactive framework for electrolyte design in four-electron Zn-I2 batteries
Science China Chemistry (2025)


