Abstract
Reticular chemistry has been focused on making simple structures in which a few kinds of components are linked to make crystals such as metalâorganic frameworks (MOFs). While this chemistry has grown into a large field, a more extensive area with fascinating directions is emerging through the introduction of multiplicity and variation into the components of MOFs. When the MOF backbone is composed of more than two kinds of components, the resulting backbone multiplicity is regular repeats of those units. However, when variations involve multiple functionalization of the organic linkers or multiple metalation of metal-containing building units, it results in an aperiodic spatial arrangement of these variations, without altering the regularity of the MOF backbone. Such variance is represented by unique sequences of functionality or metal, and the very aperiodic nature of their spatial arrangement gives rise to anisotropy. These MOF constructs represent a new form of matter in which the sequences of such units are bound to an ordered backbone, thus adding complexity to an otherwise simple system, while preserving its overall crystallinity. Itâs worth noting that, when a molecule capable of either continuous or multistate anisotropic motion is integrated within a sequence in a MOF, the resulting property goes beyond what is possible in simple systems. We term this emerging area âanisotropic reticular chemistryâ.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Yaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks (Wiley, 2019).
Furukawa, H., Cordova, K. E., OâKeeffe, M. & Yaghi, O. M. The chemistry and applications of metalâorganic frameworks. Science 341, 1230444 (2013).
Kalmutzki, M. J., Hanikel, N. & Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 4, eaat9180 (2018).
Li, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. Establishing microporosity in open metalâorganic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J. Am. Chem. Soc. 120, 8571â8572 (1998).
Li, H., Eddaoudi, M., OâKeeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metalâorganic framework. Nature 402, 276â279 (1999).
Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186â10191 (2006).
Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939â943 (2008).
Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334â2375 (2004).
Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191â214 (2008).
Zhang, J.-P., Zhang, Y.-B., Lin, J.-B. & Chen, X.-M. Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 112, 1001â1033 (2012).
Gonzalez, M. I. et al. Confinement of atomically defined metal halide sheets in a metalâorganic framework. Nature 577, 64â68 (2019).
Li, L. et al. Ethane/ethylene separation in a metalâorganic framework with iron-peroxo sites. Science 362, 443â446 (2018).
Chen, K.-J. et al. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science 366, 241â246 (2019).
Li, P. et al. Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science 356, 624â627 (2017).
Gu, C. et al. Design and control of gas diffusion process in a nanoporous soft crystal. Science 363, 387â391 (2019).
Liu, G. et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat. Mater. 17, 283â289 (2018).
Fateeva, A. et al. A water-stable porphyrin-based metalâorganic framework active for visible-light photocatalysis. Angew. Chem. Int. Ed. 51, 7440â7444 (2012).
Krause, S. et al. A pressure-amplifying framework material with negative gas adsorption transitions. Nature 532, 348â352 (2016).
Boyd, P. G. et al. Data-driven design of metalâorganic frameworks for wet flue gas CO2 capture. Nature 576, 253â256 (2019).
Lo, S.-H. et al. Rapid desolvation-triggered domino lattice rearrangement in a metalâorganic framework. Nat. Chem. 12, 90â97 (2020).
Yan, Y. et al. Metalâorganic polyhedral frameworks: high H2 adsorption capacities and neutron powder diffraction studies. J. Am. Chem. Soc. 132, 4092â4094 (2010).
Liao, P.-Q., Huang, N.-Y., Zhang, W.-X., Zhang, J.-P. & Chen, X.-M. Controlling guest conformation for efficient purification of butadiene. Science 356, 1193â1196 (2017).
Cao, L. et al. Self-supporting metalâorganic layers as single-site solid catalysts. Angew. Chem. Int. Ed. 55, 4962â4966 (2016).
Sheberia, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220â224 (2016).
Farha, O. K. et al. Metalâorganic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134, 15016â15021 (2012).
Hwang, Y. K. et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. 47, 4144â4148 (2008).
Rodenas, T. et al. Metalâorganic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48â55 (2015).
Zhao, M. et al. Metalâorganic frameworks as selectivity regulators for hydrogenation reactions. Nature 539, 76â80 (2016).
Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80â84 (2013).
Zhai, Q.-G. et al. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nat. Commun. 7, 13645 (2016).
Sun, C.-Y. et al. Efficient and tunable white-light emission of metalâorganic frameworks by iridium-complex encapsulation. Nat. Commun. 4, 2717 (2013).
Mo, K., Yang, Y. & Cui, Y. A homochiral metalâorganic framework as an effective asymmetric catalyst for cyanohydrin synthesis. J. Am. Chem. Soc. 136, 1746â1749 (2014).
McHugh, L. N. et al. Hydrolytic stability in hemilabile metalâorganic frameworks. Nat. Chem. 10, 10960â11102 (2018).
Cui, X. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353, 141â144 (2016).
Taylor, J. M. et al. Facile proton conduction via ordered water molecules in a phosphonate metalâorganic framework. J. Am. Chem. Soc. 132, 14055â14057 (2010).
Horcajada, P. et al. Porous metalâorganic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172â178 (2010).
Bloch, W. M. et al. Capturing snapshots of post-synthetic metallation chemistry in metalâorganic frameworks. Nat. Chem. 6, 906â913 (2014).
Dong, R. et al. High-mobility band-like charge transport in a semiconducting two-dimensional metalâorganic framework. Nat. Mater. 17, 1027â1032 (2018).
Bennett, T. D. et al. Melt-quenched glasses of metalâorganic frameworks. J. Am. Chem. Soc. 138, 3484â3492 (2016).
Feng, L., Wang, K.-Y., Day, G. S. & Zhou, H.-C. The chemistry of multi-component and hierarchical framework compounds. Chem. Soc. Rev. 48, 4823â4853 (2019).
Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. Structuring of metalâorganic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 43, 5700â5734 (2014).
Pang, Q., Tu, B. & Li, Q. Metalâorganic frameworks with multicomponents in order. Coord. Chem. Rev. 388, 107â125 (2019).
Jiao, J., Gong, W., Wu, X., Yang, S. & Cui, Y. Multivariate crystalline porous materials: Synthesis, property and potential application. Coord. Chem. Rev. 385, 174â190 (2019).
Furukawa, H., Müller, U. & Yaghi, O. M. âHeterogeneity within orderâ in metalâorganic frameworks. Angew. Chem. Int. Ed. 54, 3417â3430 (2015).
Chevreau, H. et al. Mixed-linker hybrid superpolyhedra for the production of a series of large-pore iron(III) carboxylate metalâorganic frameworks. Angew. Chem. Int. Ed. 52, 5056â5060 (2013).
Jiang, H. et al. Enriching the reticular chemistry repertoire: merged nets approach for the rational design of intricate mixed-linker metalâorganic framework platforms. J. Am. Chem. Soc. 140, 8858â8867 (2018).
Kondo, M. et al. Rational synthesis of stable channel-like cavities with methane gas adsorption properties: [{Cu2(pzdc)2(L)}n] (pzdc = pyrazine-2,3-dicarboxylate; L = a pillar ligand). Angew. Chem. Int. Ed. 38, 140â143 (1999).
Dybtsev, D. N., Chun, H. & Kim, K. Rigid and flexible: a highly porous metalâorganic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Ed. 116, 5145â5146 (2004).
Farha, O. K., Malliakas, C. D., Kanatzidis, M. G. & Hupp, J. T. Control over catenation in metalâorganic frameworks via rational design of the organic building blocks. J. Am. Chem. Soc. 132, 950â952 (2010).
Koh, K., Wong-Foy, A. G. & Matzger, A. J. A crystalline mesoporous coordination copolymer with high microporosity. Angew. Chem. Int. Ed. 47, 677â680 (2008).
Koh, K., Wong-Foy, A. G. & Matzger, A. J. A porous coordination copolymer with over 5000 m2/g BET surface area. J. Am. Chem. Soc. 131, 4184â4185 (2009).
Koh, K., Wong-Foy, A. G. & Matzger, A. J. Coordination copolymerization mediated by Zn4O(CO2R)6 metal clusters: a balancing act between statistics and geometry. J. Am. Chem. Soc. 132, 15005â15010 (2010).
Furukawa, H. et al. Ultrahigh porosity in metalâorganic frameworks. Science 329, 424â428 (2010).
Klein, N. et al. A mesoporous metalâorganic framework. Angew. Chem. Int. Ed. 48, 9954â9957 (2009).
Hönicke, I. M. et al. Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angew. Chem. Int. Ed. 57, 13780â13783 (2018).
Liu, L., Konstas, K., Hill, M. R. & Telfer, S. G. Programmed pore architectures in modular quaternary metalâorganic frameworks. J. Am. Chem. Soc. 135, 17731â17734 (2013).
Liu, L., Zhou, T.-Y. & Telfer, S. G. Modulating the performance of an asymmetric organocatalyst by tuning its spatial environment in a metalâorganic framework. J. Am. Chem. Soc. 139, 13936â13943 (2017).
Liang, C.-C. et al. Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metalâorganic frameworks. J. Am. Chem. Soc. 139, 13300â13303 (2017).
Wong-Foy, A. G., Lebel, O. & Matzger, A. J. Porous crystal derived from a tricarboxylate linker with two distinct binding motifs. J. Am. Chem. Soc. 129, 15740â15741 (2007).
Nouar, F. J. et al. Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. J. Am. Chem. Soc. 130, 1833â1835 (2008).
Tu, B. et al. Heterogeneity within a mesoporous metalâorganic framework with three distinct metal-containing building units. J. Am. Chem. Soc. 137, 13456â13459 (2015).
Tu, B. et al. Reversible redox activity in multicomponent metalâorganic frameworks constructed from trinuclear copper pyrazolate building blocks. J. Am. Chem. Soc. 139, 7998â8007 (2017).
Liu, Q. et al. Mesoporous cages in chemically robust MOFs created by a large number of vertices with reduced connectivity. J. Am. Chem. Soc. 141, 488â496 (2019).
Tu, B. et al. Harnessing bottom-up self-assembly to position five distinct components in an ordered porous framework. Angew. Chem. Int. Ed. 58, 5348â5353 (2019).
Schaate, A. et al. Modulated synthesis of Zr-based metalâorganic frameworks: from nano to single crystals. Chem. Eur. J. 17, 6643â6651 (2011).
Trickett, C. A. et al. Definitive molecular level characterization of defects in UiO-66 crystals. Angew. Chem. Int. Ed. 54, 11162â11167 (2015).
Fu, Y. et al. Duet of acetate and water at the defects of metalâorganic frameworks. Nano Lett. 19, 1618â1624 (2019).
Fang, Z., Bueken, B., De Vos, D. E. & Fischer, R. A. Defect-engineered metalâorganic frameworks. Angew. Chem. Int. Ed. 54, 7234â7254 (2015).
Wang, Y., Liu, Q., Zhang, Q., Peng, B. & Deng, H. Molecular vise approach to create metal-binding sites in MOFs and detection of biomarkers. Angew. Chem. Int. Ed. 57, 7120â7125 (2018).
Yang, S. et al. A partially interpenetrated metalâorganic framework for selective hysteretic sorption of carbon dioxide. Nat. Mater. 11, 710â716 (2012).
Choi, K. M., Jeon, H. J., Kang, J. K. & Yaghi, O. M. Heterogeneity within order in crystals of a porous metalâorganic framework. J. Am. Chem. Soc. 133, 11920â11923 (2011).
Liu, Y. & Tang, Z. Multifunctional nanoparticle@MOF coreâshell nanostructures. Adv. Mater. 25, 5819â5825 (2013).
Cliffe, M. J. et al. Correlated defect nanoregions in a metalâorganic framework. Nat. Commun. 5, 4176 (2014).
Liu, L. et al. Imaging defects and their evolution in a metalâorganic framework at sub-unit-cell resolution. Nat. Chem. 11, 622â628 (2019).
Koo, J. et al. Hollowing out MOFs: hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching. Chem. Sci. 8, 6799â6803 (2017).
Gong, X. et al. Metal-organic frameworks for the exploit of distance between active sites in efficient photocatalysis. Angew. Chem. Int. Ed. 59, 5326â5331 (2020).
Luo, L. et al. Directional engraving within single crystalline metalâorganic framework particles via oxidative linker cleaving. J. Am. Chem. Soc. 141, 20365â20370 (2019).
Yan, J., MacDonald, J. C., Maag, A. R., Coudert, F.-X. & Burdette, S. C. MOF decomposition and introduction of repairable defects using a photodegradable strut. Chem. Eur. J. 25, 8393â8400 (2019).
Feng, L. et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metalâorganic frameworks. J. Am. Chem. Soc. 140, 2363â2372 (2018).
Yuan, S. et al. Construction of hierarchically porous metalâorganic frameworks through linker labilization. Nat. Commun. 8, 15356 (2017).
Guillerm, V., Xu, H., Albalad, J., Imaz, I. & Maspoch, D. Postsynthetic selective ligand cleavage by solidâgas phase ozonolysis fuses micropores into mesopores in metalâorganic frameworks. J. Am. Chem. Soc. 140, 15022â15030 (2018).
Tu, B. et al. Ordered vacancies and their chemistry in metalâorganic frameworks. J. Am. Chem. Soc. 136, 14465â14471 (2014).
Yuan, S. et al. Sequential linker installation: precise placement of functional groups in multivariate metalâorganic frameworks. J. Am. Chem. Soc. 137, 3177â3180 (2015).
Zhang, X., Frey, B. L., Chen, Y.-S. & Zhang, J. Topology-guided stepwise insertion of three secondary linkers in zirconium metalâorganic frameworks. J. Am. Chem. Soc. 140, 7710â7715 (2018).
Pang, J. et al. Enhancing pore-environment complexity using a trapezoidal linker: toward stepwise assembly of multivariate quinary metalâorganic frameworks. J. Am. Chem. Soc. 140, 12328â12332 (2018).
Kapustin, E. A., Lee, S., Alshammari, A. S. & Yaghi, O. M. Molecular retrofitting adapts a metalâorganic framework to extreme pressure. ACS Cent. Sci. 3, 662â667 (2017).
Wei, Y.-S. et al. Coordination templated [2+2+2] cyclotrimerization in a porous coordination framework. Nat. Commun. 6, 8348 (2015).
Deng, H. et al. Multiple functional groups of varying ratios in metalâorganic frameworks. Science 327, 846â850 (2010).
Burrows, A. D., Frost, C. G., Mahon, M. F. & Richardson, C. Post-synthetic modification of tagged metalâorganic frameworks. Angew. Chem. Int. Ed. 47, 8482â8486 (2008).
Kleist, W., Jutz, F., Maciejewski, M. & Baiker, A. Mixed-linker metal-organic frameworks as catalysts for the synthesis of propylene carbonate from propylene oxide and CO2. Eur. J. Inorg. Chem. 2009, 3552â3561 (2009).
Taylor-Pashow, K. M., Della Rocca, J., Xie, Z., Tran, S. & Lin, W. Postsynthetic modifications of iron-carboxylate nanoscale metalâorganic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 131, 14261â14263 (2009).
Burrows, A. D. Mixed-component metalâorganic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications. CrystEngComm. 13, 3623â3642 (2011).
Zhang, Y.-B. et al. Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metalâorganic framework-177. J. Am. Chem. Soc. 137, 2641â2650 (2015).
Osborn Popp, T. M. & Yaghi, O. M. Sequence-dependent materials. Acc. Chem. Res. 50, 532â534 (2017).
Qin, J.-S., Yuan, S., Wang, Q., Alsalme, A. & Zhou, H.-C. Mixed-linker strategy for the construction of multifunctional metalâorganic frameworks. J. Mater. Chem. A 5, 4280â4291 (2017).
Kong, X. et al. Mapping of functional groups in metalâorganic frameworks. Science 341, 882â885 (2013).
Choi, K. M., Na, K., Somorjai, G. A. & Yaghi, O. M. Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metalâorganic frameworks. J. Am. Chem. Soc. 137, 7810â7816 (2015).
Kalaj, M., Palomba, J. M., Bentz, K. C. & Cohen, S. M. Multiple functional groups in UiO-66 improve chemical warfare agent simulant degradation. Chem. Commun. 55, 5367â5370 (2019).
Dong, D., Sun, Y., Chu, J., Zhang, X. & Deng, H. Multivariate metalâorganic frameworks for dialing-in the binding and programming the release of drug molecules. J. Am. Chem. Soc. 39, 14209â14216 (2017).
Newsome, W. J. et al. Solid state multicolor emission in substitutional solid solutions of metal-organic frameworks. J. Am. Chem. Soc. 141, 11298â11303 (2019).
Li, B. et al. Porous metalâorganic frameworks with Lewis basic nitrogen sites for high-capacity methane storage. Energy Environ. Sci. 8, 2504â2511 (2015).
Kim, M., Cahill, J. F., Fei, H., Prather, K. A. & Cohen, S. M. Postsynthetic ligand and cation exchange in robust metalâorganic frameworks. J. Am. Chem. Soc. 134, 18082â18088 (2012).
Szilágyi, P. A. Ì Interplay of linker functionalization and hydrogen adsorption in the metalâorganic framework MIL-101. J. Phys. Chem. C 118, 19572â19579 (2014).
Jayachandrababu, K. C., Sholl, D. S. & Nair, S. Structural and mechanistic differences in mixed-linker zeolitic imidazolate framework synthesis by solvent assisted linker exchange and de novo routes. J. Am. Chem. Soc. 139, 5906â5915 (2017).
Boissonnault, J. A., Wong-Foy, A. G. & Matzger, A. J. Coreâshell structures arise naturally during ligand exchange in metalâorganic frameworks. J. Am. Chem. Soc. 139, 14841â14844 (2017).
Li, T., Kozlowski, M. T., Doud, E. A., Blakely, M. N. & Rosi, N. L. Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. J. Am. Chem. Soc. 135, 11688â11691 (2013).
Fracaroli, A. M. et al. Seven post-synthetic covalent reactions in tandem leading to enzyme-like complexity within metalâorganic framework crystals. J. Am. Chem. Soc. 138, 8352â8355 (2016).
Caskey, S. R. & Matzger, A. J. Selective metal substitution for the preparation of heterobimetallic microporous coordination polymers. Inorg. Chem. 47, 7942â7944 (2008).
Serre, C. et al. Synthesis, characterisation and luminescent properties of a new three-dimensional lanthanide trimesate: M((C6H3)-(CO2)3) (M = Y, Ln) or MIL-78. J. Mater. Chem. 14, 1540â1543 (2004).
de Lill, D. T., de Bettencourt-Dias, A. & Cahill, C. L. Exploring lanthanide luminescence in metal-organic frameworks: synthesis, structure, and guest-sensitized luminescence of a mixed europium/terbium-adipate framework and a terbium-adipate framework. Inorg. Chem. 46, 3960â3965 (2007).
Schubert, D. M., Visi, M. Z. & Knobler, C. B. Acid-catalyzed synthesis of zinc imidazolates and related bimetallic metal-organic framework compounds. Main Group. Chem. 7, 311â322 (2008).
White, K. A. et al. Near-infrared luminescent lanthanide MOF barcodes. J. Am. Chem. Soc. 131, 18069â18071 (2009).
Soares-Santos, P. C. et al. Photoluminescent 3D lanthanideâorganic frameworks with 2,5-pyridinedicarboxylic and 1,4-phenylenediacetic acids. Cryst. Growth Des. 8, 2505â2516 (2008).
Jee, B. et al. Continuous wave and pulsed electron spin resonance spectroscopy of paramagnetic framework cupric ions in the Zn(II) doped porous coordination polymer Cu3âxZnx(btc)2. J. Phys. Chem. C 114, 16630â16639 (2010).
Wang, L. J. et al. Synthesis and characterization of metalâorganic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 53, 5881â5883 (2014).
Liu, Q., Cong, H. & Deng, H. Deciphering the spatial arrangement of metals and correlation to reactivity in multivariate metalâorganic frameworks. J. Am. Chem. Soc. 138, 13822â13825 (2016).
Castillo-Blas, C. et al. Addressed realization of multication complex arrangements in metalâorganic frameworks. Sci. Adv. 3, e1700773 (2017).
Jiao, Y. et al. Tuning the kinetic water stability and adsorption interactions of Mg-MOF-74 by partial substitution with Co or Ni. Ind. Eng. Chem. Res. 54, 12408â12414 (2015).
Botas, J. A., Calleja, G., Sánchez-Sánchez, M. & Orcajo, M. G. Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. Langmuir 26, 5300â5303 (2010).
Zhai, Q.-G., Bu, X., Mao, C., Zhao, X. & Feng, P. Systematic and dramatic tuning on gas sorption performance in heterometallic metalâorganic frameworks. J. Am. Chem. Soc. 138, 2524â2527 (2016).
Xia, Q. et al. Multivariate metalâorganic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions. J. Am. Chem. Soc. 139, 8259â8266 (2017).
Evans, J. D., Sumby, C. J. & Doonan, C. J. Post-synthetic metalation of metalâorganic frameworks. Chem. Soc. Rev. 43, 5933â5951 (2014).
Das, S., Kim, H. & Kim, K. Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metalâorganic frameworks. J. Am. Chem. Soc. 131, 3814â3815 (2009).
Brozek, C. K. & DincÄ, M. Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5. J. Am. Chem. Soc. 135, 12886â12891 (2013).
Liu, T.-F. et al. Stepwise synthesis of robust metalâorganic frameworks via postsynthetic metathesis and oxidation of metal nodes in a single-crystal to single-crystal transformation. J. Am. Chem. Soc. 136, 7813â7816 (2014).
Bloch, E. D. et al. Metal insertion in a microporous metalâorganic framework lined with 2,2â²-bipyridine. J. Am. Chem. Soc. 132, 14382â14384 (2010).
Tan, C., Han, X., Li, Z., Liu, Y. & Cui, Y. Controlled exchange of achiral linkers with chiral linkers in Zr-based UiO-68 metalâorganic framework. J. Am. Chem. Soc. 140, 16229â16236 (2018).
Nguyen, H. G. T. et al. Vanadium-node-functionalized UiO-66: a thermally stable MOF-supported catalyst for the gas-phase oxidative dehydrogenation of cyclohexene. ACS Catal. 4, 2496â2500 (2014).
Kim, I. S. et al. Targeted single-site MOF node modification: trivalent metal loading via atomic layer deposition. Chem. Mater. 27, 4772â4778 (2015).
Manna, K. et al. Chemoselective single-site Earth-abundant metal catalysts at metalâorganic framework nodes. Nat. Commun. 7, 12610 (2016).
Ji, P. et al. Single-site cobalt catalysts at new Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 metalâorganic framework nodes for highly active hydrogenation of nitroarenes, nitriles, and isocyanides. J. Am. Chem. Soc. 139, 7004â7011 (2017).
Manna, K., Ji, P., Greene, F. X. & Lin, W. Metalâorganic framework nodes support single-site magnesiumâalkyl catalysts for hydroboration and hydroamination reactions. J. Am. Chem. Soc. 138, 7488â7491 (2016).
Krajnc, A., Kos, T., Zabukovec Logar, N. & Mali, G. A simple NMR based method for studying the spatial distribution of linkers within mixed-linker metalâorganic frameworks. Angew. Chem. Int. Ed. 54, 10535â10538 (2015).
Jayachandrababu, K. C. et al. Structure elucidation of mixed-linker zeolitic imidazolate frameworks by solid-state 1H CRAMPS NMR spectroscopy and computational modeling. J. Am. Chem. Soc. 138, 7325â7336 (2016).
Schrimpf, W. et al. Chemical diversity in a metalâorganic framework revealed by fluorescence lifetime imaging. Nat. Commun. 9, 1647 (2018).
Zhao, Y. et al. Mesoscopic constructs of ordered and oriented metalâorganic frameworks on plasmonic silver nanocrystals. J. Am. Chem. Soc. 137, 2199â2202 (2015).
Schneemann, A. et al. Flexible metalâorganic frameworks. Chem. Soc. Rev. 43, 6062â6096 (2014).
Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695â704 (2009).
Deng, H., Olson, M. A., Stoddart, J. F. & Yaghi, O. M. Robust dynamics. Nat. Chem. 2, 439â443 (2010).
Serre, C. et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2CâC6H4âCO2}·{HO2CâC6H4âCO2H}x·H2Oy. J. Am. Chem. Soc. 124, 13519â13526 (2002).
Maji, T. K., Matsuda, R. & Kitagawa, S. A flexible interpenetrating coordination framework with a bimodal porous functionality. Nat. Mater. 6, 142â147 (2007).
Liu, Y. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351, 365â369 (2016).
Coskun, A. et al. Metalâorganic frameworks incorporating copper-complexed rotaxanes. Angew. Chem. Int. Ed. 51, 2160â2163 (2012).
Park, J. et al. Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metalâorganic framework. J. Am. Chem. Soc. 134, 99â102 (2012).
Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418â2421 (2002).
Park, J., Feng, D., Yuan, S. & Zhou, H.-C. Photochromic metalâorganic frameworks: reversible control of singlet oxygen generation. Angew. Chem. Int. Ed. 54, 430â435 (2015).
Williams, D. E. et al. Energy transfer on demand: photoswitch-directed behavior of metalâporphyrin frameworks. J. Am. Chem. Soc. 136, 11886â11889 (2014).
Walton, I. M. et al. The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metalâorganic frameworks. New J. Chem. 40, 101â106 (2014).
Brown, J. W. et al. Photophysical pore control in an azobenzene-containing metalâorganic framework. Chem. Sci. 4, 2858â2864 (2013).
Danowski, W. et al. Unidirectional rotary motion in a metalâorganic framework. Nat. Nanotechnol. 14, 488â494 (2019).
Zhu, K., OâKeefe, C. A., Vukotic, V. N., Schurko, R. W. & Loeb, S. J. A molecular shuttle that operates inside a metalâorganic framework. Nat. Chem. 7, 514â519 (2015).
Chen, Q. et al. A redox-active bistable molecular switch mounted inside a metalâorganic framework. J. Am. Chem. Soc. 138, 14242â14245 (2016).
Acknowledgements
The authors acknowledge King Abdulaziz City for Science and Technology (KACST) as part of a joint KACSTâUC Berkeley collaboration, the National Natural Science Foundation of China (21522105, 21922103, 21961132003, 21971199 and 91622103), the National Key R&D Program of China (2018YFA0704000) and the Science & Technology Commission of Shanghai Municipality (17JC1400100 and 17JC1404000).
Author information
Authors and Affiliations
Contributions
All authors researched data for the article and contributed to the discussion of content, and writing and editing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisherâs note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xu, W., Tu, B., Liu, Q. et al. Anisotropic reticular chemistry. Nat Rev Mater 5, 764â779 (2020). https://doi.org/10.1038/s41578-020-0225-x
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41578-020-0225-x
This article is cited by
-
Imaging molecular structures and interactions by enhanced confinement effect in electron microscopy
Nature Communications (2025)
-
Isotopological entanglement of a metalâorganic framework and a hydrogen-bonded organic framework for proton conduction
Nature Synthesis (2025)
-
Uniform single-crystal mesoporous metalâorganic frameworks
Nature Chemistry (2025)
-
Bio-metal Organic Frameworks: Classification, Synthesis and Applications
Journal of Inorganic and Organometallic Polymers and Materials (2025)
-
Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis
Nature Communications (2024)


