Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Understanding microbial ecology and evolution with single-cell genomics

Technical challenges and high costs remain barriers to the widespread application of microbial single-cell genomics. However, combining meta-omics approaches with single-cell genomics provides new opportunities to better understand microbial diversity, function and community dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Raghunathan, A. et al. Genomic DNA amplification from a single bacterium. Appl. Environ. Microbiol. 71, 3342–3347 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Woyke, T., Doud, D. F. R. & Schulz, F. The trajectory of microbial single-cell sequencing. Nat. Methods 14, 1045–1054 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–11894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, Y. et al. Single-cell genomics of rumen ciliates reveals the functional diversity of uncultivated eukaryotes. Nat. Commun. 13, 7032 (2022).

    Google Scholar 

  6. Kashtan, N. et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild. Prochlorococcus. Science 344, 416–420 (2014).

    CAS  PubMed  Google Scholar 

  7. Shen, Y. et al. High-throughput single-microbe RNA sequencing reveals adaptive state heterogeneity and host-phage activity associations in human gut microbiome. Protein Cell 16, 211–226 (2024).

    Article  PubMed Central  Google Scholar 

  8. Zheng, W. et al. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science 376, eabm1483 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Lan, F., Demaree, B., Ahmed, N. & Abate, A. R. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35, 640–646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dodsworth, J. A. et al. Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat. Commun. 4, 1854 (2013).

    Article  PubMed  Google Scholar 

  11. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373, eabi4882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Engelberts, J. P. et al. GenomeFISH: genome-based fluorescence in situ hybridization for strain-level visualization of microbial communities. ISME J. 19, wraf138 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuchina, A. et al. Microbial single-cell RNA sequencing by split-pool barcoding. Science 371, eaba5257 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Jia, M. et al. Single-cell transcriptomics across 2,534 microbial species reveals functional heterogeneity in the rumen microbiome. Nat. Microbiol. 9, 1884–1898 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene W. Tyson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engelberts, J.P., Tyson, G.W. Understanding microbial ecology and evolution with single-cell genomics. Nat Rev Genet 27, 3–4 (2026). https://doi.org/10.1038/s41576-025-00918-y

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00918-y

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology